The (aero)acoustics and aerodynamics team focuses on solving societal and environmental issues with fundamental solutions. We aim for new, quantitative and qualitative understanding of the underlying phenomena to improve state-of-the-art methodologies, modeling and designing systems. The vision is to bridge the gap between academic knowledge and its actual application to societal and environmental issues that lead towards a sustainable and healthier society.
Aerodynamics
Persons involved
Aeroacoustics
Active Research Projects
- ZEPHYR
zEPHYR has the following objectives:
- Foster a training-through-research network of young researchers, where the ESR fellows will investigate and further develop promising emerging technologies enabling a more efficient harvesting of wind energy resources in ‘conventional’ on-shore as well as urban environments through more accurate and robust simulation methodologies, supported by laboratory experiments and theoretical models, and applying novel optimization approaches.
- Bring in a coordinated research environment top-rank academia, research centres and industrial stakeholders, actively involved in top-level research in the fields of fluid dynamics, aeroacoustics, structural dynamics and fatigue life prediction, Uncertainty Quantification, optimization methods, system dynamics and control, and human factors.
- Offer an unprecedented training infrastructure where the young researchers will not only acquire the necessary scientific skills, but will also be confronted with the intricacies of an innovation process including integration, manufacturing, economical constraints, through strong interactions with the industrial world.
Two on-shore application areas will be considered:
i) horizontal axis wind turbines (HAWTs) with sizes corresponding to the current state-of-the-art (~ 5-10 MW), and
ii) urban wind turbines, with a focus on the most promising concepts for urban integration such as vertical axis wind turbines (VAWTs), diffuser-augmented wind turbines (DAWTs) and building-integrated wind turbines (BIWTs).consortium
Von Karman Institute for Fluid Dynamics (Project Coordinator), University of Twente, National Technical University of Athens, Siemens Industry Software nv, Samtech SA, Wageningen University, Technical Univeristy of Delft, Universidad Politécnica de Madrid, Siemens Gamesa Renewable Energy AS, The Nottingham Trent University, Universidad Nacional del Litoral, Centre Scientifique et Technique du Bâtiment.
more information
- ENODISE
The noise and greenhouse gas emissions generated by aircraft have a negative impact on human health and the environment. To reduce noise and gaseous emissions, the EU-funded ENODISE project aims at improving the integration of novel aircraft’s propulsion systems with the airframe. To achieve this, it will study the key propulsion-airframe integration issues and build a solid basis of knowledge and methods. The project will investigate integration optima using a novel experimental methodology combined with high-fidelity simulations and low-order modelling approaches. It will also implement shape modifications and innovative flow/acoustic control technologies to maximise aero-propulsive efficiency while reducing adverse installation effects. The proposed research plan should lead to better integration designs with minimal detrimental installation effects.
Consortium
von Karman Institute for Fluid Dynamics (Project coordinator), TU Delft, GPU Prime LTD, Universita Degli Studi Roma Tre, University of Bristol, Pipistrel Vertical Solutions, University of Twente, Siemens Industry Software NV, Ecole Centrale de Lyon, DLR, ONERA, RWTH Aachen University, NLR
More information
Former Research Projects
- Silent Approach
Silent approach was a unique project of Embraer, the Royal Dutch Aerospace Laboratory NLR, and German Dutch Windtunnel DNW, and the EFD group. The partners joined knowledge and wind tunnel facilities of vastly different scales to improve predictions of noise by the high lift devices (slats and flaps). This research was conducted within the framework of the TKI HTSM project ‘Silent Approach’.
consortium
University of Twente (project coordinator), The Royal Netherlands Aerospace Center (NLR), German Dutch Wind Tunnels (DNW) and Embraer.
MORE INFORMATION
- Media
- PhD Thesis: Sound propagation corrections in open jet wind tunnels
- PhD Thesis: Aeroacoustic measurements of airframe components: in an open-jet, a hard-wall and a hybrid wind tunnel test section