Thermal Conversion and Storage

Our research on energy conversion and storage is mainly focused on the development of innovative solutions for the energy transition, including thermal storage and heat pumps.


example research

  • Innovative microencapsulated phase change materials for direct-absorption solar collectors

    Project description:
    Direct absorption solar collectors (DASCs), in which the heat transfer fluid (HTF) directly absorbs and converts solar energy into thermal energy, have proved to have higher receiver efficiencies than conventional solar collectors. The incorporation of phase change materials (PCMs) in conventional HTFs offers potential to enhance the efficiency even further. The aim of the project is to introduce and characterize novel microencapsulated PCM slurries (ME-PCMS) for direct absorption solar collectors. The working fluid acts both as the HTF and energy storage medium, following two main purposes:

    • to increase the efficiency,
    • to increase energy storage capability of the collectors. 

    MORE INFORMATION

  • A novel thermosiphon-like cooling system based on magnetocaloric nanofluids

    Project description:
    The use of conventional air conditioning and refrigeration technologies causes global warming through the emissions of greenhouse gases. This research develops an innovative air-conditioning and refrigeration system based on magnetic nanofluids. The proposed system has a great potential to provide enhanced performance properties mainly with respect to heat transfer. This means that the system will be more efficient and environmentally- friendly by avoiding emissions of greenhouse gases. The project cooperates with industry to bring this new type of cooling to the market in future.

    MORE INFORMATION

  • Multi-scale modelling and Experimental validation of Thermochemical Energy Storage materials

    Project description:
    There is a growing need for flexibility for the use of local and/or sustainable energy sources, which is caused by the natural fluctuations in the supply of these forms of energy. The combination of sustainable energy systems and compact thermal storage leads to more efficient use of sustainable energy and a reduction of the required energy from the electricity grid. Increased flexibility and matching supply and demand can be realized through the use of the heat battery. Sustainable heat is often abundantly available when the demand is low. Vice versa, the demand is high when the supply is generally low. Especially the use of thermochemical materials (TCMs), which is an intrinsically loss-free and compact means of thermal energy storage, can effectively couple the supply and demand. Flexibility is further increased by the possibility to charge the heat battery on the basis of (sustainable) electricity. Optimized heat and mass transfer characteristics benefit storage capacity and charge/discharge power. This allows for potentially much more frequent charging, and therefore also discharging, of the heat battery.

    MORE INFORMATION

  • Peak Shaving District Heating System For Daily And Seasonal Demand

    Project description

    The baseload demand in a district heating system is usually satisfied by biomass/waste combustion. However, the challenge is how to fulfill the peak-load demand without using fossil fuels which is important for the heating supply reliability. The proposed research is targeting a novel peak shaving system for the district heating application.


    More Information

contact person

prof.dr.ir. M. Shahi (Mina)
Professor

Project Members

dr.ir. K. Rajamani (Keerthivasan)
Assistant Professor
A. Aastha (Aastha)
Postdoc
C. Yeh (Chung-Yu)
PhD Candidate

Publications


Jump to: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010

2024

Hydro - thermal interactions of a ferrofluid in a non - uniform magnetic field (2024)Heat and mass transfer, 60, 1967-1977. Dalvi, S., van der Meer, T. H. & Shahi, M.https://doi.org/10.1007/s00231-022-03278-zCharacterizing Na2S kinetics for thermochemical energy storage applications through algorithmic optimization (2024)In Proceedings of the 16th IEA ES TCP International Conference on Energy Storage (ENERSTOCK 2024) (pp. 71-74). Kieskamp, B., Mahmoudi, A. & Shahi, M.https://doi.org/10.5281/zenodo.13784975Characterizing Changes in a Salt Hydrate Bed Using Micro X-Ray Computed Tomography (2024)Journal of Nondestructive Evaluation, 43(3). Article 77. Arya, A., Martinez-Garcia, J., Schuetz, P., Mahmoudi, A., Brem, G., Donkers, P. A. J. & Shahi, M.https://doi.org/10.1007/s10921-024-01092-7Streamlining kinetic characterization for thermochemical energy storage solutions (2024)In ISEC 2024 – 3rd International Sustainable Energy Conference: Conference Proceedings (pp. 256-258). Kieskamp, B., Mahmoudi, A. & Shahi, M.https://www.aee-intec.at/download/Conference_Proceedings_ISEC_2024.pdfMicrostructural changes in thermochemical heat storage material over cycles: Insights from micro-X-ray computed tomography (2024)Renewable energy, 223. Article 120045. Arya, A., Mahmoudi, A., Donkers, P. A. J., Brem, G. & Shahi, M.https://doi.org/10.1016/j.renene.2024.120045Characterizing Changes in Salt Hydrates using Micro X-Ray Computed Tomography for Improved Cyclability in Thermochemical Materials (2024)In 13th Conference on Industrial Computed Tomography (iCT) 2024 (pp. 42-44). Aastha, Mahmoudi, A. & Shahi, M.A low-frequency ferrohydrodynamic pump for a magneto-caloric refrigerator (2024)Applied energy, 355. Article 122253. Rajamani, K., Juffermans, E., Granelli, L., De Cuadra Rabaneda, A., Rohlfs, W., ter Brake, M., van der Meer, T. & Shahi, M.https://doi.org/10.1016/j.apenergy.2023.122253A novel multi-reactor system for thermochemical heat storage through detailed modeling of K2CO3 particles (2024)Journal of Energy Storage, 78. Article 110028. Kieskamp, B., Mahmoudi, A. & Shahi, M.https://doi.org/10.1016/j.est.2023.110028Simulation-based analysis of thermochemical heat storage feasibility in third-generation district heating systems: Case study of Enschede, Netherlands (2024)Renewable energy, 221. Article 119734. Yeh, C. Y., De Swart, J. K., Mahmoudi, A., Singh, A. K., Brem, G. & Shahi, M.https://doi.org/10.1016/j.renene.2023.119734Magnetocaloric refrigerator with magnetic pump and liquid metals (2024)Journal of physics: Conference series, 2766(1). Article 012115. Rajamani, K., Stolwijk, B. & Shahi, M.https://doi.org/10.1088/1742-6596/2766/1/012115

2023

Unlocking the Potential of Magnetic Refrigeration: Investigating the Compatibility of the Ga-Based Liquid Metal with a La(Fe,Mn,Si)13Hz Magnetocaloric Material for Enhanced Long-Term Stability (2023)ACS Omega, 8(51), 49027-49036. Rajamani, K., Toprak, M. S., Zhang, F., Dugulan, A. I., Brück, E., van der Meer, T. & Shahi, M.https://doi.org/10.1021/acsomega.3c06724Thermochemical Energy Storage Design in Improving Peak Shaving for District Heating System (2023)[Thesis › EngD Thesis]. University of Twente. Yeh, C.-Y.Towards a MagnetoCaloric Cooling System: Using Interactions of Magnetic Fields & Magnetic Fluids (2023)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Dalvi, S.https://doi.org/10.3990/1.9789036557849Techno-economic analysis of developing an underground hydrogen storage facility in depleted gas field: A Dutch case study (2023)International journal of hydrogen energy, 48(74), 28824-28842. Yousefi, S. H., Groenenberg, R., Koornneef, J., Juez-Larré, J. & Shahi, M.https://doi.org/10.1016/j.ijhydene.2023.04.090CO2 capture from ambient air by alkaline carbonates with application to CO2 enrichment for greenhouses (2023)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Rodríguez-Mosqueda, R.https://doi.org/10.3990/1.9789036556538Volume variation in a thermochemical material- An experimental study (2023)In Eurotherm Seminar #116 - Innovative solutions for thermal energy storage deployment (pp. 103-106). Universitat de Lleida. Aastha, Beving, M., Mahmoudi, A. & Shahi, M.https://doi.org/10.21001/eurotherm.seminar.116.2023Reaction kinetics of the hydration of potassium carbonate including the influence of metastability (2023)In Eurotherm Seminar #116: Innovative solutions for thermal energy storage deployment (pp. 27-30). Universitat de Lleida. Kieskamp, B., Mahmoudi, A. & Shahi, M.https://doi.org/10.21001/eurotherm.seminar.116.2023

2021

A thorough investigation of thermochemical heat storage system from particle to bed scale (2021)Chemical engineering science, 246. Article 116877. Mahmoudi, A., Donkers, P. A. J., Walayat, K., Peters, B. & Shahi, M.https://doi.org/10.1016/j.ces.2021.116877Design considerations for developing an underground hydrogen storage facility in porous reservoirs (2021)[Thesis › EngD Thesis]. University of Twente. Yousefi, H.Investigating the effects of a non - uniform magnetic field on heat and flow characteristics of a ferrofluid (2021)Journal of physics: Conference series, 2116(1). Article 012035. Dalvi, S., van der Meer, T. H. & Shahi, M.https://doi.org/10.1088/1742-6596/2116/1/012035Room temperature Magneto-Caloric Refrigerator: system level analysis (2021)Journal of physics: Conference series, 2116(1). Article 012082. Rajamani, K., van der Meer, T. & Shahi, M.https://doi.org/10.1088/1742-6596/2116/1/012082Experimental and numerical investigations for effective thermal conductivity in packed beds of thermochemical energy storage materials (2021)Applied thermal engineering, 193. Article 117006. Walayat, K., Duesmann, J., Derks, T., houshang Mahmoudi, A., Cuypers, R. & Shahi, M.https://doi.org/10.1016/j.applthermaleng.2021.117006Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material (2021)Chemical Engineering Journal, 405. Article 126624. Mehrali, M., ten Elshof, J. E., Shahi, M. & Mahmoudi, A.https://doi.org/10.1016/j.cej.2020.126624Underground Hydrogen Storage in depleted gas fields for seasonal and short-term storage: A case study (2021)In 2nd Geoscience and Engineering in Energy Transition Conference, GET 2021 (pp. 1-5). European Association of Geoscientists and Engineers. Yousefi, S. H., Juez-Larré, J., Shahi, M. & Groenenberg, R.https://doi.org/10.3997/2214-4609.202121017

2019

Preparation of phase change microcapsules with the enhanced photothermal performance (2019)Polymers, 11(9). Article 1507. Latibari, S. T., Eversdijk, J., Cuypers, R., Drosou, V. & Shahi, M.https://doi.org/10.3390/polym11091507

2018

Preparation and Characterization of Heat Transfer Fluid Including Solar-thermal and Latent Heat Storage materials for Application in Direct Absorption Solar Collectors (2018)[Contribution to conference › Paper] 13th Conference on Sustainable Development of Energy, Water and Environment Systems 2018. Tahan Latibari, S., Cuypers, R., Salari, J., Mahmoudi, A. & Shahi, M.Strongly Coupled Fluid-Structure Interaction in a Three-Dimensional Model Combustor during Limit Cycle Oscillations (2018)Journal of engineering for gas turbines and power, 140(6). Article 061505 . Shahi, M., Kok, J. B. W., Roman Casado, J. C. & Pozarlik, A. K.https://doi.org/10.1115/1.4038234Numerical Exploration of Ferrofluid Magnetic Refrigeration based on Convection Principles (2018)In Thermag 2018 - 8th International Conference on Caloric Cooling (pp. 132-136). Article 21. International Institute of Refrigeration. Karaliolios, E. C. J., De La Cuesta De Cal, D. & Shahi, M.https://doi.org/10.18462/iir.thermag.2018.0021

2013

Sensitivity of the numerical prediction of flow in the limousine combustor on the chosen mesh and turbulent combustion model (2013)In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013. Volume 1A: Combustion, Fuels and Emissions. Shahi, M., Kok, J. B. W., Pozarlik, A. K., Roman Casado, J. C. & Sponfeldner, T.https://doi.org/10.1115/GT2013-94328Numerical studies of unsteady heat transfer with thermoacustics oscillations (2013)In 20th International Congress on Sound and Vibration 2013 (ICSV20): Bangkok, Thailand 7-11 July 2013 (pp. 3018-3026). Curran Associates Inc.. Filosa, A., Tomasello, A., Noll, B., Aigner, M., Shahi, M. & Kok, J.Thermal and fluid dynamic analysis of partially premixed turbulent combustion driven by thermo acoustic effects (2013)In 20th International Congress on Sound and Vibration (ICSV20) (pp. 2994-3002). Curran Associates Inc.. Shahi, M., Kok, J. B. W., Pozarlik, A. K. & Sponfeldner, T.Sensitivity of the numerical predicition of flow in the limousine combustor on the chosen mesh and turbulent combustion model (2013)In Proceedings ASME Turbo Expo 2013, June 3-7, 2013, San Antonio, Texas, USA (pp. -). American Society of Mechanical Engineers. Shahi, M., Kok, J. B. W., Pozarlik, A. K., Roman Casado, J. C. & Sponfeldner, T.https://doi.org/10.1115/GT2013-94328DMHD natural convection and entropy generation in a trapezoidal enclosure using Cu-water nanofluid (2013)Computers and fluids, 72, 46-62. Mahmoudi, A. H., Pop, I., Shahi, M. & Talebi, F.https://doi.org/10.1016/j.compfluid.2012.11.014

2012

Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid (2012)International journal of thermal sciences, 59, 126-140. Mahmoudi, A. H., Pop, I. & Shahi, M.https://doi.org/10.1016/j.ijthermalsci.2012.04.006Fluid-structure interaction on combustion instability to derive lifing (2012)In Proceedings 19th International Congres on Sound and Vibration (cd) (pp. -). International Institute of Acoustics and Vibration (IIAV). Shahi, M. & Kok, J. B. W.Fluid-structure interaction on the combustion instability (2012)In Proceedings of the 19th International Congress on Sound and Vibration (pp. 291-). International Institute of Acoustics and Vibration (IIAV). Altunlu, A. C., Shahi, M., Pozarlik, A. K., van der Hoogt, P., Kok, J. B. W. & de Boer, A.Simulation of 2-way fluid structure interaction in a 3D model combustor (2012)In Proceedings ASME Turbo Expo 2012 (pp. -) (GT2012-69681). American Society of Mechanical Engineers. Shahi, M., Kok, J. B. W. & Alemela, P. R.http://www.asmeconferences.org/te2012/Entropy generation due to natural convection cooling of a horizontal heat source mounted inside a square cavity filled with nanofluid (2012)Heat Transfer Research, 43(1), 19-46. Shahi, M., Mahmoudi, A. H. & Talebi, F.https://doi.org/10.1615/HeatTransRes.2012003373Entropy generation due to natural convection in a partially open cavity with a thin heat source subjected to a nanofluid (2012)Numerical Heat Transfer; Part A: Applications, 61(4), 283-305. Mahmoudi, A. H., Shahi, M. & Talebi, F.https://doi.org/10.1080/10407782.2012.647990

2011

Entropy generation due to natural convection cooling of a nanofluid (2011)International Communications in Heat and Mass Transfer, 38(7), 972-983. Shahi, M., Mahmoudi, A. H. & Raouf, A. H.https://doi.org/10.1016/j.icheatmasstransfer.2011.04.008A numerical investigation of conjugated-natural convection heat transfer enhancement of a nanofluid in an annular tube driven by inner heat generating solid cylinder (2011)International Communications in Heat and Mass Transfer, 38(4), 533-542. Shahi, M., Mahmoudi, A. H. & Talebi, F.https://doi.org/10.1016/j.icheatmasstransfer.2010.12.022Modeling of conjugated heat transfer in a thick walled enclosure filled with nanofluid (2011)International Communications in Heat and Mass Transfer, 38(1), 119-127. Mahmoudi, A. H., Shahi, M. & Raouf, A. H.https://doi.org/10.1016/j.icheatmasstransfer.2010.10.001Numerical modeling of ground water flow and contaminant transport in a saturated porous medium (2011)AIP conference proceedings, 1453(1), 111-114. Valipour, M. S., Sadeghi, M., Mahmoudi, A. H., Shahi, M. & Gandaghi, H.https://doi.org/10.1063/1.4711161Numerical modeling of natural convection in an open cavity with two vertical thin heat sources subjected to a nanofluid (2011)International Communications in Heat and Mass Transfer, 38(1), 110-118. Mahmoudi, A. H., Shahi, M., Shahedin, A. M. & Hemati, N.https://doi.org/10.1016/j.icheatmasstransfer.2010.09.009Numerical study of conjugated heat transfer in a thick walled tube subjected to a nanofluid (2011)Heat Transfer Research, 42(7), 655-675. Shahi, M., Mahmoudi, A. & Raouf, A. H.https://doi.org/10.1615/HeatTransRes.2012001712

2010

Numerical simulation of steady natural convection heat transfer in a 3-dimensional single-ended tube subjected to a nanofluid (2010)International Communications in Heat and Mass Transfer, 37(10), 1535-1545. Shahi, M., Mahmoudi, A. H. & Talebi, F.https://doi.org/10.1016/j.icheatmasstransfer.2010.08.005Effect of inlet and outlet location on the mixed convective cooling inside the ventilated cavity subjected to an external nanofluid (2010)International Communications in Heat and Mass Transfer, 37(8), 1158-1173. Mahmoudi, A. H., Shahi, M. & Talebi, F.https://doi.org/10.1016/j.icheatmasstransfer.2010.04.004Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid (2010)International Communications in Heat and Mass Transfer, 37(8), 1135-1141. Mahmoudi, A. H., Shahi, M., Raouf, A. H. & Ghasemian, A.https://doi.org/10.1016/j.icheatmasstransfer.2010.06.005Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid (2010)International Communications in Heat and Mass Transfer, 37(2), 201-213. Shahi, M., Mahmoudi, A. H. & Talebi, F.https://doi.org/10.1016/j.icheatmasstransfer.2009.10.002Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid (2010)International Communications in Heat and Mass Transfer, 37(1), 79-90. Talebi, F., Mahmoudi, A. H. & Shahi, M.https://doi.org/10.1016/j.icheatmasstransfer.2009.08.013