Intensification of thermal processes via development of novel energy efficient power systems, engines, reactors and processes is the main subject of this research line. The focus is placed on multicomponent and multiphase flows, liquid atomization, droplets evaporation and drying, combustion, supercritical fluids, heat transfer and fluid dynamics. Renewable methods and transition to the future technologies are of prime interest. 

people involved

example research

Radial Multi-Zone Dryer (Ongoing)

Project description:

Aim of the project  is to translate the concept of a vortex chamber spray dryer into a well-engineered unit that is ready for further scale-up and demonstration, including validation of energy saving potential, proof of low investment costs and of improved product properties. 

MORE INFORMATION

Crestcool (ongoing)

Project description:

The research aims on the development and understanding of novel meat cooling techniques with application of electrostatic sprays. 

MORE INFORMATION

Green Biogas - Delen maakt meer (Ongoing)

Project description:

Intensification of the biogas production from the anaerobic digestion process by optimizing turbulence and mixing levels between various organic compounds and bacteria inside a new design of the digester. 

MORE INFORMATION

SUSTAINABLE TECHNOLOGY FOR THE STAGED RECOVERY OF AN AGRICULTURAL WATER FROM HIGH MOISTURE FERMENTATION PRODUCTS (Ongoing)

Sustainable development goals demand highest possible sustainability of the human activities. RECOWATDIG addresses this by research and development, aimed at obtaining a technical design of an installation for the staged recovery of currently neglected, agricultural water from drying of high moisture solid fermentation products. A high synergy is obtained by integration of water recovery, drying, hydrothermal carbonization and water purification with optimized use of the electricity and water storage, making the proposed technology “smart grid ready”.

MORE INFORMATION

Pyrolysis oil combustion in GT (Finished)

Project description:

The challenge of the project was to develop a new generation of gas turbines that is capable to combust a flash pyrolysis from biomass. New and advanced design tools and techniques were required to realize efficient and clean combustion of this multicomponent fuel. A state-of-the-art atomization test rig to investigate fuel droplet size and distribution in the near-field and numerical models of pyrolysis oil combustion were developed and validated.  

MORE INFORMATION

contact person

Dr. Ir. A.K. Pozarlik
Associate professor