MESOSCALE CHEMICAL SYSTEMS

Mesoscale Chemical Systems

Research on electricity-driven activation mechanisms, using electricity from renewable energy sources, is a core activity of the Mesocale Chemical Systems group (MCS) headed by Han Gardeniers. Combined with downscaling and integration of unit chemical operations, enhanced yield and selectivity of chemical reactions and product purification, and improved analysis of mass-limited chemical and biological samples is achieved.

Introduction to group activities

The research focuses on the themes Alternative activation mechanisms for chemical process control and process intensification and Miniaturization of chemical analysis systems. A special interest is in periodic mesoscale structures, where the periodicity leads to improvements in chemical process throughput and selectivity, because such structures align the size scale of elemental reaction and mass/heat/electron transport processes with their respective time scales, and reduces the residence time distribution in a chemical processing unit. Effort is planned in the development of advanced additive manufacturing methods for functional mesoscale metamaterials for chemical process engeneering and sustainable energy (with a focus on solar energy). 3D nanostructuring using more conventional nanotechnology are developed further for biochemical and sustainable energy research. Because of the small distances over which chemical processes occur in mesoscale structures, it becomes possible to apply new concepts for activation of chemical reactions, for example, using ultrasound or electrical fields. In this way, processes can be intensified and more sustainable routes for chemical processing can be achieved. An example is solar-to-fuel conversion, in which solar light, via electrons and surface electrochemistry, is used to generate hydrogen gas, or in future, convert carbon dioxide to alcohols or other liquid fuels. Activities in this area are growing, e.g. via the introduction of novel light-harvesting nanostructures. In physics and chemistry the mesoscopic scale is the length scale at which one can reasonably discuss material properties or phenomena without having to discuss individual atom behaviour. Applied research at this scale is covered by the fields of nanotechnology and microtechnology (including microsystem technology, MST, micro electromechanical systems, MEMS, and microreaction technology).

The group is a very active user of the NanoLab clean room facilities and collaborates with many of the groups participating in the nanotechnology research institute MESA+, in particular with microfluidics colleagues in the group Soft Matter, Fluidics and Interfaces (SFI) lead by Rob Lammertink, photocatalysis colleagues in the group Photo-catalytic Fuel Synthesis (PCS) headed by GuidoMul, and nanofabrication colleagues in the group Molecular Nanofabrication headed by Jurriaan Huskens.

Main research themes

Latest news

Cleaning Challenge Device

MCS article published in Applied Acoustics

In this paper, we describe the best ways to clean and evaluate objects made with 3D-printers. The cleaning method typically used and endorsed by manufacturers is tested and new methods of cleaning are introduced. ... read more

Article MCS published in Microelectronic Engineering

This work describes and demonstrates a fabrication process for silicon sieves with highly-uniform, micron-sized pyramidal shaped pores featuring squared apertures. ... read more

microhotplate

ARTICLE MCS PUBLISHED IN SENSORS AND ACTUATORS B

This paper of Elizaveta Vereshchagina and others is focused on the design and fabrication aspects of micro hotplates, which can be used for calorimetric analysis of gaseous samples. ... read more

Onderzoekers UT bereiken vergaande dopingcontrole

Eerste grote doorbraak in UT-onderzoek dat moet leiden tot ‘solar to fuel’ apparaat

2 december 2014

Door een halfgeleider, waarmee je zonlicht om kunt zetten naar elektriciteit, te voorzien van pilaartjes, kun je het oppervlak en de efficiëntie verhogen. Het creëren van een zogenaamde PN-junctie in deze pilaartjes die de 3D-structuur van het oppervlak volgt is daarbij essentieel om positieve en negatieve lading in de structuur te goed te kunnen scheiden. Wetenschappers van UT-onderzoeksinstituut MESA+ zijn er nu voor het eerst in geslaagd om deze PN-juncties in halfgeleiders nauwkeurig in 3D te visualiseren. Ze creëerden een halfgeleider met een miljoen minuscule pilaartjes per vierkante centimeter en slaagden er in om nauwkeurig de PN-junctie in beeld te brengen met een elektronenmicroscoop. Het onderzoek is gepubliceerd in het toonaangevende wetenschappelijke tijdschrift Advanced Energy Materials. ... read more