The following is the list of the group publications as maintained by the University of Twente, which includes only those that are avialable for download. Clicking on any title will show the abstract and a .pdf download link.
Jump to: 2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2013 | 2009
2025
Effect of coarse-graining on mixing indices for rotating drums (2025)[Dataset Types › Dataset]. Zenodo. Füvesi, B., Luding, S., Magnanimo, V. & Goniva, C.https://doi.org/10.5281/zenodo.15303478A Coarse-Grained Discrete Element Model (CG-DEM) based on parameter scaling for dense wet granular system (2025)Powder technology, 453. Article 120581. Saghafian Larijani, R., Magnanimo, V. & Luding, S.https://doi.org/10.1016/j.powtec.2024.120581Virtual Prototyping of Wet Granulation processes: Design and Optimisation via Multiscale Modelling and Rapid Prototyping (2025)[Thesis › PhD Thesis - Research UT, graduation UT]. Ipskamp Printing. Plath, T.https://doi.org/10.3990/1.9789036565080Population balance modelling and reconstruction by quadrature method of moments for wet granulation (2025)Powder technology, 449. Article 120374. Plath, T., Luding, S. & Weinhart, T.https://doi.org/10.1016/j.powtec.2024.120374Data underlying the publication: A Coarse-Grained Discrete Element Model (CG-DEM) for dense wet granular system (2025)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Saghafian Larijani, R., Magnanimo, V. & Luding, S.https://doi.org/10.4121/3762f6a1-c26b-4ec7-b005-adf14b376831
2024
Dataset collection underlying the thesis: "Virtual prototyping of wet granulation processes" (2024)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Plath, T.https://doi.org/10.4121/e45fafed-843b-4db8-b095-7ea53383030bData and code underlying the publication: Rapid Prototyping of a Twin-Screw Granulator for lab-scale research (2024)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Plath, T., Lansink, M., Fokkink, H., Hermans, J., Imankarijo, S., Brinks, T., van de Veen, B., Barlo, R., Gali, P. & Weinhart, T.https://doi.org/10.4121/4bfdbdc1-7b23-4fc0-82e0-b0956308a341A mathematical model for the dynamic angle of repose of a granular material in the rotating drum (2024)Powder technology, 446. Article 120176. Pourandi, S., van der Sande, P. C., Weinhart, T. & Ostanin, I.https://doi.org/10.1016/j.powtec.2024.120176Understanding slow compression of frictional granular particles by network analysis (2024)Soft matter, 20(32), 6440-6457. Taghizadeh, K., Luding, S., Basak, R. & Kondic, L.https://doi.org/10.1039/d4sm00560kArbitrary controlled re-orientation of a spinning body by evolving its tensor of inertia (2024)Computer physics communications, 300. Article 109181. Ostanin, I. A. & Sperl, M.https://doi.org/10.1016/j.cpc.2024.109181Data to reproduce the paper: "Population balance modelling and reconstruction by quadrature method of moments for wet granulation" (2024)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Plath, T., Luding, S. & Weinhart, T.https://doi.org/10.4121/f5cfe2b8-2896-433a-887e-45c397d64adeNumerical and Experimental Studies of Laser Powder Bed Fusion Processes (2024)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Shaheen, M. Y.https://doi.org/10.3990/1.9789036561310Densification of visco-elastic powders during free and pressure-assisted sintering (2024)International journal of solids and structures, 294. Article 112786. Alvarez, J. E., Cheng, H., Luding, S. & Weinhart, T.https://doi.org/10.1016/j.ijsolstr.2024.112786Contact rheological DEM model for visco-elastic powders during laser sintering (2024)Granular matter, 26(2). Article 28. Alvarez, J. E., Nijkamp, A. H., Cheng, H., Luding, S. & Weinhart, T.https://doi.org/10.1007/s10035-024-01395-6How Fast are Elastic Domino Waves? (2024)Granular matter, 26. Article 27. Ding, D., Lau, C., Westerhof, J., van der Hoeven, L., Kampstra, L., van der Beek, P. & Ostanin, I.https://doi.org/10.1007/s10035-023-01389-wExploring moisture-constrained aeolian sediment transport through a discrete particle modelling framework (2024)[Contribution to conference › Abstract] EGU General Assembly 2024. Wang, X., Campmans, G. H. P., Weinhart, T., Thornton, A. R., Luding, S. & Wijnberg, K. M.Non-dimensionalisation of quadrature method of moments for wet granulation (2024)Powder technology, 437. Article 119490. Plath, T., Luding, S. & Weinhart, T.https://doi.org/10.1016/j.powtec.2024.119490Simulation of aeolian sediment transport with inter-particle moisture using Discrete Particle Modelling (2024)[Contribution to conference › Abstract] NCK Days 2024. Wang, X., Campmans, G. H. P., Weinhart, T., Thornton, A. R., Luding, S. & Wijnberg, K. M.Scientific computing with open-source software: This is the textbook of a graduate course given in 2024 at the University of Twente on "Scientific computing with open-source software". (2024)[Book/Report › Book]. Weinhart, T., Thornton, A. R., Ostanin, I., Zwieten, G. v., Uekermann, B., Weide, E. v. d. & Hazel, A.Rigid clumps in the MercuryDPM particle dynamics code (2024)Computer physics communications, 296. Article 109034. Ostanin, I., Angelidakis, V., Plath, T., Pourandi, S., Thornton, A. & Weinhart, T.https://doi.org/10.1016/j.cpc.2023.109034Pressure Anisotropy in Polymer Brushes and Its Effects on Wetting (2024)Langmuir, 40(8), 4401-4409. Veldscholte, L. B., Snoeijer, J. H., den Otter, W. K. & de Beer, S.https://doi.org/10.1021/acs.langmuir.3c03727Data to reproduce the paper: "Non-dimensionalization of quadrature method of moments for wet granulation" (2024)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Plath, T., Luding, S. & Weinhart, T.https://doi.org/10.4121/22093397Charging and discharging a supercapacitor in molecular simulations (2024)The Journal of chemical physics, 160(4). Article 044111. Sitlapersad, R. S., Thornton, A. R. & den Otter, W. K.https://doi.org/10.1063/5.0177103A simple efficient algorithm for molecular simulations of constant potential electrodes (2024)The Journal of chemical physics, 160(3). Article 034107. Sitlapersad, R. S., Thornton, A. R. & den Otter, W. K.https://doi.org/10.1063/5.0171502
2023
Atomistic Mechanism of Friction-Force Independence on the Normal Load and Other Friction Laws for Dynamic Structural Superlubricity (2023)Physical review letters, 131. Article 266201. Brilliantov, N. V., Tsukanov, A. A., Grebenko, A. K., Nasibulin, A. G. & Ostanin, I. A.https://doi.org/10.1103/PhysRevLett.131.266201Arbitrary Controlled Re-Orientation of a Spinning Body by Evolving its Tensor of Inertia (2023)[Working paper › Preprint]. ArXiv.org. Ostanin, I. & Sperl, M.https://arxiv.org/abs/2311.17933Simulating industrial scenarios with the open-source software MercuryDPM (2023)In Conference proceedings of the VIII International Conference on Particle-Based Methods, PARTICLES 2023. SCIPEDIA. Thornton, A. R., Nguyen, Q. H., Polman, H., Post, M. J., Bisschop, J. W., Weinhart-Mejia, R., Fitzsimmons, D., Vesal, M. R., Plath, T., Ostanin, I. & Weinhart, T.https://doi.org/10.23967/c.particles.2023.015How fast are elastic domino waves? (2023)[Working paper › Preprint]. ArXiv.org. Ding, D., Lau, C., Westerhof, J., van der Hoeven, L., Kampstra, L., van der Beek, P. & Ostanin, I.https://arxiv.org/abs/2204.07997Effect of cohesion on structure of powder layers in additive manufacturing (2023)Granular matter, 25(4). Article 68. Roy, S., Shaheen, M. Y. & Pöschel, T.https://doi.org/10.1007/s10035-023-01349-4Multi-scale Sintering Model of Visco-Elastic Powders (2023)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Alvarez Naranjo, J. E.https://doi.org/10.3990/1.9789036558082Continuum description for particle rotations (2023)[Contribution to conference › Poster] International Congress on Particle Technology, PARTEC 2023. Winkelmann, M., Weinhart, T., Magnanimo, V., Luding, S. & Papanicolopulos, S.-A.Rigid Clumps in the MercuryDPM Particle Dynamics Code (2023)[Working paper › Preprint]. ArXiv.org. Ostanin, I., Angelidakis, V., Plath, T., Pourandi, S., Thornton, A. & Weinhart, T.https://doi.org/10.48550/arXiv.2310.05027From characterization to calibration in the cloud using the open-source software MercuryDPM (2023)[Contribution to conference › Poster] International Congress on Particle Technology, PARTEC 2023. Plath, T., Bisschop, J.-W., Thornton, A. R., Luding, S., Fitzsimmons, D. & Weinhart, T.Granular Mixtures with Tailored Effective Properties (2023)In Calm, Smooth and Smart: Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation (pp. 325-347) (Lecture Notes in Applied and Computational Mechanics; Vol. 102). Springer. Taghizadeh, K., Luding, S. & Steeb, H.https://doi.org/10.1007/978-3-031-36143-2_17The role of particle shape in computational modelling of granular matter (2023)Nature Reviews Physics, 5(9), 505-525. Zhao, J., Zhao, S. & Luding, S.https://doi.org/10.1038/s42254-023-00617-9X-ray 3D imaging-based microunderstanding of granular mixtures: Stiffness enhancement by adding small fractions of soft particles (2023)Proceedings of the National Academy of Sciences of the United States of America, 120(26). Article e2219999120. Taghizadeh, K., Ruf, M., Luding, S. & Steeb, H.https://doi.org/10.1073/pnas.2219999120Virtual prototyping of wet granulation processes (2023)[Contribution to conference › Poster] 10th International Granulation Workshop 2023. Plath, T., Luding, S. & Weinhart, T.Recent Advances in MercuryDPM (2023)Mathematics in Computer Science, 17(2). Article 13. Thornton, A. R., Plath, T., Ostanin, I., Götz, H., Bisschop, J.-W., Hassan, M., Roeplal, R., Wang, X., Pourandi, S. & Weinhart, T.https://doi.org/10.1007/s11786-023-00562-xNumerical simulations of liquid bridges between colloids (2023)[Contribution to conference › Poster] Burgers Symposium 2023. Onofri, S., Hulikal Chakrapani, T., Luding, S., Scholten, E., Jarray, A. & den Otter, W. K.Sound characteristics of disordered granular disks: Effects of contact damping (2023)Frontiers in Physics, 11, 1-10. Article 1192270. Saitoh, K., Taghizadeh Bajgirani, K. & Luding, S.https://doi.org/10.3389/fphy.2023.1192270Discrete element modelling of grain-scale aeolian sediment transport on moist beach surface (2023)[Contribution to conference › Abstract] EGU General Assembly 2023. Wang, X., Campmans, G. H. P., Weinhart, T., Thornton, A. R., Luding, S. & Wijnberg, K. M.https://meetingorganizer.copernicus.org/EGU23/EGU23-385.htmlNumerical simulations of liquid bridges between colloids (2023)[Contribution to conference › Poster] NWO Physics 2023. Onofri, S., Hulikal Chakrapani, T., Luding, S., Scholten, E., Jarray, A. & den Otter, W. K.Stress-dependent macromolecular crowding in the mitochondrial matrix (2023)EMBO journal, 42(7). Article e108533. Bulthuis, E. P., Dieteren, C. E. J., Bergmans, J., Berkhout, J., Wagenaars, J. A., van de Westerlo, E. M. A., Podhumljak, E., Hink, M. A., Hesp, L. F. B., Rosa, H. S., Malik, A. N., Lindert, M. K. t., Willems, P. H. G. M., Gardeniers, H. J. G. E., den Otter, W. K., Adjobo-Hermans, M. J. W. & Koopman, W. J. H.https://doi.org/10.15252/embj.2021108533Non-dimensionalisation of quadrature method of moments for wet granulation (2023)In 10th International Granulation Workshop (Accepted/In press). Plath, T., Luding, S. & Weinhart, T.The permeability of pillar arrays in microfluidic devices: an application of Brinkman's theory towards wall friction (2023)Soft matter, 19(3), 436-450. Hulikal Chakrapani, T., Bazyar, H., Lammertink, R. G. H., Luding, S. & den Otter, W. K.https://doi.org/10.1039/d2sm01261hA numerical study of aeolian sediment transport affected by moisture, using discrete element modelling (2023)[Contribution to conference › Abstract] NCK-days 2023. Wang, X., Campmans, G. H. P., Weinhart, T., Thornton, A. R., Luding, S. & Wijnberg, K. M.https://www.nck-web.org/boa-2023/691-a-numerical-study-of-aeolian-sediment-transport-affected-by-moisture-using-discrete-element-modellingCG-enriched concurrent multi-scale modeling of dynamic surface interactions between discrete particles and solid continua (2023)Acta Mechanica Sinica/Lixue Xuebao, 39(1). Article 722218. Cheng, H., Luding, S. & Weinhart, T.https://doi.org/10.1007/s10409-022-22218-xCoarse-grain DEM simulation of wet particles in a rotating drum (2023)[Contribution to conference › Poster] 10th International Granulation Workshop 2023. Saghafian Larijani, R., Magnanimo, V. & Luding, S.Concurrent multi-scale modeling of granular materials: Role of coarse-graining in FEM-DEM coupling (2023)Computer methods in applied mechanics and engineering, 403(Part A). Article 115651. Cheng, H., Thornton, A. R., Luding, S., Hazel, A. L. & Weinhart, T.https://doi.org/10.1016/j.cma.2022.115651Elastic–plastic intermittent re-arrangements of frictionless, soft granular matter under very slow isotropic deformations (2023)Frontiers in Physics, 11. Article 1211394. Luding, S.https://doi.org/10.3389/fphy.2023.1211394
2022
Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages (2022)Nature communications, 13(1). Article 4548. Kuninty, P. R., Binnemars-Postma, K., Jarray, A., Pednekar, K. P., Heinrich, M. A., Pijffers, H. J., ten Hoopen, H., Storm, G., van Hoogevest, P., den Otter, W. K. & Prakash, J.https://doi.org/10.1038/s41467-022-32091-9Linking intermolecular interactions and rheological behaviour in capillary suspensions (2022)Journal of colloid and interface science, 627, 415-426. Jarray, A., Feichtinger, A. & Scholten, E.https://doi.org/10.1016/j.jcis.2022.07.067Down to the root of vegetated soil: challenges and the state-of-the-art (2022)Papers in Physics, 14. Article 140014. Cheng, H., Anselmucci, F. A. R., Fan, X., Zeng, Y., Luding, S. & Magnanimo, V.https://doi.org/10.4279/pip.140014Shape matters: Competing mechanisms of particle shape segregation (2022)[Working paper › Preprint]. ArXiv.org. Hernández-Delfin, D., Tunuguntla, D. R., Weinhart, T., Hidalgo, R. C. & Thornton, A. R.https://doi.org/10.48550/arXiv.2211.13488Bulk modulus along jamming transition lines of bidisperse granular packings (2022)Physical review E: covering statistical, nonlinear, biological, and soft matter physics, 106(5). Article 054903. Petit, J. C., Kumar, N., Luding, S. & Sperl, M.https://doi.org/10.1103/PhysRevE.106.054903Shape matters: Competing mechanisms of particle shape segregation (2022)Physical review E: covering statistical, nonlinear, biological, and soft matter physics, 106(5). Article 054614. Hernández-Delfin, D., Tunuguntla, D. R., Weinhart, T., Hidalgo, R. C. & Thornton, A. R.https://doi.org/10.1103/PhysRevE.106.054614Mesoscale Modelling of Multiphase Flow and Wetting (2022)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Hulikal Chakrapani, T.https://doi.org/10.3990/1.9789036554756Permeability of micropillar flow devices using Brinkman’s theory (2022)[Contribution to conference › Poster] 5th InterPore BeNeLux meeting 2022. Hulikal Chakrapani, T., Bazyar, H., Lammertink, R. G. H., Luding, S. & den Otter, W. K.Continuum-DEM modelling of fluid-solid transition in weakly compacted systems of polydisperse particles of varying shapes (2022)[Contribution to conference › Poster] 25th Engineering Mechanics Symposium, EM 2022. Lubbe, R., Magnanimo, V., Luding, S., Cheng, H. & Gupta, P.From particles to continuous fields: Upscaling towards micropolar theory based on structure and rotation (2022)[Contribution to conference › Poster] 25th Engineering Mechanics Symposium, EM 2022. Winkelmann, M., Luding, S., Papanicolopulos, S.-A., Magnanimo, V., Weinhart, T. & Sousani, M.Meso-scale description of wet powders for industrial-scale modelling (2022)[Contribution to conference › Poster] 25th Engineering Mechanics Symposium, EM 2022. Saghafian Larijani, R., Vivacqua, V., Luding, S. & Magnanimo, V.Multi-scale thermo-viscoelastic modelling of powder-based processes (2022)In Twenty-fifth Engineering Mechanics Symposium, October 25-October 26, 2022. Hotel Papendal, Arnhem (pp. 29-29). Eindhoven University of Technology. Alvarez Naranjo, J. E.Noise and Vibration in Wet Soil: Micromechanical modelling for smart mitigation strategies (2022)[Contribution to conference › Poster] 25th Engineering Mechanics Symposium, EM 2022. Joseph, S., Luding, S., Magnanimo, V., Cheng, H. & Harting, J.Trends and Challenges in "Molecular and Particle-based Mechanics" (Workshop 2) (2022)In Twenty-fifth Engineering Mechanics Symposium, October 25-October 26, 2022. Hotel Papendal, Arnhem (pp. 15-15). Eindhoven University of Technology. Giuntoli, A., Ostanin, I., Castro, S. & Maresca, F.Multi-scale characterization of granular media by in situ laboratory X-ray computed tomography (2022)GAMM Mitteilungen, 45(3-4), 1-17. Article e202200011. Ruf, M., Taghizadeh, K. & Steeb, H.https://doi.org/10.1002/gamm.202200011Local ultra-densification of single-walled carbon nanotube films: Experiment and mesoscopic modeling (2022)Carbon, 196, 979-987. Grebenko, A. K., Drozdov, G., Gladush, Y. G., Ostanin, I., Zhukov, S. S., Melentyev, A. V., Khabushev, E. M., Tsapenko, A. P., Krasnikov, D. V., Afinogenov, B., Temiryazev, A. G., Dremov, V. V., Dumitricã, T., Li, M., Hijazi, H., Podzorov, V., Feldman, L. C. & Nasibulin, A. G.https://doi.org/10.1016/j.carbon.2022.05.047Simulation-guided optimization of granular phononic crystal structure using the discrete element method (2022)Extreme Mechanics Letters, 55. Article 101825. Ostanin, I., Cheng, H. & Magnanimo, V.https://doi.org/10.1016/j.eml.2022.101825Understanding slow compression and decompression of frictionless soft granular matter by network analysis (2022)Soft matter, 18(9), 1868-1884. Luding, S., Taghizadeh, K., Cheng, C. & Kondic, L.https://doi.org/10.1039/d1sm01689jCapacitance and Structure of Electric Double Layers: Comparing Brownian Dynamics and Classical Density Functional Theory (2022)Journal of Solution Chemistry, 51, 296-319. Cats, P., Sitlapersad, R. S., den Otter, W. K., Thornton, A. R. & van Roij, R.https://doi.org/10.1007/s10953-021-01090-7Flow regimes and phase transitions in granular matter: multiscale modeling from micromechanics to continuum-editorial (2022)Granular matter, 24(1). Article 3. Berzi, D., Vescovi, D., Ji, S., Li, X. & Luding, S.https://doi.org/10.1007/s10035-021-01146-xModeling the Magnetic Relaxation Behavior of Micropolar Ferrofluids by Means of Homogenization (2022)In Advanced Structured Materials (pp. 473-486) (Advanced Structured Materials; Vol. 175). Springer. Rickert, W., Winkelmann, M. & Müller, W. H.https://doi.org/10.1007/978-3-031-04548-6_23Numerical modelling of aeolian sand transport on moist beach in different scales (2022)[Contribution to conference › Abstract] NCK Days 2022. Wang, X., Campmans, G. H. P., Wijnberg, K. M., Weinhart, T., Thornton, A. R. & Luding, S.Visco-elastic sintering kinetics in virgin and aged polymer powders (2022)Powder technology, 397. Article 117000. Alvarez, J. E., Snijder, H., Vaneker, T., Cheng, H., Thornton, A. R., Luding, S. & Weinhart, T.https://doi.org/10.1016/j.powtec.2021.11.044
2021
Visualizing particle networks in granular media by in situ X-ray computed tomography (2021)[Working paper › Preprint]. ArXiv.org. Ruf, M., Taghizadeh, K. & Steeb, H.https://arxiv.org/abs/2112.12423v1Role of Surface Roughness in Colloidal Dynamics of Dense Suspensions (2021)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Ilhan, B.https://doi.org/10.3990/1.9789036553087Effect of viscosity on the avalanche dynamics and flow transition of wet granular matter (2021)Particuology, 59, 64-75. Kasper, J. H., Magnanimo, V., de Jong, S. D. M., Beek, A. & Jarray, A.https://doi.org/10.1016/j.partic.2020.12.001Preface (2021)Particuology, 59, 1-1. Schott, D., Kruggel-Emden, H. & Taghizadeh, K.https://doi.org/10.1016/j.partic.2021.09.001Constant Potential by the Particle-Particle-Particle-Mesh Method (2021)[Contribution to conference › Poster] 6th International Conference on Ionic Liquid-Based Materials, ILMAT 2021. Sitlapersad, R. S., den Otter, W. K. & Thornton, A. R.Fragmentation and abrasion in granular matter systems (2021)Computational particle mechanics, 8(5), 1003-1004. Weinhart, T., Lechman, J. & Pöschel, T.https://doi.org/10.1007/s40571-021-00442-wUn-jamming due to energetic instability: statics to dynamics (2021)Granular matter, 23(4). Article 80. Luding, S., Jiang, Y. & Liu, M.https://doi.org/10.1007/s10035-021-01119-0Use of DEM in geomechanics: Special issue associated with the DEM 8 conference (2021)Computers and Geotechnics, 137. Article 104167. O'Sullivan, C., Cheng, H. & Zhao, J.https://doi.org/10.1016/j.compgeo.2021.104167Granular buoyancy in the context of segregation of single large grains in dense granular shear flows (2021)Physical review fluids, 6(6). Article 064307. Lantman, M. P. V. S., Van Der Vaart, K., Luding, S. & Thornton, A. R.https://doi.org/10.1103/PhysRevFluids.6.064307JSolutionChem_Cats_Sitlapersad_denOtter_Thornton_vanRoij_2021 (2021)[Dataset Types › Dataset]. Areda (University of Twente). Sitlapersad, R. S., den Otter, W. K. & Thornton, A. R.Direct numerical simulation of wave propagation in saturated random granular packings using coupled LBM-DEM (2021)In Powders & Grains 2021 – 9th International Conference on Micromechanics on Granular Media. Article 14003 (EPJ Web of Conferences; Vol. 249). Cheng, H., Luding, S., Harting, J. & Magnanimo, V.https://doi.org/10.1051/epjconf/202124914003Elastic wave velocity and attenuation in granular material (2021)In Powders & Grains 2021 – 9th International Conference on Micromechanics on Granular Media (EPJ Web of Conferences; Vol. 249). Jia, F., Cheng, H., Liu, S. & Magnanimo, V.https://doi.org/10.1051/epjconf/202124911001Energy propagation in 1D granular soft-stiff chain (2021)EPJ Web of Conferences , 249. Taghizadeh, K., Steeb, H. & Luding, S.https://doi.org/10.1051/epjconf/202124902002How does static granular matter re-arrange for different isotropic strain rate? (2021)EPJ Web of Conferences , 249. Article 10001. Luding, S.https://doi.org/10.1051/epjconf/202124910001Liquid migration in flowing granular materials (2021)EPJ Web of Conferences , 249. Article 09001. Hagen, T., Luding, S., van der Meer, D., Magnanimo, V. & Jarray, A.https://doi.org/10.1051/epjconf/202124909001Neck growth kinetics during polymer sintering for powder-based processes (2021)In Powders & Grains 2021 – 9th International Conference on Micromechanics on Granular Media (EPJ Web of Conferences; Vol. 249). Alvarez Naranjo, J. E., Cheng, H., Snijder, H., Vaneker, T., Luding, S. & Weinhart, T.https://doi.org/10.1051/epjconf/202124905001Elastic waves in particulate glass-rubber mixtures (2021)Proceedings of the Royal Society of London A. Mathematical, physical and engineering sciences, 477(2249). Article 20200834. Taghizadeh, K., Steeb, H., Luding, S. & Magnanimo, V.https://doi.org/10.1098/rspa.2020.0834Dataset as a basis for process modeling of twin-screw wet granulation: A parametric study of residence time distributions and granulation kinetics (2021)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Plath, T., Korte, C., Sivanesapillai, R. & Weinhart, T.https://doi.org/10.4121/14248433Parametric study of residence time distributions and granulation kinetics as a basis for process modeling of twin-screw wet granulation (2021)Pharmaceutics, 13(5), 645-662. Article 645. Plath, T., Korte, C., Sivanesapillai, R. & Weinhart, T.https://doi.org/10.3390/pharmaceutics13050645Stress based multi-contact model for discrete-element simulations (2021)Granular matter, 23(2). Article 17. Giannis, K., Schilde, C., Finke, J. H., Kwade, A., Celigueta, M. A., Taghizadeh, K. & Luding, S.https://doi.org/10.1007/s10035-020-01060-8The influence of material and process parameters on powder spreading in additive manufacturing (2021)Powder technology, 383, 564-583. Shaheen, M. Y., Thornton, A. R., Luding, S. & Weinhart, T.https://doi.org/10.1016/j.powtec.2021.01.058Raw data of wave propagation experiments using glass-rubber mixtures (2021)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Taghizadeh Bajgirani, K.https://doi.org/10.4121/14096491Stochastic model for energy propagation in disordered granular chains (2021)Materials, 14(7). Article 1815. Taghizadeh, K., Shrivastava, R. K. & Luding, S.https://doi.org/10.3390/ma14071815Drift-diffusive liquid migration in partly saturated sheared granular media (2021)Journal of fluid mechanics, 915. Article A30. Roy, S., Luding, S., Den Otter, W. K., Thornton, A. R. & Weinhart, T.https://doi.org/10.1017/jfm.2021.30Capacitance and Structure of Electric Double Layers (2021)[Contribution to conference › Poster] Physics@Veldhoven 2021. Sitlapersad, R. S., den Otter, W. K. & Thornton, A. R.Bayesian Uncertainty Quantification for Geomechanical Models at Micro and Macro Scales (2021)In Challenges and Innovations in Geomechanics: Proceedings of the 16th International Conference of IACMAG - Volume 1 (pp. 837-845) (Lecture Notes in Civil Engineering; Vol. 125). Springer. Cheng, H., Magnanimo, V., Shuku, T., Luding, S. & Weinhart, T.https://doi.org/10.1007/978-3-030-64514-4_90Clay Micromechanics: An Analysis of Elementary Mechanisms of Clay Particle Interactions to Gain Insight into Compression Behaviour of Clay (2021)In Challenges and Innovations in Geomechanics - Proceedings of the 16th International Conference of IACMAG - Volume 1 (pp. 183-201) (Lecture Notes in Civil Engineering; Vol. 125). Springer. Tarantino, A., Casarella, A., Pedrotti, M., Di Donna, A., Pagano, A., de Carvalho Faria Lima Lopes, B. & Magnanimo, V.https://doi.org/10.1007/978-3-030-64514-4_13A brief review of (multi-scale) modelling approaches to segregation (2021)EPJ Web of Conferences , 249. Article 01004. Thornton, A. R.https://doi.org/10.1051/epjconf/202124901004Simulation data underlying the publication "Capacitance and Structure of Electric Double Layers: Comparing Brownian Dynamics and Classical Density Functional Theory" (2021)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Sitlapersad, R., den Otter, W. & Thornton, A.https://doi.org/10.4121/15035541.v1
2020
Additional Transition Line in Jammed Asymmetric Bidisperse Granular Packings (2020)Physical review letters, 125(21). Article 215501. Petit, J. C., Kumar, N., Luding, S. & Sperl, M.https://doi.org/10.1103/PhysRevLett.125.215501Densification of single-walled carbon nanotube films: Mesoscopic distinct element method simulations and experimental validation (2020)Journal of Applied Physics, 128(18). Article 184701. Drozdov, G., Ostanin, I., Xu, H., Wang, Y., Dumitricǎ, T., Grebenko, A., Tsapenko, A. P., Gladush, Y., Ermolaev, G., Volkov, V. S., Eibl, S., Rüde, U. & Nasibulin, A. G.https://doi.org/10.1063/5.0025505DEM simulation of anisotropic granular materials: elastic and inelastic behavior (2020)Granular matter, 22(4). Article 85. Recchia, G., Magnanimo, V., Cheng, H. & La Ragione, L.https://doi.org/10.1007/s10035-020-01052-8Anisotropic stress state and small strain stiffness in granular materials: RC experiments and DEM simulations (2020)Meccanica, 55(10), 1869-1883. Goudarzy, M., Magnanimo, V., König, D. & Schanz, T.https://doi.org/10.1007/s11012-020-01229-8Capillary Imbibition of Binary Fluid Mixtures in Nanochannels (2020)Langmuir, 36(42), 12712-12722. Hulikal Chakrapani, T. & den Otter, W. K.https://doi.org/10.1021/acs.langmuir.0c02361Collapse modes in simple cubic and body-centered cubic arrangements of elastic beads (2020)Physical review E: covering statistical, nonlinear, biological, and soft matter physics, 102(3). Article 032901. Ostanin, I. A., Oganov, A. R. & Magnanimo, V.https://doi.org/10.1103/PhysRevE.102.032901Hansen solubility parameters obtained via molecular dynamics simulations as a route to predict siloxane surfactant adsorption (2020)Journal of colloid and interface science, 575, 326-336. Faasen, D. P., Jarray, A., Zandvliet, H. J. W., Kooij, E. S. & Kwiecinski, W.https://doi.org/10.1016/j.jcis.2020.04.070“String art” approach to the design and manufacturing of optimal composite materials and structures (2020)Composite structures, 246. Article 112396. Ostanin, I.https://doi.org/10.1016/j.compstruct.2020.112396The influence of material properties and process parameters on the spreading process in additive manufacturing (2020)[Working paper › Preprint]. ArXiv.org. Shaheen, M. Y., Thornton, A. R., Luding, S. & Weinhart, T.https://doi.org/10.48550/arXiv.2007.10125Systematic approach for wettability prediction using molecular dynamics simulations (2020)Soft matter, 16(17), 4299-4310. Jarray, A., Wijshoff, H., Luiken, J. A. & den Otter, W. K.https://doi.org/10.1039/D0SM00197JStretching the limits of dynamic and quasi-static flow testing on cohesive limestone powders (2020)Powder technology, 367, 183-191. Shi, H., Lumay, G. & Luding, S.https://doi.org/10.1016/j.powtec.2020.03.036Collapse modes in SC and BCC arrangements of elastic beads (2020)[Working paper › Preprint]. ArXiv.org. Ostanin, I., Oganov, A. R. & Magnanimo, V.Fast, flexible particle simulations — An introduction to MercuryDPM (2020)Computer physics communications, 249. Article 107129. Weinhart, T., Orefice, L., Post, M., van Schrojenstein Lantman, M. P., Denissen, I. F. C., Tunuguntla, D. R., Tsang, J. M. F., Cheng, H., Shaheen, M. Y., Shi, H., Rapino, P., Grannonio, E., Losacco, N., Barbosa, J., Jing, L., Alvarez Naranjo, J. E., Roy, S., den Otter, W. K. & Thornton, A. R.https://doi.org/10.1016/j.cpc.2019.107129Supplemental data for the paper: Stretching the limits of dynamic and quasi-static flow testing on cohesive limestone powders (2020)[Dataset Types › Dataset]. 4TU.Centre for Research Data. Shi, H., Lumay, G. (. & Luding, S.https://doi.org/10.4121/uuid:bbcb782b-5e89-4cb9-8b8e-d4fe42c26de1Effect of particle size on powder compaction and tablet strength using limestone (2020)Advanced Powder Technology, 31(3), 1280-1289. Cabiscol, R., Shi, H., Wünsch, I., Magnanimo, V., Finke, J. H., Luding, S. & Kwade, A.https://doi.org/10.1016/j.apt.2019.12.033Influence of Load Mode on Particle Crushing Characteristics of Silica Sand at High Stresses (2020)International Journal of Geomechanics, 20(3). Article 04019194. Wu, Y., Yamamoto, H., Cui, J. & Cheng, H.https://doi.org/10.1061/(ASCE)GM.1943-5622.0001600Fluctuating Brownian stresslets and the intrinsic viscosity of colloidal suspensions (2020)The Journal of chemical physics, 152. Article 074901. Palanisamy, D. & den Otter, W. K.https://doi.org/10.1063/1.5141527Bi-dispersed by size MercuryCG analysis files from paper entitled 'Modeling of particle size segregation: calibration using the discrete particle method' (2020)[Dataset Types › Dataset]. University of Twente. Thornton, A. R. & Luding, S.https://doi.org/10.4121/uuid:110aaedc-67f0-43e3-9d54-a8b8d3334894
2019
Single-walled carbon nanotube membranes for optical applications in the extreme ultraviolet range (2019)Carbon, 155, 734-739. Gubarev, V. M., Yakovlev, V. Y., Sertsu, M. G., Yakushev, O. F., Krivtsun, V. M., Gladush, Y. G., Ostanin, I. A., Sokolov, A., Schäfers, F., Medvedev, V. V. & Nasibulin, A. G.https://doi.org/10.1016/j.carbon.2019.09.006Size-independent mechanical response of ultrathin carbon nanotube films in mesoscopic distinct element method simulations (2019)Journal of applied mechanics, 86(12). Article 121006. Ostanin, I., Dumitrica, T., Eibl, S. & Rüde, U.https://doi.org/10.1115/1.4044413Strain-accumulation mechanisms in sands under isotropic stress (2019)Journal of Geophysics and Engineering, 16(6), 1139-1150. Sajeva, A., Capaccioli, S. & Cheng, H.https://doi.org/10.1093/jge/gxz084Intrinsic viscosities of non-spherical colloids by Brownian dynamics simulations (2019)The Journal of chemical physics, 151(18). Article 184902. Palanisamy, D. & den Otter, W. K.https://doi.org/10.1063/1.5127001Structure of ionic liquids under confinement (2019)[Contribution to conference › Poster] 5th International Conference on Ionic Liquid-based Materials, ILMAT 2019. Sitlapersad, R. S., den Otter, W. K. & Thornton, A. R.Optimisation of ionic liquid energy storage via simulation (2019)[Contribution to conference › Poster] Physics@Veldhoven 2019. Sitlapersad, R. S., Thornton, A. R. & den Otter, W. K.Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness (2019)[Working paper › Preprint]. ArXiv.org. Roy, S., Scheper, B. J., Polman, H., Thornton, A. R., Tunuguntla, D. R., Luding, S. & Weinhart, T.https://doi.org/10.48550/arXiv.1901.01472Discrete particle simulation of the spreading process in additive manufacturing (2019)In DEM 8: 8th International Conference on Discrete Element Methods: Book of Abstracts (pp. 263-263). Article 274. University of Twente. Shaheen, M. Y., Thornton, A., Luding, S. & Weinhart, T.https://www.scribd.com/document/434153924/Abstract-Book-v2Discrete particle simulation of the spreading process in additive manufacturing (2019)[Contribution to conference › Paper] 8th International Conference on Discrete Element Methods, DEM 2019. Shaheen, M. Y., Thornton, A. R., Luding, S. & Weinhart, T.https://mercurylab.co.uk/dem8/wp-content/uploads/sites/4/2019/07/274.pdfDistinct element simulation of mechanical properties of hypothetical CNT nanofabrics (2019)Supercomputing Frontiers and Innovations, 6(2), 102-111. Ostanin, I. A.https://doi.org/10.14529/jsfi190208Fast, flexible particle simulations: An introduction to MercuryDPM (2019)[Contribution to conference › Paper] 8th International Conference on Discrete Element Methods, DEM 2019. Weinhart, T., Post, M., Denissen, I. F. C., Tunuguntla, D. R., Grannonio, E., Losacco, N., Tsang, J. M. F., Barbosa, J., den Otter, W. & Thornton, A. R.Faster, more flexible particle simulations: The future of MercuryDPM (2019)[Contribution to conference › Paper] 8th International Conference on Discrete Element Methods, DEM 2019. Thornton, A. R., Post, M., Orefice, L., Rapino, P., Roy, S., Polman, H., Shaheen, M. Y., Alvarez Naranjo, J. E., Cheng, H., Jing, L., Shi, H., Mbaziira, J., Roeplal, R. & Weinhart, T.
2018
An iterative sequential Monte Carlo filter for Bayesian calibration of DEM models (2018)In Numerical Methods in Geotechnical Engineering IX: Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2018). Taylor & Francis. Cheng, H., Luding, S., Magnanimo, V., Shuku, T., Thoeni, K. & Tempone, P.https://doi.org/10.1201/9780429446931-47
2017
MercuryDPM: Fast, flexible particle simulations in complex geometries part II: Applications (2017)In 5th International Conference on Particle-Based Methods - Fundamentals and Applications, PARTICLES 2017. Weinhart, T.Inducing axial banding in bidisperse-by-density granular systems using noncylindrical tumbler geometries (2017)Physical review applied, 8(2). Article 024010. Windows-Yule, C. R. K., van der Horn, A. J., Tunuguntla, D. R., Parker, D. J. & Thornton, A. R.https://doi.org/10.1103/PhysRevApplied.8.024010
2016
Micro origins for macro behavior in granular media (2016)Granular matter, 18(3). Article 59. Zhao, J., Jiang, M., Soga, K. & Luding, S.https://doi.org/10.1007/s10035-016-0662-9Slow stress relaxation behavior of cohesive powders (2016)Powder technology, 293, 82-93. Article 11412. Imole, O. I., Paulick, M., Magnanimo, V., Morgeneyer, M., Chávez Montes, B. E., Ramaioli, M., Kwade, A. & Luding, S.https://doi.org/10.1016/j.powtec.2015.12.023Physik der Lawinen (2016)Physik Journal. Weinhart, T., Tunuguntla, D. R., Thornton, A. R. & Luding, S.
2015
Incremental stress and microstructural response of granular soils under undrained axisymmetric deformation (2015)In Geomechanics from Micro to Macro: proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro, Cambridge, UK, 1-3 September 2014 (pp. 115-120). CRC Press (Taylor & Francis). Kumar, N., Luding, S. & Magnanimo, V.
2013
From creeping to inertial flow in porous media: A lattice Boltzmann-finite element study (2013)Journal of statistical mechanics : theory and experiment, 2013(P02038), 1-9. Article P02038. Narvaez, A., Yazdchi, K., Luding, S. & Harting, J.https://doi.org/10.1088/1742-5468/2013/02/p02038
2009
Jamming in frictionless packings of spheres: determination of the critical volume fraction (2009)In Powder and Grains 2009 (pp. 531-534) (AIP Conference Proceedings; Vol. 1145). American Institute of Physics. Göncü, F., Durán, O. & Luding, S.https://doi.org/10.1063/1.3179980