
LO
W
 FLO
W
S: M
ECHAN

ISM
S, FO

RECASTS and CLIM
ATE CHAN

GE IM
PACTS                          M

ehm
et Cüneyd DEM

İREL



LOW FLOWS

Mechanisms, forecasts and climate change impacts



Promotion committee:

prof.dr. G.P.M.R. Dewulf University of Twente, chairman and secretary

prof.dr.ir. A.Y. Hoekstra University of Twente, promotor

dr.ir. M.J. Booij University of Twente, assistant promotor

prof.dr. J.C.J. Kwadijk University of Twente

prof.dr. Z.B. Su University of Twente

prof.dr.ir. R. Uijlenhoet Wageningen University

prof.dr. T. Wagener Bristol University

ISBN 978-90-365-35656

DOI: 10.3990/1.9789036535656

Typeset in LATEX

Cover design: M.C. Demirel

Picture courtesy: Photographer Tom Buijse (Figure 1.1)
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Knowledge should mean a full grasp of knowledge:

Knowledge means to know yourself, heart and soul.

If you have failed to understand yourself,

Then all of your reading has missed its call.

What is the purpose of reading those books?

So that Man can know the All-Powerful.

If you have read, but failed to understand,

Then your efforts are just a barren toil.

The true meaning of the four holy books

Is found in the alphabet’s first letter.

You talk about that first letter, preacher;

What is the meaning of that – could you tell?

Yunus Emre says to you, Pharisee,

Make the holy pilgrimage if need be

A hundred times – but if you ask me,

A visit to the heart is best of all.

Yunus Emre (1240 – 1321), Anatolian poet
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Preface

High-impact low flows, yes, this is what my book is all about. It may seem con-

troversial to do a research on low flows for a ” wet” country protected by dykes and

barriers like the Netherlands where contingency plans often focus on high flows. When

I started this PhD project in August 2008, the topic of low flows in the River Rhine

was a puzzle to me. The pieces of this puzzle were found during the trips to the water

authorities in Bern, Zurich, Koblenz and Delft. The bicycle trip along the upper-Rhine

from Köln to Dordrecht, with our master students (Erwin, Daniel, Wiebe), was instru-

mentally helpful to see (and to feel) the River Rhine in the summer period. Day by

day, with ups and downs, the pieces of the puzzle were fit in a thesis context. I enjoyed

the entire process and I am content with the final result. The reader will observe that

the flow levels might be low but the societal impacts are high. The results were ap-

preciated by several high impact scientific journals. Especially publishing in a journal

so-called Water Resources Research was my obsession, my Nirvana mission, and it has

happened. Without the help of many people around me, I could complete neither this

mission nor this thesis.

First of all, the people who were with me in the project cockpit: Martijn Booij and

Arjen Hoekstra. Both deserve my deep appreciation and thanks as being my co-pilots,

advisers, mentors and friends. Their critical reviews, patience, support, motivation

and wisdom (sense of humour usually after a beer too) enabled me to combine learning

and enjoyment in this uplifting journey for my career. I continue the compliments

with particular highlights for each member of the project cockpit. Arjen: our first

philosophical talk was in Judith Janssen’s PhD party evening. This was an important

evening to know your life perspective and sincerity. You have provided me comfortable

research conditions as long as I needed, and flexibility to overcome many bureaucratic

pitfalls for a non EU student. Your critical views from your numerous experiences on

writing helped me in making a clear story line for our scientific papers. You had a grip

on the total project picture. Martijn: keeping on the metaphor of the project cockpit,

you quickly assessed the engine–capacity and wing–width of our project plane which

were the two key factors to recommend on reasonable flight altitudes and distances

to reach the final destination safely. In other words, your wisdom and trust always

motivated me. Your serious attention on every detail of the manuscripts improved
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the quality of my work. Not surprisingly, none of our works have been rejected yet.

This is also from the fact that I have followed The EU-Maastricht (Maartjenstrict)

criteria properly. Further, I met many top–hydrologists in your network when we were

together in a conference in India. My parents always mention about your family’s warm

approach to them during their first visit to the Netherlands.

I want to thank Dr.ir. Cornellis Lely foundation and University of Twente (UT) for

funding this research project. The expert group of the project was very useful for

the project. The members of this group were Eric Sprokkereef, Jules Beersma, Ron

Passchier, Durk Klopstra and Marcel de Wit. Thank you for providing data, critically

reviewing my research results and giving me the opportunity to meet other scientists

in the Rhine domain. It has been a great and tragic loss that Marcel de Wit passed

away in an early stage of my research.

The Water Engineering and Management group of the UT is a good place to do research.

Besides, I have been given a considerable amount of budget to improve my skills by

following courses and attending conferences and two summer schools. Everyone was

always available for advice and I enjoyed the friendship of my colleagues in our water

department. I would like to thank you all for that. Special thanks to my master

and Erasmus students (Pieter, Jasper and Hakan), Kristine (pink teddycik), Ertuğ,

Ramazan, Yusuf, Marcela, Tolga, Blanca, Mustafa, Gül, Judith, Freek, Mireia, Erika,

Markus, Pieter van Oel, Matthieu, Hatem, Guoping, René, Kathelijne and Joep. Big

scientists Bas and Jord, thanks for your help on LATEX. I would like to thank my

“paranimfen“ Mesfin Mekonnen and Suleyman Naqshband for their efforts during the

period of my graduation. I would like to thank the secretaries of the WEM group,

Joke, Anke and Brigitte for their help in administrative issues. I would like to thank

the UT staff, Cecile Schouten, Bauke Visser, Sophie Vrielink-Witterick and Veronique

Arnold. Their help in visa related issues and financial management of the project is

indispensable. Futher, I would like to thank Isa Adıgüzel (and his lovely family) and

my colleagues from Istanbul Technical University, Ercan Kahya, Mehmet Karaca, Azize

Çırtlık, Mehmet Parlakyiğit and Mehmet Coşkun for their continuous support. I am

very content that we have a good level of understanding since day one. I will remember

the whole PhD period nicely and I hope you will remember me when you see (or feed)

my six goldfishes (koi and shubunkin) in the pool in front of our faculty. The tree which

I have planted in front of my house in 2010 will also remain as a witness to time.

A particular thank goes to my parents (Mehmet and Hediye), two brothers (Selman and

Sami) whose belief in me through the pitfalls during the research phase was uplifting

and rejuvenating.

Mehmet Cüneyd Demirel

Enschede, 28 November 2013



Summary

The water levels in rain-fed rivers can drop seriously after a prolonged dry period. Low

flows may cause several problems for river users. Understanding low flows at different

time scales to improve medium-range (10 day) and seasonal (90 day) low flow forecasts

have both societal and scientific value as there is an increasing interest to account for

low flow forecasts in decision support systems, e.g. how to operate river navigation and

power plants during low flow periods to maximize benefits and minimize costs.

The objective of this thesis is to explore low flow mechanisms, develop forecast meth-

ods and assess climate change impacts on low flows. The Rhine basin is taken as case

study area. To achieve the research objective, first, in chapter 2 dominant low flow

indicators are identified based on correlation analysis between low flow indicators and

observed low flows at different lag times and temporal resolutions. The most important

indicators in the Alpine sub-basins for medium-range low flow forecasts are potential

evapotranspiration and lake levels. In the other sub-basins, groundwater and potential

evapotranspiration correlate best to low flows. The most important indicators for sea-

sonal low flow forecasts are potential evapotranspiration, lake levels and snow depths

for the Alpine sub-basins, whereas in the other sub-basins the most important indica-

tors are potential evapotranspiration and precipitation or groundwater. The identified

low flow indicators and their appropriate temporal scales are then used to select appro-

priate models from available hydrological models and to develop data-driven models

for medium-range and seasonal forecasts.

Based on the low flow indicators in chapter 3, the GR4J and HBV conceptual hy-

drological models are selected for evaluating the effect of major uncertainty sources,

e.g. input, parameter and initial condition uncertainty, on medium-range low flow fore-

casts. Monte Carlo simulation is used to show the effect of different uncertainties on

the skills of low flow forecasts and to derive the probabilities and ranges in forecasted

low flows. The 10 day ensemble forecast results show that the daily observed low flows

are captured by the 90% confidence interval for both models most of the time, whereas

the GR4J model usually overestimates low flows and HBV is prone to underestimation

of low flows. This is particularly the case if the parameter uncertainty is included into

the forecasts. The total uncertainty in the GR4J model outputs is higher than in the

HBV model outputs. Moreover, the parameter uncertainty has the largest effect on
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the low flow forecasts and the input uncertainty the smallest. The forecast distribu-

tion based on 10 day low flow forecasts issued by the HBV model is the most reliable

forecast distribution if only input uncertainty is considered. The number of correct low

flow forecasts (hits) is about equal for the two models only if the input uncertainty is

considered. The parameter uncertainty is the main reason reducing the number of hits.

The number of false alarms is almost doubled with respect to the HBV model for the

GR4J model when considering total uncertainty. The importance of parameter uncer-

tainty for the quality of forecast is emphasized by all forecast quality measures used

in this study. Overall, the output from two conceptual hydrological models is charac-

terised by substantial uncertainty from model parameters. The parameter uncertainty

effects mainly the reliability and the sharpness of the forecasts. This finding is new for

medium-range low flow forecasts as the input uncertainty (mainly the rainfall forecast

error) is generally assumed to be the most important uncertainty source in hydrological

forecasting (Pappenberger et al., 2005).

The selected two conceptual models, GR4J and HBV, are also used for seasonal low

flow forecasts in chapter 4. In addition, two data-driven models are developed based

on the low flow indicators. The effect of seasonal climate forecasts on low flow forecasts

is assessed using the two conceptual hydrological models and two data-driven models,

i.e. ANN-Ensemble and ANN-Indicator. These models are run using different seasonal

meteorological forcings: (1) ensemble precipitation (P) and potential evapotranspira-

tion (PET) forecasts, (2) ensemble P and climate mean PET, (3) climate mean P and

ensemble PET, (4) climate mean P and PET, and (5) zero P and ensemble PET. The

ensembles provided the forecast uncertainty range for the model inputs. The ranges,

calculated for five cases, are compared, whereas the skill of low flow forecasts is evalu-

ated for varying lead times up to 90 days. The results show that all models are prone to

over-predict low flows using ensemble forcing and the largest range for 90 day low flow

forecasts is found for GR4J using ensemble seasonal climate forecasts as input. The

results of the comparison of forecast skills with varying lead times shows that the low

flow forecasts using GR4J are less skilful than using the other three models. Further,

the hit rate of ANN-Ensemble is higher than that of the other models for all lead times

except for a 90 day lead time. The 90 day ahead low flow events in a very dry year,

i.e. 2003, are correctly forecasted by ANN-I showing the skill of data-driven models for

seasonal forecasting. Overall, the uncertainty arising from ensemble precipitation has a

larger effect on seasonal low flow forecasts than uncertainties from ensemble potential

evapotranspiration and model initial conditions.

In chapter 5, the impacts of climate change on the seasonality of low flows are as-

sessed using the outputs of an ensemble of climate models to run a hydrological model.

Three seasonality indices, namely seasonality ratio (SR), weighted mean occurrence day

(WMOD) and weighted persistence (WP) were used to reflect the discharge regime,

timing and variability in timing of low flow events, respectively. The analysis focuses
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on the effects of the hydrological model and its inputs, the use of different GCMs and

RCMs and the use of different emission scenarios. Significant differences are found

between seasonality indices based on observed and simulated low flows with observed

climate as input due to the uncertainty arising from hydrological model inputs and

structure. Further, the weighted mean occurrence day and the weighted persistence in

the two Alpine sub-basins show larger differences compared to the rain-dominated sub-

basins. The comparison of the three seasonality indices based on observed inputs and

simulated inputs reveals small differences in SR for all sub-basins except for the Moselle

sub-basin. Large differences are found for the WMOD and WP indices, showing that

these indices are very sensitive to uncertainties from the climate models. The compar-

ison of the three seasonality indices using simulated inputs for the current climate and

simulated inputs for the future climate resulted in the largest range for WP and the

smallest range for SR. The SRs by 2063-2098 significantly decrease in all sub-basins,

showing that a substantial change in the low flow regime in all sub-basins of the River

Rhine is expected, whereas a regime shift from winter to summer low flows is likely to

occur in the two Alpine sub-basins. Moreover, the WMODs of low flows tend to be

earlier in the year than for the current climate in all sub-basins except for the Middle

Rhine and Lower Rhine sub-basins. By 2063-2098, the WPs slightly increase compared

to current climate, showing that the predictability of low flow events increases as the

variability in timing decreases. Overall, the comparison of the uncertainty sources eval-

uated in this study shows that different GCMs and RCMs have more influence on the

timing of low flows (WMOD) than different emission scenarios. The influence of differ-

ent GCMs and RCMs on SR is slightly larger than the influence of different emission

scenarios on SR, whereas the influence of different GCMs and RCMs on WMOD is

similar to the influence of different emission scenarios on WMOD.

In this thesis, different low flow mechanisms in the Rhine basin have been identified.

These mechanisms are used to select two appropriate conceptual models for 10 day

and 90 day ahead low flow forecasts. Moreover, the identified temporal scales of the

dominant low flow mechanisms are used to develop two data-driven seasonal models.

The effects of major uncertainty sources on low flow forecasts are assessed using Monte

Carlo methods. Parameter uncertainty is found to have the largest effect on 10 day

low flow forecasts, whereas ensemble seasonal precipitation forecasts have the largest

effect on 90 day low flow forecasts. In the final step, we assessed the possible changes

in seasonal low flow characteristics for the period 2063-2098 using three important

indices reflecting the low flow regime, timing and persistence. Overall, the effect of

the most important uncertainty sources on 10 day and 90 day ahead low flow forecasts

and the impacts of climate change on the seasonality of low flows were evaluated.

The identified lags and temporal resolutions are useful in creating operational medium-

range and seasonal low flow forecast models for the River Rhine. The results can also be

useful for other snow dominated and rain dominated catchments in the world. Further,
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understanding the low flow mechanisms and subsequent storage responses should aid

the selection of appropriate models and the choice of proper temporal scales. Critical

catchment characteristics (e.g. the extent of aquifers) determine the applicability of the

results for appropriate model selection. The exact results about the order of uncertainty

and the type of models can be applicable for other river basins to evaluate low flow

forecasts.



Chapter 1

Introduction

1.1 Rivers and low flows

Rivers have been very important to civilisations in all parts of the world since prehis-

toric times. An Earth without rivers is similar to a body without veins. Therefore,

living along the rivers has always been preferred. The valley between the Tigris and the

Euphrates rivers is blessed in many cultures. Many rivers, such as the Amazon, Gua-

diana, Nile, Danube, Meuse and Rhine, cross the borders of several countries. These

rivers are used for drinking water supply, irrigation, industrial use, power production

and freight shipment (De Wit et al., 2007). They also provide an important habitat

for wildlife and play an essential role in the ecology of rainforests and wetlands. Al-

though most of the large rivers never dry up, the water levels can drop seriously after

a prolonged dry period (i.e. hydrological drought). Similarly, large amounts of precip-

itation in a short time can cause flood events. Both floods and low flows are seasonal

phenomena that may cause several problems to society.

Hydrological droughts are slowly developing events affecting a much larger area than

floods. The economic loss during a hydrological drought period, causing low flows, is

much higher than during floods (Pushpalatha et al., 2011; Shukla et al., 2012). Se-

vere problems, e.g. water scarcity for drinking water supply and power production,

hindrance to navigation and deterioration of water quality, have already been experi-

enced during low flow events in the River Rhine in dry summers such as in 1976, 1985

and 2003. The River Rhine is selected as study area for this thesis (Figure 1.1). The

reader will observe that this thesis is based on three main pillars: first, identification of

dominant low flow mechanisms to improve forecast models; second, rigorously assessing

uncertainty in 10 day and 90 day low flow forecasts; and third, evaluating the future

trends in low flows due to climate change.
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Figure 1.1: Low flow conditions in the River Rhine. Picture courtesy: Tom Buijse

1.2 Low flow mechanisms in the River Rhine

The river flow is the result of many interacting mechanisms acting at various spatial

and temporal scales in a river basin. Different mechanisms are dominant at different

scales during the transformation of precipitation to river flow due to the heterogeneity

in water carrying media. The large Rhine basin, spanning from the Swiss Alps to the

lowlands in the Netherlands, contains different land use types and aquifer systems. The

average discharge downstream of the Alpine mountains is approximately 1000 m3/s. It

then increases up to 2,300 m3/s at the Lobith gauging station after the German-Dutch

border. The minimum observed discharge at this gauging station was 575 m3/s in

1929. The contribution of the Alps to the total discharge can be more than 70% in

summer, whereas it is only about 30% in winter (Middelkoop and Van Haselen, 1999).

In the winter period, the precipitation is stored as snow and ice in the Alps until late

spring. Due to the high evaporation and little melt-water input from the Alps, low

flows typically occur in late summer or autumn (Nilson et al., 2012).

The river discharge during a low flow period mainly originates from groundwater stor-

age and the outflow follows a characteristic recession curve (Schneider, 2008). Basin

characteristics such as geology, soil type, topography, vegetation, hydraulic conduc-

tivity and extent of the aquifer determine the magnitude and timing of groundwater

discharge to streams (Hattermann et al., 2004; Allen et al., 2010; Burn et al., 2008).

Apart from that, the release from other large storages controlled by gravity, such as

large lakes, snow storage and glaciers, can be important in sustaining low flows (Tallak-

sen and Van Lanen, 2004; Suweis et al., 2010). Since low flows may occur in any season

in the River Rhine, it is crucial to identify which dominant low flow mechanisms and

temporal scales should be incorporated in a low flow model. This will be the first sub-
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ject in this thesis. Selection of dominant temporal scales is important as it affects the

required input data, the processes that can be well presented, and therefore, usefulness

of the forecast results.

1.3 Ensemble low flow forecasts and uncertainty

To anticipate low flow events it is crucial that medium-range (10 day) and seasonal (90

day) low flow forecasts become available in addition to short-range (1 – 4 days) forecasts.

The Dutch Water Service and the German Hydrology Institute forecast discharges with

lead times varying from six hours to four days using different models including regression

based models, unit hydrographs and flow routing schemes for the Rhine. Currently,

various models that run with outputs from numerical weather forecast models at a daily

or sub-daily time step are used for operational or semi-operational purposes by water

agencies in the riparian countries (Cloke and Pappenberger, 2009). Hourly forecasts

are important for flood warnings, whereas daily forecasts are used to forecast low flows.

The low flow forecasts with longer lead times can be particularly beneficial for river

navigation and power plants to maximize their gain. However, the reliability of weather

forecasts is questionable for longer lead times than one week due to the uncertainties

in the weather forecast results. Therefore, no single weather forecast is issued by

climate institutes. Instead, an ensemble of forecasts, comprising 40 or 50 members, is

issued using different model perturbations to incorporate uncertainty in the streamflow

forecasts. This system is known as the ensemble streamflow prediction (ESP) system.

For assessing the effects of different sources of uncertainty on the model outputs, a

systematic uncertainty analysis is usually carried out in hydrological modelling. A

systematic uncertainty analysis consists of several steps such as, classification of un-

certainty sources, importance assessment, quantification of uncertainty sources, uncer-

tainty propagation through the model and, finally, communication of the uncertainty to

the end users. After the identification of the main sources of uncertainty (Ewen et al.,

2006), these sources must be classified. There are many different approaches for source

classification. For instance, Walker et al. (2003) classified uncertainty as originating

from model context, input, model structure and parameters.

Other studies distinguished the uncertainty sources in observations, instruments and

in the context of the problem, expert judgment and indicators (Janssen et al., 2005;

Van der Sluijs et al., 2005; Warmink et al., 2011). It has been commonly accepted

that model inputs, parameters, initial conditions and structure are the major sources

of uncertainty in conceptual hydrological models (Refsgaard et al., 2006; Zappa et al.,

2011). Understanding the relative contributions of these sources to the total low flow

forecast uncertainty and to the quality of forecasts can assist in the future development

of ensemble forecasting systems for different lead times. This thesis focuses on two lead

times, i.e. 10 and 90 days, as both medium-range and seasonal forecasts are important
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in general for all river functions, river navigation in particular. Previous studies on the

River Rhine focused either on only flood forecast models or on simulation models used

for low flows, however no study to medium-range and seasonal forecasting of low flows

is known to the author.

1.4 Climate change and low flows

Understanding low flow mechanisms and improved meteorological forecasts lead to

better low flow forecasts. However, the long term trends in discharge series and inter-

annual variations are also crucial, as long term changes in the Rhine discharge can have

strong economical and societal impacts. For example, there is a growing concern that

the occurrence of low flows will intensify due to climate change (Grabs et al., 1997;

Middelkoop et al., 2001; Huang et al., 2013). Intensified low flows will increase the cost

of energy production and navigation in the River Rhine. The assessment of climate

change impacts on hydrological catchment response is based on predicted meteorologi-

cal variables like precipitation and temperature by climate models. Currently available

climate change projections are mainly based on the outputs of general circulation mod-

els (GCMs) and, additionally, the outputs of regional climate models (RCMs) with

a higher spatial resolution than GCMs. However, it is obvious that regional climate

change projections based on these climate model outputs are highly uncertain due to

unknown future greenhouse gas emissions and the simplified representation of processes

in both RCMs and GCMs (Horton et al., 2006). The impacts of climate change on the

magnitude of simulated low flows have been previously assessed in different studies,

e.g. the Rhineblick project (Görgen et al., 2010). However, in this thesis, I focus not

so much on the magnitude of low flows but on the seasonality properties of low flows

(regime, timing and persistence of timing).
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1.5 Research objectives and questions

The objective of this thesis is to explore low flow mechanisms, develop forecast methods

and assess climate change impacts on low flows by identifying low flow indicators and

their dominant temporal scales, analysing the effects of different uncertainty sources

on low flow forecasts for different lead times, and comparing low flows for current and

future climate conditions. For that, the following research questions are formulated:

Q1. What are the dominant low flow indicators and temporal scales in the Rhine

Basin?

Q2. What is the effect of uncertainty originating from model inputs, parameters and

initial conditions on 10 day ensemble low flow forecasts?

Q3. What is the effect of ensemble seasonal meteorological forecasts on the skill of

seasonal ensemble low flow forecasts?

Q4. What is the impact of climate change on the seasonality of low flows in the Rhine

basin?

1.6 Research approach and outline

The above mentioned four research questions are addressed in chapters 2, 3, 4 and 5

respectively. Figure 1.2 shows the setting of this thesis.

In chapter 2, the assessment of dominant low flow indicators will be based on a cor-

relation analysis between low flow indicators and observed low flows at different lag

times and different temporal resolutions of low flow indicators and observed low flows.

These low flow indicators and their appropriate temporal resolutions will then be used

in chapter 3 to select the appropriate models from available hydrological models and in

chapter 4 to select two conceptual models and to develop two data-driven models. In

chapter 3, the effect of major uncertainty sources, e.g. input, parameter and initial con-

dition uncertainty, on the skill of 10 day low flow forecasts issued by two hydrological

models are assessed using the forecast probabilities and ranges derived from ensemble

forecast results. In chapter 4, the effect of seasonal meteorological forecasts on low

flow forecasts is assessed using four hydrological models. The effects of different initial

conditions and different model structures are also addressed. In chapter 5, the effect

of different climate scenarios on low flows is evaluated based on a simulation approach

using the outputs of an ensemble of climate models to drive a hydrological model.

Three different seasonality indices are used to reflect the discharge regime, timing and

variability in timing of low flow events respectively.
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Figure 1.2: Setting of the thesis. Four research questions (Q1-Q4) are answered in
chapters 2-5, and discussed and summarised in chapter 6 and 7 respectively.

This thesis focuses on the effects of the hydrological model and its inputs, the use

of different GCMs and RCMs and the use of different emission scenarios. Finally, in

chapters 6 and 7, the overall results from the preceding four chapters are discussed and

the answers to the research questions are formulated.



Chapter 2

Identification of appropriate lags and temporal

resolutions for low flow indicators

Abstract

The aim of this paper is to assess the relative importance of low flow indicators for

the River Rhine and to identify their appropriate temporal lag and resolution. First,

the Rhine basin is subdivided into seven sub-basins. By considering the dominant pro-

cesses in the sub-basins, five low flow indicators were selected: precipitation, potential

evapotranspiration, groundwater storage, snow storage and lake storage. Correlation

analysis was then carried out to determine the relationship between observed low flows

and pre-selected indicators with varying lags (days) and temporal resolutions (from

one day to seven months). The results show that the most important low flow indi-

cators in the Alpine sub-basins for forecasts with a lead time of 14 days are potential

evapotranspiration with a large lag and temporal resolution, and lake levels with a small

lag and temporal resolution. In the other sub-basins groundwater levels with a small lag

and temporal resolution are important in addition to potential evapotranspiration with

a large lag and temporal resolution. The picture is slightly different for forecasts with a

lead time of 90 days. The snow storage in the Alpine sub-basins and the precipitation

in the other sub-basins also become relevant for low flows. Consequently, the most

important low flow indicators in the Alpine sub-basins for forecasts with a lead time

of 90 days are potential evapotranspiration with a large lag and temporal resolution,

lake levels with a small lag and temporal resolution and snow storage with a small lag

and large temporal resolution. The resultant correlation maps provide appropriate lags

and temporal resolutions for indicators to forecast low flows in the River Rhine with

different lead times.

This chapter is based on the paper: Demirel MC, Booij MJ, Hoekstra AY, (2013). Identification
of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low
flows with different lead times. Hydrological Processes, 27 (19): 2742-2758, doi: 10.1002/hyp.9402.
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2.1 Introduction

Forecasting low flows several weeks or months in advance can benefit the management

of water resources, river navigation and cooling water supply for the energy sector,

particularly in Europe, where heavily industrialised cities are usually located along

rivers. A two week forecast is often useful for the freight shipment sector whereas a

longer lead time forecast like three month low flow forecast is a crucial reference for

contingency plans of the energy sector. The water authorities can then make operational

decisions on river traffic (e.g. maximum load allowance for ships), or decisions on

reducing energy production because of a low cooling water supply.

Many different hydrological models exist which describe the transformation of rainfall

to runoff at different spatial and temporal scales (Anderson et al., 2004; Hannaford

et al., 2011; Hattermann et al., 2004). Statistical models have been used to estimate

low flows (Ouarda et al., 2008) and conceptual models were applied to long-term low

flow forecasting in France (Perrin et al., 2002). To the best of our knowledge, none

of the previous studies used conceptual and data-driven models to forecast low flows

in the River Rhine. Selection of appropriate spatial and temporal scales is important

as it affects the required input data, the processes that can be well presented, the

scenarios that can be analysed, and usefulness of the resulting forecasts (Dumont et

al., 2008). However, the selection of a particular spatio-temporal scale in the model

is usually not well reported, making the appropriateness of a chosen scale difficult to

judge. Furthermore, modellers often have no clear criteria for selecting these scales for

forecasting low flows.

This study focuses on identifying appropriate temporal scales (defined here as reso-

lution) of dominant low flow processes (defined here as indicators). Identification of

appropriate spatial scales is beyond the scope of this study. We present a framework

for selecting the appropriate lag between the indicator and observed low flows and ap-

propriate temporal resolutions of the indicators to include in the model or for selecting

a suitable model for low flows. The lag provides information on the response time of

the basin, including concentration time and travel time, while the temporal resolution

gives information on the scale of the water volume entering or leaving the system.

Different processes can be dominant for different lead times (Haltas and Kavvas, 2011;

Klemeš, 1983). There have been studies in which the hydrological processes leading

to low flows and the relationship between low flows and drainage area were assessed

(Burn et al., 2008; Khaliq et al., 2008; Ouarda et al., 2008; Spence et al., 2008). Most

of these studies focused on low flows in Canadian rivers.

The river discharge during a low flow period mainly originates from groundwater stor-

age and the outflow follows a characteristic recession curve (Schneider, 2008). Basin

characteristics such as geology, soil type, topography, vegetation, hydraulic conduc-

tivity and extent of the aquifer determine the magnitude and timing of groundwater
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discharge to streams (Allen et al., 2010; Burn et al., 2008; Hattermann et al., 2004).

Apart from that, the release from other large storages controlled by gravity, such as

large lakes, snow storage and glaciers, can be important in sustaining low flows (Suweis

et al., 2010; Tallaksen and Van Lanen, 2004).

Low flows may occur in any season, mainly due to the lack of water input into a basin

over a long period. This can be a dry period with a climatic water deficit (summer low

flows) or a period with temperatures below zero, when the storage of precipitation is

in the form of snow (winter low flows). Low flow is, therefore, defined as a seasonal

phenomenon and an integral phase of the discharge cycle (Smakhtin, 2001; Warmink

et al., 2010).

Several studies have been carried out to analyse characteristics of low flows. Booij and

De Wit (2010) analysed the relationship between the annual discharge deficit resulting

in low flows and the annual minimum spatially-averaged precipitation at different tem-

poral scales for the River Meuse in France and Belgium. Their study showed that the

relationship becomes more significant at larger temporal scales. However, the central

date of occurrence of spatially-averaged annual minimum precipitation did not show

any relationship in time, while the annual discharge deficit mostly is observed in the

period August-October. This is obviously because the annual cycle of evapotranspi-

ration dominates the discharge deficit and the occurrence of low flows. Gudmundsson

et al. (2011) analysed a pan-European dataset of 615 streamflow records, summarised

as time series of annual streamflow percentiles. They revealed that under dry condi-

tions the catchment response is more complex, as it depends on storage characteristics.

Tallaksen et al. (2009) showed the importance of processes in modifying the drought

signal in both time and space for the Pang catchment, UK. Their study disclosed that

meteorological droughts frequently cover the whole catchment and last for a relatively

short period (1-2 months). Moreover, hydrological droughts (e.g. groundwater drought)

cover smaller areas and last longer (4-5 months) than meteorological droughts. Yue and

Wang (2004) showed that low flows in Canadian rivers generally exhibit simple scaling

behaviour and the drainage area alone explains most of the variability in the statistical

properties of low flows.

In this study the main meteorological drivers in the River Rhine (precipitation and

potential evapotranspiration) and the aforementioned storages (groundwater, lakes and

snow) are defined as low flow indicators. It should be noted that, these relevant low flow

indicators were not arbitrarily selected, but are based on previous reports (e.g. Belz

and Frauenfelber-Kääb, 2007; Hurkmans et al., 2008; Hurkmans et al., 2010). We use

the term ’indicator’ rather than ’process’ throughout the study, since not all the pre-

selected indicators correspond to a hydrological process (e.g. lakes). The indicators

usually act at different scales in the basin. While large storages are dominant at

very large spatiotemporal scales, other indicators can be well described in small scales.

However, these indicators can be modelled in an appropriate model scale.
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Here ’appropriateness’ is defined as a level between complex and simple for a model and

its inputs. An appropriate model should then give adequate results through the use of

appropriate input scales and a corresponding appropriate model scale. This is because

the dominant processes are considered at their appropriate spatial and temporal scales.

Consequently the appropriate model scale is estimated by integrating all input scales

(Booij, 2003).

A model appropriateness procedure has been developed by Booij (2003). It has been

cited in other studies as ’getting the right answers for the right reasons’ (Kirchner,

2006). The procedure includes identification of dominant processes, appropriate scales

and associated appropriate process formulations. In his study, Booij (2003) explored

appropriate spatial scales for precipitation, elevation, soil and land use in a large river

basin by using different relationships between scales and variable statistics and outputs

for river basin modelling purposes. A framework was used to integrate the identified

scales into an appropriate model scale of about 10 km with a corresponding temporal

scale of 1 day. This result can drastically reduce the size of input data and model

complexity. Booij (2002a) examined the effects of different spatial and temporal pre-

cipitation and hydrological model scales on extreme river flows. A spatial scale of 40 km

was estimated to be appropriate for precipitation input into the model (Booij, 2002a).

This agrees with the appropriate precipitation scale of about 20 km as assessed by

Booij (2002b) for the same river basin.

To the best of our knowledge, none of the previous studies focused on quantifying the

appropriate lag and temporal resolution of low flow indicators to forecast low flows.

This is particularly important for modellers to develop a basin specific data-driven

model or to select a model from existing hydrological models that is appropriate for

low flow forecasting and for river managers. The importance of this research topic of

identification of space-time patterns to improve large scale hydrological predictions by

considering uncertainties was also emphasised in a recent special issue of a hydrological

journal (Cloke and Hannah, 2011; Gudmundsson et al., 2011; Hannaford et al., 2011).

Understanding dominant low flow indicators and their relationship to low flows in

the River Rhine will help to improve the analysis of river behaviour during low flows

and better identify the components of a low flow forecast model. This study is a first

attempt that includes the most important low flow indicators and analyses their linkage

to observed low flows for different temporal lags and resolutions.

In the following, the study area and data are described (Section 2.2). This is followed

by the general structure of our lag and temporal resolution framework and details of the

different basin averaged indices which form the basis of the correlation analysis (Section

2.3). Subsequently, the results are discussed (Section 2.4) and finally conclusions are

drawn (Section 2.5).
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2.2 Study area and data

2.2.1 Study area

The Rhine is the busiest inland waterway in Western Europe. It connects cities with

heavy industry to the world market via Rotterdam harbour in the Netherlands. The

river originates at the outlet of Lake Toma in the Piz Badus (2,928 m), Swiss Alps

(Figure 2.1). It flows along a 1,233 km long course before discharging into the North

Sea.

Figure 2.1: Schematisation of the seven major sub-basins of the River Rhine upstream
of Lobith on the German-Dutch border.

The surface area of the Rhine basin is approximately 185,300 km2, covering major parts

of Switzerland, Germany, Luxembourg, France and the Netherlands, and has nearly 60

million inhabitants (Huisman et al., 2000). Furthermore, more than 60 per cent of the

Dutch fresh surface water comes from the Rhine (Middelkoop and Van Haselen, 1999).
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The topography of the basin varies from 4,000 meters in the Alps to six meters below sea

level in the Netherlands. The average discharge before Lake Constance, located in the

East Alpine sub-basin (Figure 2.1), is approximately 1000 m3/s. This is an indication

of the Alps’ contribution to the total discharge. It then increases to up to 2,300 m3/s

on average at the German-Dutch border (Lobith). The discharge regime of the Rhine

at Basel is mainly dominated by melt-water from snow and around 150 Alpine glaciers,

including those in the Gotthard massif (Figure 2.1). Here, the water is generally at

its highest level in spring and early summer, when the snow melts (Figure 2.2). More

than 70 per cent of the summer flow at Lobith (Figure 2.1) originates from the Alps,

whereas only about 30 per cent of the winter flow comes from the Alps (Middelkoop

and Van Haselen, 1999), because winter precipitation is stored as snow in this part of

the basin until it melts in late spring (Figure 2.2).

Figure 2.2: Long-term average discharge recorded at the outlets of the seven major
sub-basins.

The tributaries Neckar, Main and Mosel join the Rhine in Germany. These tributaries

carry vast volumes of water, mainly in winter, when there is intense rainfall and neg-

ligible evapotranspiration. Figure 2.2 shows that the snow-melt water and rain ensure

that the River Rhine is navigable all year long. In addition, the difference between the

minimum and the maximum flow in the Rhine is only a factor of 20, while it is a factor

of around 150 in the neighbouring rainfed Meuse (Middelkoop and Van Haselen, 1999).

The hydrology of the Rhine basin has been modelled with a conceptual model (HBV)

using 134 catchments (Te Linde et al., 2008; Te Linde et al., 2010). As we are interested
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in major storages in the basin and their relationship to low flows, the Rhine basin

is analysed on two spatial scales that of 134 catchments and that seven sub-basins.

The latter level of discretisation is chosen on the basis of basin characteristics such as

topography and geology. The upper Rhine is divided into West Alpine (WA) and East

Alpine (EA), to distinguish Lake Constance’s impact on low flows in addition to that

of snow storage in the Alps. The EA and WA sub-basins cover approximately 34,000

km2, with a maximum altitude of 4,000 meters. There is great variability in altitude

and subsequently in slopes, showing the heterogeneous topography in the WA and EA

sub-basins (Table 2.1).

The glaciers cover about 400 km2 of this mountainous area. The EA sub-basin stretches

from the beginning of the river to Lake Constance (Alpenrhein), while the WA sub-

basin covers the River Aare basin with an outlet in the Untersiggenthal before Basel

(Hochrhein). The Untersiggenthal discharge station on the Aare covering 71 per cent

of the total surface area of the WA sub-basin is chosen to represent WA sub-basin dis-

charge. This leads to a clear picture of two Alpine sub-basins with totally independent

discharge regimes. Moreover, estimating the annually-generated discharges become eas-

ier as it is the fraction of the independent discharge regimes to the sub-basins’ surface

areas (see Table 2.1). Note that the independent discharge is estimated by subtracting

all inlet discharges from the outlet discharge.

Table 2.1: Spatial characteristics of the seven major sub-basins shown in Figure 2.1

Sub-basin
Area Annually

generated
discharge

Altitude [m]

[km2] [mm] Range Mean Std.
dev.

East Alpine (I) 16051 890 143-3270 1250 761
West Alpine (II) 17679 1021 252-3980 967 603
Middle Rhine (III) 41473 344 67-1340 309 205
Neckar (IV) 12616 363 90-970 432 156
Main (V) 24833 244 83-939 344 115
Moselle (VI) 27262 410 59-1326 340 131
Lower Rhine (VII) 20174 273 5-779 237 150

In previous Rhine studies, Rheinfelden discharge station near Basel was used for hy-

drological modelling purpose (Renner et al., 2009). The middle Rhine is divided into

four parts: the Neckar, Main and Moselle tributaries and the remaining main channel

between Basel and Koblenz, which is called the Middle Rhine (MR). The seventh sub-

basin, the Lower Rhine (LR), starts after Koblenz, where the Main and the Moselle flow

into the Rhine. Previous studies focusing on the Rhine basin used a similar subdivision

into seven sub-basins (e.g. Belz and Frauenfelber-Kääb, 2007).
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2.2.2 Discharge data and pre-selected low flow indicators

We use different hydrological variables to carry out the correlation analyses (see Table

2.2). Daily precipitation and potential evapotranspiration data as spatially averaged

for 134 catchments were obtained from the German Federal Institute of Hydrology

(BfG) in Koblenz (Germany). The outlet discharges for the EA (station #6935054

at Rekingen), WA (station #6935300 at Untersiggenthal), Neckar (station #6335600

at Rockenau), Main (station #6335304 at Frankfurt Osthafen) and Mosel (station

#6336050 at Cochem) and independent discharges for the MR and LR were used in

the correlation assessment.

Table 2.2: Data characterisation/availability

Data Index Spatial
resolution

Number of
stations/
sub-basins

Period Temporal
resolution

Source

Discharge Q Point 7 1974-2008 Daily GRDC in
Koblenz

Precipitation P Sub-basins 134 1951-2006 Daily BfG in
Koblenz

Evapo-
transpiration

PET Sub-basins 134 1950-2006 Daily BfG in
Koblenz

Groundwater
levels

G Point 1402 1986-2009 Weekly,
monthly

German
states and
BAFU.ch

Snow S Point 40 1978-2008 Daily,
monthly

SLF.ch

Lake levels L Point 11 1978-2008 Daily BAFU.ch

Daily lake level (L) and daily fresh snow depth data (S) are also included in the cor-

relation analysis. The groundwater data (G) comprise time series of levels measured

at 1,404 stations throughout the Rhine basin with different data lengths and temporal

resolutions (Table 2.2). Also, the stations were not distributed evenly throughout the

basin (Figure 2.3). For example, the groundwater levels in Bavaria in Germany are

represented by a network of 661 wells, while only 99 wells were available in Switzer-

land. Therefore, pre-processing of groundwater level data was required. The data used

are summarised in Table 2.2.
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Figure 2.3: Location of discharge, lake level, snow depth and groundwater level stations.

2.3 Methodology

2.3.1 Overview

This study employs a five step framework to assess the relative importance of low

flow indicators for the River Rhine and to identify their appropriate temporal lag and

resolution (Figure 2.4). The low flow indicators were selected and analysed on the scale

of seven sub-basins.
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Figure 2.4: General framework for assessing the relative importance of low flow indica-
tors for the Rhine and identifying their appropriate temporal lag and resolution.

We define seven sub-basins by spatially aggregating the 134 catchments according

to similar hydrological characteristics and based on previous studies (e.g. Belz and

Frauenfelber-Kääb, 2007; Hurkmans et al., 2008). These sub-basins are the large trib-

utaries except for the Middle and Lower Rhine sub-basins that are the remaining parts.

Note that 134 catchments in the Rhine basin, shown in Figure 2.4, had already been

identified and used in other Rhine studies for modelling purposes (e.g. Reggiani et al.,

2009; Renner et al., 2009; Te Linde et al., 2008). The scale of seven sub-basins is as-

sumed to be sufficient to understand the pre-selected indicators and their relationship

to low flows at the basin outlets. This raises the question of why the assessment of low

flow indicators was not applied on the scale of 134 catchments. Identification of low

flow indicators can be very complicated due to interacting processes on small scales,

since the low flows are, in general, sustained by baseflow originating from a groundwater

reservoir, which generally has a much greater spatial scale than the typical scale of each

of the 134 catchments. Therefore the relationship between low flows and indicators on

the scale of 134 catchments can lead to misinterpretation of existing storages in the

Rhine basin.

In step 2 we selected precipitation (P), potential evapotranspiration (PET ) and ground-

water storage (G) as low flow indicators in all seven sub-basins. Additionally, snow

storages (S ) and lake storages (L) are considered as indicators, but only in the two

upstream sub-basins (EA and WA) (Scherrer and Appenzeller, 2006; Tague and Grant,

2009; Verbunt et al., 2003; Zappa and Kan, 2007).

In step 3, data at the point or catchment (134 catchments) scale were aggregated to

the scale of seven sub-basins. This is done so as to have one basin-averaged time series

for each indicator.

We used a classical standardisation method to avoid effects of spatial heterogeneity in

the data. The standardised data have a zero mean and a standard deviation of one.

The standardised series are obtained by subtracting the mean from each element and
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dividing it by the standard deviation of the original series (Eq. (2.1)).

Z =
X − µx
σx

(2.1)

where Z is the standardised time series, X the original time series (observed data), µx

the mean of the original time series and σx the standard deviation of the original time

series.

In step 4, the temporal resolution of the indicators is varied between 1 day and 336

days (i.e. 1, 3, 7, 14, 21, 28, 56, 84, 112, 140, 168, 196, 224, 252, 280, 308 and 336

days). The lag between indicator and low flows is varied between 0 and 210 days (i.e.

0, 1, 3, 7, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196 and 210 days). The

maximum temporal resolution of 336 days and maximum lag of 210 days are assumed

to be sufficient, as these ranges allow us to scan a long period of more than eighteen

months. To the best of our knowledge, only large-scale atmospheric indicators can be

significant over longer periods than those examined here.

Following the relevant reports by the principal authority for low water levels in the

Netherlands i.e. Dutch National Coordinating Committee on Water Distribution (LCW),

we selected the exceedence probability 75 per cent (Q75) as a threshold for the defini-

tion of low flows. Low flows at this threshold are still affecting the previously described

river functions and the number of days with low flows is sufficient to calibrate a forecast

model. Daily discharges observed at Lobith station equal to or below this threshold are

used to construct the reference low flow series. The low flow occurrence days at Lobith

are then used to construct low flow series for all seven major sub-basins, since our ob-

jective is to forecast low flows at Lobith. These seven Lobith-based low flow series are

temporally aggregated on the scale of three and seven days for two lead times, namely

14 and 90 days respectively. The operational value of daily-averaged and three-day

averaged low flow forecasts is about the same for the navigation and energy sectors.

Moreover, forecasting three-day averaged flow is assumed to be reasonable with a lead

time of 14 days (De Bruijn and Passchier, 2006). Similarly, the temporal resolution is

increased to seven days when the lead time is 90 days. Correlation coefficients between

low flows and indicators are estimated in step 5, to assess the relative importance of

low flow indicators and to explore for which lag and temporal resolution the correlation

is most significant.

2.3.2 Definition of storage indices

Daily standard groundwater storage index.

Groundwater levels from numerous stations in the Rhine basin were included in this

study. The individual groundwater stations’ measurements, shown in Figure 2.3, were
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aggregated to the scale of seven sub-basins using standardised data (Eq. (2.1)). There-

fore they are hereafter called standard groundwater storage indices.

It should be noted that the temporal resolution of the groundwater data is either weekly

or monthly. For example, the groundwater data series from Bavaria are available with

a monthly resolution, while the remaining part of the dataset has a weekly resolution.

The differences in resolution are eliminated, firstly, by aggregating weekly into monthly

data. This is done for every sub-basin where both weekly and monthly data are found.

Particularly, in the west of the Main sub-basin there are catchments with weekly data

from Hessen and monthly data from Bavaria (see Figure 2.3). After the aggregation of

weekly data into monthly data the stations in each of the 134 catchments are standard-

ised and then merged using arithmetic means, to estimate standard monthly storage

index series. Disassembling these monthly storage index series to the daily scale is

accomplished through linear interpolation. Since groundwater storage oscillations are

generally very slow, a linear character is assumed for the data. This assumption was

tested using a temporal correlogram. We examined the temporal variability of ground-

water data in one of the seven major sub-basins. We selected nine stations in the

western part of the Main sub-basin, where both weekly and monthly data are found.

The temporal correlogram of stations with highly variable groundwater levels showed

that they have long correlation lengths, varying from nine to 11 weeks. The appropri-

ate temporal scale can be defined as 25 per cent of the correlation length, accepting

a bias of 10 per cent (Booij, 2003). Therefore, a scale of two weeks was estimated as

an appropriate temporal scale. For that reason the linear interpolation method was

applied, assuming that the measurements were taken in the middle of each month. The

standard lake level index and the standard snow storage index were estimated only for

the EA and WA sub-basins.

Daily standard snow storage index.

Daily fresh snow depth data in the EA and WA sub-basins were used to estimate

the standard snow storage index. Some of the small Alpine basins have more than

one snow-monitoring station. Therefore firstly the data from the stations within the

same sub-basin were standardised using zero mean and a standard deviation of one and

secondly these stations were merged to the scale of 134 catchments using the arithmetic

mean.

Daily standard lake storage index.

There are several large lakes in the EA and WA sub-basins. We selected Lake Constance

as representative of the lake storage in the EA sub-basin. Daily lake levels from ten

lakes in the WA sub-basin were used to calculate the daily lake storage index for the WA

sub-basin. The data from these lakes were standardised using zero mean and a standard
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deviation of one. The stations were then merged using the arithmetic mean. For the

EA sub-basin, the correlations between the observed lake levels of Lake Constance and

low flows for different lags and temporal resolutions were estimated directly.

2.3.3 Basin averaging of pre-selected low flow indicators from the

scale of 134 catchments to that of seven sub-basins

The sub-basin averaged standard daily indices, i.e. P , PET , G and S, were aggregated

to the scale of seven sub-basins using areal weighting. This refers to the fraction of

a sub-basin area on the scale of 134 catchments relative to the sub-basin area on the

scale of seven sub-basins. The basin-averaged standard groundwater storage index was

estimated by using Eq. (2.2).

Gindex,j =
∑

gi
Ai
Aj

(2.2)

where i=1, 2..., 134 catchments, j=1, 2..., seven major sub-basins, gi is the standardised

daily groundwater level, Ai the area of each of the 134 catchments and Aj the total

area of each of the seven major sub-basins. The basin-averaged standard snow storage

index was estimated by using Eq. (2.3).

Sindex,j =
∑

si
Ai
Aj

(2.3)

where j=1, 2 Alpine sub-basins, si is the standardised daily fresh snow height series

observed in these sub-basins and Aj is the total area of the EA or WA sub-basin.

The basin-averaged standard lake storage index in the WA sub-basin was estimated by

using Eq. (2.4).

Lindex,j =
∑

li
Ai
Aj

(2.4)

where j= 2 indicating WA sub-basin, li is the standardised daily lake level series ob-

served in the WA sub-basin and Aj is the total area of the WA sub-basin. For some of

the 134 catchments no G, S or L data were available and these catchments were not

included in the basin averaging. Finally, each pre-selected low flow indicator is repre-

sented by one series for each of the seven sub-basins. Most of these series are daily

standard index series such as P , PET , G and S for the EA sub-basin, P , PET , G, S

and L for the WA sub-basin and P , PET and G for the remaining five sub-basins.
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2.3.4 Correlation assessment

In the last step of the framework, we used correlation analysis to screen potentially

useful predictor-predictant relations for varying lags and temporal resolutions. The cor-

relations were calculated for a lead time of 14 days and three-day temporally-averaged

low flows and for a lead time of 90 days and seven-day temporally averaged low flows.

The temporal resolution of the predictants (low flow indicators) varied between one

day to 336 days, whereas the temporal resolution of the predictor (observed low flows)

was either three day or seven-day moving average values (Figure 2.5). Note that the

forecast lead times (i.e. 14 and 90 days) are added to the lag values in the correlation

analysis.

Three different correlation coefficients between low flows and indicators are estimated.

We are aware that the Pearson correlation coefficients are based on the assumption of

stationary linear relationships between the low flow indicators and low flows (Stein-

schneider and Brown, 2011; Vicente-Serrano and López-Moreno, 2005). In practice,

only slowly responding processes such as groundwater levels and lake and snow storages

show linear behaviour (Wedgbrow et al., 2002). Since all three correlation coefficients

revealed similar results, only the Pearson correlation coefficients are presented.

Figure 2.5: Conceptual diagram illustrating the correlation assessment of three-day and
seven-day moving-averaged low flow data and precipitation data with varying temporal
resolutions and lags for lead time of 14 and 90 days.



2.4 Results and discussion 37

2.4 Results and discussion

2.4.1 Basin-averaged daily indicators

Figure 2.6 shows the basin-averaged low flow indicators in the East Alpine sub-basin for

a three-year period. Because of the fact that the monitoring station at Lake Constance

and the discharge station are close to each other, the fluctuations are very similar.

Figure 2.6: Observed daily time series of Q and pre-selected low flow indicators P, PET,
G, S and L.

2.4.2 Correlation assessment

The correlation coefficients between low flows and indicators are presented by using

colour maps. In these maps, the x axis shows the temporal resolution and the y axis

the lag between indicators and low flows. The maximum ten percentile of the correlation

coefficients in each colour map is indicated by two bars: a vertical bar for the range of

lags and a horizontal bar for the range of temporal resolutions. These bars cross at the

maximum correlation point, showing the appropriate lag and temporal resolution of an

indicator. For clear visibility the crossing point is also highlighted by a circle. It is

assumed that the ranges represent the uncertainty in the appropriate lag and temporal

resolution. The correlation coefficients between PET and low flows are negative (i.e.

blue colour in the maps). However, the absolute value of the maximum correlation for

PET is used to compare the correlations. The most important features of these colour

maps are discussed for each sub-basin, from upstream to downstream. Furthermore,
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two major questions will be dealt with and discussed. (1) Why has one indicator higher

correlations with low flows than other indicators? (2) Why are these lags and temporal

resolutions appropriate?

Figure 2.7 shows the maximum correlation coefficients between indicators and low

flows for all sub-basins. The ranking of the low flow indicators will determine the

initial forecast model structures. It is obvious that the most important low flow indi-

cators for forecasts with a lead time of 14 days in the Alpine sub-basins are potential

evapotranspiration and lake levels, whereas in the other sub-basins in addition to poten-

tial evapotranspiration groundwater levels become important indicators (Figure 2.7a).

For forecasts with a lead time of 90 days, potential evapotranspiration, lake levels and

snow are the best predictors in the Alpine sub-basins. In the other sub-basins, as well

as potential evapotranspiration precipitation or groundwater are important indicators

for low flows.

Figure 2.7: Maximum correlation coefficients between low flows and pre-selected indi-
cators in the seven sub-basins: a) low flows with a temporal resolution of three days
and a lead time of 14 days; b) low flows with a temporal resolution of seven days and
a lead time of 90 days. Only for PET were absolute values of correlation coefficients
used.
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2.4.3 Appropriate lags and temporal resolutions

East Alpine

Figure 2.8 shows the Pearson correlation coefficients between observed low flows and

pre-selected indicators with varying lags and temporal resolutions in the EA sub-basin.

Of the five pre-selected low flow indicators, lake levels and potential evapotranspiration

revealed the highest correlation coefficients for forecasts with a lead time of 14 days. In

addition to these two snow storage is an important indicator for forecasts with a lead

time of 90 days.

The proximity of Lake Constance to the discharge station at Rekingen must be the

main reason for high correlations with low flows. The large lake storage in the EA

sub-basin (55 km3) can sustain river flows for several months. Because of the fact that

the travel time between the outlet of Lake Constance and the discharge station is very

short, small lags (zero days) and daily temporal resolution of lake levels are appropriate

for low flow forecasts with lead times of 14 and 90 days. Therefore, the uncertainty

around the appropriate lag and temporal resolution for the lake levels is very small.

The correlation maps mainly show two maximum correlation regions, as low flows have

high seasonality. This can be clearly seen in the correlation figures for the lake levels.

For example, Figure 2.8a shows the maximum correlation point at a lag of zero days

and a temporal resolution of around one day for the lake levels, while Figure 2.8b shows

the maximum correlation point at a lag of 210 days and a temporal resolution of around

140 days. Note that the lead times of 14 and 90 days were included in the lags shown

in Figure 2.8a and b respectively. Therefore the maximum correlation point for lake

levels in Figure 2.8b indicates that the lake levels in the preceding seven months with a

temporal resolution of around five months are relevant for forecasts with a lead time of

90 days. This corresponds to a total lag of one year and can be explained by the annual

hydrological cycle. Although this situation is justifiable from a mathematical point of

view, such a large lag and temporal resolution are not physically meaningful and should

be ignored. Consequently, small lags (zero days) and daily temporal resolution of the

lake levels are appropriate for forecasts with lead times of 14 and 90 days, as changes

in lake levels are seen directly observed in discharge levels.

Potential evapotranspiration is one of the main driving forces behind low flows, since it

determines water loss to the atmosphere. If water storages sustaining river flows such as

snow and groundwater are exhausted in a basin, with recurring water deficits, then it is

very likely that low flows will be experienced in late summer. This is especially the case

for the River Rhine, as most of the summer flow originates from the snow-dominated

Alpine sub-basins.

Small lags (42 days) and large temporal resolutions (about nine months) for the PET

index are appropriate for forecasts with lead times of 14 days. Moreover, small lags

(zero days) and large temporal resolutions (around seven months) are appropriate for
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forecasts with a lead time of 90 days. This shows that the PET averaged over the

preceding summer and winter seasons is an important indicator for low flows at Lobith.

However, the uncertainty around the appropriate lag and temporal resolution for PET

is very large, due to the great climatic variability. The difference between the two lead

times can be explained by the additional 76 days in the lag (Figure 2.8b).

The amount of snow-fall in the preceding winter period must also be a good indicator

for the late summer low flows at Lobith. This is what we can see in Figure 2.8. The

maximum correlation for the S index for forecasts with lead times of 14 days is found

to be at a lag time of about four months and a temporal resolution of four months,

while the maximum correlation for forecasts with lead times of 90 days is at a lag time

of about one month and a temporal resolution of four months. Taking the forecast

issue day as August 1, average fresh snow height during the December-March period

is important for low flows at Lobith at the end of the summer. The differences found

in the appropriate lag and temporal resolutions for the two lead times clearly confirm

the effect of the additional lag of 76 days (Figure 2.8b).

Appropriate lags and temporal resolutions for other indicators are also given in the

figures, as they will be tested in the forecasting phase. However, these indicators are

less important and are not discussed here for reasons of brevity.
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Figure 2.8: Cross correlation coefficients between low flows in the East Alpine sub-basin
and pre-selected indicators as a function of lag and temporal resolution (days): a) low
flows with a temporal resolution of three days and a lead time of 14 days; b) low flows
with a temporal resolution of seven days and a lead time of 90 days.
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West Alpine

The picture in the WA sub-basin is more or less the same as that in the EA sub-basin.

Lake levels and potential evapotranspiration are the most important low flow indicators

for forecasts with lead times of 14 and 90 days (Figure 2.9). However, the maximum

correlation between lake levels and low flows in the WA sub-basin for forecasts with

a lead time of 90 days is higher than that in EA. We assume that the increase in the

maximum correlation for the L index in the WA sub-basin is not arbitrary.

The total lake storage in the WA sub-basin, comprised of ten lakes with varying storage

capacities, is about 49 km3. This is relatively less than the storage of Lake Constance

(55 km3). However, smaller lake storage should not be directly interpreted as an indica-

tion of shorter memory. Firstly, the annually-generated discharge in the WA sub-basin

is higher than that in the EA sub-basin. Secondly, the ten lakes are distributed evenly

through the WA sub-basin, whereas there is only one large lake (Lake Constance) in

the EA sub-basin. The travel time from lake outlets to the discharge station in the

WA sub-basin is longer than that for Lake Constance. Furthermore, the basin-averaged

standard lake level index, an aggregated index series for the ten lakes, was used for the

WA sub-basin. All this can cause an increase in the maximum correlation between lake

levels and low flows for forecasts with a lead time of 90 days (Figure 2.9b).

The maximum correlations for L and PET have a similar magnitude and are signif-

icantly higher than for the other three indicators. Small lags (zero days) and daily

temporal resolution for the L index and small lags (56 days) and large temporal res-

olutions (around seven months) for the PET index are appropriate for forecasts with

lead times of 14 and 90 days. The large uncertainty around the appropriate lag and

temporal resolution for the L index can be explained by the second high correlation

region in the upper right part of the correlation map for forecasts with a lead time of 14

days (see Figure 2.9a). Therefore, the uncertainty range for the maximum correlation

point of the L index should be from zero to 14 days on the y axis (lags) and from zero

to one month on the x axis (temporal resolutions).

Another significant difference between the EA and WA sub-basins is that the snow

storage in WA shows weaker correlations than that in EA for forecasts with lead times

of 14 and 90 days. This may be because snow-melt water from the Alps is divided over

several tributaries in the WA sub-basin, whereas in EA it is directly connected to the

main river channel. The more immediate response of discharge to snow-melt in EA can

explain the higher correlations between the S index and low flows in this sub-basin.



2.4 Results and discussion 43

Figure 2.9: Cross correlation coefficients between low flows in the West Alpine sub-
basin and pre-selected indicators as a function of lag and temporal resolution (days):
a) low flows with a temporal resolution of three days and a lead time of 14 days; b)
low flows with a temporal resolution of seven days and a lead time of 90 days.
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Main

The general correlation patterns for the snow-dominated Alpine sub-basins and the

downstream rainfed sub-basins are assumed to be different. This assumption is con-

firmed by comparing the correlation maps of the two groups of sub-basins. We only

present the results for Main, as the correlation maps of the rainfed sub-basins are very

similar (see Appendix). Figure 2.10 shows the correlations between low flows and indi-

cators for the Main sub-basin. All pre-selected indicators have very similar maximum

correlations for lead times of 14 and 90 days. The P index gives slightly higher corre-

lations than the PET index for both lead times. Furthermore, the relative importance

of the P index is also higher than that of the G index for forecasts with a lead time of

90 days, showing the importance of precipitation for this sub-basin.

Figure 2.10: Cross correlation coefficients between low flows in the Main sub-basin and
pre-selected indicators as a function of lag and temporal resolution (days): a) low flows
with a temporal resolution of three days and a lead time of 14 days; b) low flows with
a temporal resolution of seven days and a lead time of 90 days.
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Large lags (around three months) and temporal resolutions (around eight months) are

appropriate for the P index for forecasts with a lead time of 14 days. This result is in

line with recent studies on the neighbouring rainfed Meuse basin, where low flows occur

at the end of the summer and beginning of the autumn and depend on the amount of

the preceding winter half year precipitation and also the preceding summer half year

precipitation (Booij and De Wit, 2010; De Wit et al., 2007). The uncertainty over the

appropriate lag for the P index is high due to the uncertainty over rainfall events. The

P index averaged over a period of five months or longer shows similar correlations with

low flows in the Main sub-basin. Due to the rainfed characteristic of the sub-basin,

low flow occurrence in the Main sub-basin is not as persistent as it is in the Alpine

sub-basins. Therefore forecasting low flows can be more difficult than that for the

sub-basins with high persistence.

Small lags (seven days) and large temporal resolutions (around three months) for the

PET index are appropriate for forecasts with a lead time of 14 days. In other words, for

a lead time of 14 days the potential evapotranspiration in the preceding 3 months, such

as June, July and August, is important in issuing a low flow forecast in September.

The appropriate lag and temporal resolution are assumed to be reasonable for such

a medium scale rainfed sub-basin, where the summers can be dry. Small lags (zero

days) and daily temporal resolution for the G index are appropriate for forecasts with

a lead time of 14 days. The maximum correlation between groundwater and low flows

is higher than for all other sub-basins (see Figure 2.10a), possibly due to the existence

of large aquifers (Belz, 2010; Middelkoop and Van Haselen, 1999).

For forecasts with a lead time of 90 days, small lags (14 days) and large temporal resolu-

tions (about eight months) are appropriate for the P index. Obviously, the appropriate

lag for this index is shortened due to the additional lag of 76 days. For the PET in-

dex, the aforementioned effect of the annual hydrological cycle should be ignored and

small lags (seven days) with large temporal resolutions (around three months) should

be used as appropriate temporal scales for forecasts with a lead time of 90 days (see

Figure 2.10b).

Middle Rhine

The MR and LR sub-basins have a mixed discharge regime as it originates from both

Alpine and rainfed sub-basins. The daily-generated discharge series contain negative

values, even after applying a lag to account for the travel time of the discharge wave.

This is possibly due to damming, mining, storage changes and other anthropogenic

effects (Belz, 2010; Harris, 1946; Hüffmeyer et al., 2009). Moreover, given the large

surface areas of these sub-basins the annual discharge generation is relatively low.

The MR sub-basin is located in the middle part of the Rhine basin, covering approxi-

mately 25 per cent of the total basin area. Therefore the PET index is an important

low flow indicator for forecasts with lead times of 14 and 90 days. Similarly, we found
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high correlations between the G index and low flows for forecasts with a lead time of

14 days (Figure 2.11). The high correlations for the PET index together with the low

annual discharge generation rate show the significant role of PET in the water balance

of the sub-basin.

Small lags (zero days) and large temporal scales (around two months) for the PET

index are appropriate for forecasts with a lead time of 14 days. This means that the

potential evapotranspiration amount in the preceding two months with a lag of zero

days results in the highest correlation with low flows for a lead time of 14 days. On the

other hand, small lags (zero days) and daily temporal resolution for the G index are

appropriate for forecasts with lead times of 14 and 90 days. It can be concluded that

the preceding daily groundwater levels are relevant for low flows in the MR sub-basin.

The effect of the annual hydrological cycle on the correlations for the PET and G

indices should be ignored and the aforementioned appropriate temporal scales for these

low flow indicators should be used for forecasts with a lead time of 90 days. Although

the groundwater levels do not change quickly, groundwater can be the only storage

sustaining low flows in a dry period, in particular in rainfed sub-basins.
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Figure 2.11: Cross correlation coefficients between low flows in the Middle Rhine sub-
basin and pre-selected indicators as a function of lag and temporal resolution (days):
a) low flows with a temporal resolution of three days and a lead time of 14 days; b)
low flows with a temporal resolution of seven days and a lead time of 90 days.

Lower Rhine

Figure 2.12 shows the correlation coefficients between low flows and indicators for the

LR sub-basin. The correlations are relatively low compared to upstream sub-basins.

The PET and G indices are the most important low flow indicators here. The annually-

generated discharge is about 273 mm. Large lags (around seven months) and temporal

resolutions (around ten months) for the PET index are appropriate for forecasts with a

lead time of 14 days, while small lags (zero days) and daily temporal resolution for the

G index are appropriate for forecasts with lead times of 14 and 90 days. The annual

hydrological cycle effect on the G index should be ignored (Figure 2.12b).
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Figure 2.12: Cross correlation coefficients between low flows in the Lower Rhine sub-
basin and pre-selected indicators as a function of lag and temporal resolution (days):
a) low flows with a temporal resolution of three days and a lead time of 14 days; b)
low flows with a temporal resolution of seven days and a lead time of 90 days.

Overall results agree with the general theory that the discharge response of a river

basin is closely related to the preceding precipitation averages over several months.

This is due to the fact that precipitation deficits over a long period can lead to a

significant decrease in discharges (De Wit et al., 2007; Vicente-Serrano and López-

Moreno, 2005). Zaidman et al. (2001) found strong correlations between low flows

and average precipitation deficits over the preceding two to four months in northwest

Europe. They indicated that the catchment geology plays an important role in low

flows. We also found strong correlations between groundwater storage and low flows in

most sub-basins. We did not analyse the correlations between atmospheric and oceanic

indicators, such as the North Atlantic Oscillation index and the El Niño Southern

Oscillation index, and low flows. Recent work has suggested that these indices did not

increase the ability to predict of summer discharge (low flows) and water temperature

(Rutten et al., 2008).
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2.5 Conclusions

This study investigated the use of sub-basin averaged standard indices and correlation

analysis to characterise low flows in the River Rhine basin for an ultimate goal of low

flow forecasting. Correlation analysis is not new in low flow hydrology, as it has been

applied in a number of river basins (Rutten et al., 2008; Vicente-Serrano and López-

Moreno, 2005; Wedgbrow et al., 2002). However, to our knowledge this is the first

study applying correlation analysis to low flows in the River Rhine.

This study presented a correlation analysis, to assess the relative importance of low

flow indicators for the Rhine and to identify their appropriate lags and temporal res-

olutions. The most important indicators in the Alpine sub-basins for forecasts with

a lead time of 14 days are potential evapotranspiration and lake levels. In the other

sub-basins groundwater levels and potential evapotranspiration are relevant for low

flows. Similarly, the most important indicators for forecasts with a lead time of 90

days are potential evapotranspiration, lake levels and snow depths for the Alpine sub-

basins, whereas in the other sub-basins the most important indicators are potential

evapotranspiration and precipitation or groundwater.

Overall, small lags and temporal resolutions are appropriate for lake levels and ground-

water in the sub-basins for forecasts with lead times of 14 and 90 days, while large

lags and temporal resolutions are appropriate for the P, PET and S indices. The

uncertainty over the appropriate lags and temporal resolutions was estimated for each

indicator as well. As a result we found a large uncertainty range around the maximum

correlation points for most low flow indicators. In all sub-basins the largest uncertain-

ties are found for the PET index. Lake levels and the G index show a small uncertainty

range around the maximum correlation point.

The identified lags and temporal resolutions will be instrumentally useful in creating

operational low flow forecast models for the River Rhine with lead times of 14 and 90

days. Additionally, understanding the low flow mechanisms and subsequent storage

responses should aid the selection of appropriate models and the choice of proper tem-

poral scales. Anticipating low flows would allow the making of more strategic decisions

for river functions (e.g. navigation, cooling water supply) affected by low flows, as more

low flows as well as extreme flood peaks are expected in the future (Hurkmans et al.,

2010). The framework presented in this study can be applied to all discharge regimes.

Other methods, such as wavelet coherence analysis and chaotic correlation dimension

methods, could also be used to identify dominant scales and the number of indicators

in each sub-basin. Such methods are the basis for our on-going research.
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2.7 Appendix: Figures for the other rainfed sub-basins

Neckar

Figure 2.13: Cross correlation coefficients between low flows in the Neckar sub-basin
and pre-selected indicators as a function of lag and temporal resolution (days): a) low
flows with a temporal resolution of three days and a lead time of 14 days; b) low flows
with a temporal resolution of seven days and a lead time of 90 days.
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Moselle

Figure 2.14: Cross correlation coefficients between low flows in the Moselle sub-basin
and pre-selected indicators as a function of lag and temporal resolution (days): a) low
flows with a temporal resolution of three days and a lead time of 14 days; b) low flows
with a temporal resolution of seven days and a lead time of 90 days.



Chapter 3

Effect of different uncertainty sources on the

skill of 10 day ensemble low flow forecasts

Abstract

This paper aims to investigate the effect of uncertainty originating from model inputs,

parameters and initial conditions on 10 day ensemble low flow forecasts. Two hydro-

logical models, GR4J and HBV, are applied to the Moselle River and performance in

the calibration, validation and forecast periods, and the effect of different uncertainty

sources on the quality of low flow forecasts are compared. The forecasts are generated

by using meteorological ensemble forecasts as input to GR4J and HBV. The ensem-

bles provided the uncertainty range for the model inputs. The Generalised Likelihood

Uncertainty Estimation (GLUE) approach is used to estimate parameter uncertainty.

The quality of the probabilistic low flow forecasts has been assessed by the relative

confidence interval, reliability and hit/false alarm rates. The daily observed low flows

are mostly captured by the 90% confidence interval for both models. However, GR4J

usually overestimates low flows whereas HBV is prone to underestimate them, particu-

larly when the parameter uncertainty is included in the forecasts. The total uncertainty

in GR4J outputs is higher than in HBV. The forecasts issued by HBV incorporating

input uncertainty resulted in the most reliable forecast distribution. The parameter

uncertainty was the main reason reducing the number of hits. The number of false

alarms in GR4J is twice the number of false alarms in HBV when considering all un-

certainty sources. The results of this study showed that the parameter uncertainty has

the largest effect whereas the input uncertainty had the smallest effect on the medium

range low flow forecasts.

This chapter is based on the paper: Demirel MC, Booij MJ, Hoekstra AY, (2013). Effect of
different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological
models. Water Resources Research, 49 (7): 4035-4053, doi:10.1002/wrcr.20294.
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3.1 Introduction

Rainfed rivers in Western and Central Europe have a discharge regime with high-flows

in winter and low-flows in late summer due to the temperate climate. The rivers, e.g.

the River Rhine, are generally navigable throughout the year, a situation which has

contributed to the region’s industrial and trade development. The rivers are used for

drinking water supply, irrigation, industrial use, power production, freight shipment

and also fulfil ecological and recreational functions (De Wit et al., 2007). Floods and

low-flows are seasonal phenomena that may cause several problems to society. Since

floods are eye-catching, quick and violent events risking human-life, contingency plans

and water management bodies often focus on flood issues. In contrast, low flows are

slowly developing events affecting a much larger area than floods. There is a growing

concern that low flows will intensify due to climate change (Arnell, 1999; Grabs et

al., 1997; Hagemann et al., 2008; Middelkoop et al., 2001). Low flows in rivers may

negatively affect the above mentioned river functions. Severe problems, e.g. water

scarcity for drinking water supply and power production, hindrance to navigation and

deterioration of water quality, have already been experienced during low flow events

in the River Rhine in the dry summers such as in 1976, 1985 and 2003 indicating the

importance of considering these events in addition to flood events.

To anticipate possible low flow events it is crucial that 10 day low flow forecasts become

available in addition to short-range (1 – 4 days) forecasts. The forecasted low flow

is commonly given as one value, even though it is an uncertain value. There is an

increasing interest to account for uncertain information in decision support systems, e.g.

how to operate river navigation and power plants during low flow periods to maximize

the gain. One challenge is to develop systems that can use uncertain information

(Engeland et al., 2010). We are interested in forecasting low flows with a lead time of

10 days, and in presenting corresponding uncertainty to provide low flow information

to major river users. This study focuses on assessing the uncertainty in ensemble 10

day low flow forecasts for two conceptual hydrological models.

Carrying out a systematic uncertainty analysis in hydrological modelling is an impor-

tant field in hydrology, according to the numerous recent contributions in well-known

journals (Cunha et al., 2012; Rossa et al., 2011; Salamon and Feyen, 2009; Tolson and

Shoemaker, 2008). Uncertainty assessment has been one of the main goals of the Pre-

diction in Ungauged Basins (PUB) initiative promoted by the International Association

of Hydrological Sciences (Montanari, 2011). Similarly the Hydrological Ensemble Pre-

diction Experiment (HEPEX), another international initiative, published a special issue

on the results of the inter-comparison experiment for post-processing techniques for en-

semble forecasts (Van Andel et al., 2013). Systematic uncertainty analysis consists of

several steps such as, classification, importance assessment, quantification, uncertainty

propagation through model and, finally, communication of the uncertainty to the end
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users. After the identification of the main sources of uncertainty (Ewen et al., 2006),

these sources must be classified. There are many different approaches for source clas-

sification. For instance, Walker et al. (2003) classified uncertainty as originating from

model context, input, model structure and parameters. Other studies distinguished

the uncertainty in observations, instruments and in the context of the problem, expert

judgment and indicators (Janssen et al., 2005; Van der Sluijs et al., 2005; Warmink

et al., 2011). It has been commonly accepted that model inputs, parameters, initial

conditions and structure are the major sources of uncertainty in conceptual hydrologi-

cal models (Refsgaard et al., 2006; Zappa et al., 2011). We focus on these sources for

further analysis. Quantification of the uncertainty sources is probably the most difficult

step of the uncertainty analysis.

Uncertainty in forecasted input data, e.g. precipitation and temperature, is mainly

from the assumptions and simplifications made when describing atmospheric processes

in weather forecast models. In particular, future precipitation amounts are assumed

to be very uncertain (Cunha et al., 2012; Roulin, 2007). To quantify the uncertainty

in the weather forecasts, an ensemble of lower resolution forecasts (ENS) has been

developed by the European Medium Range Weather Forecasting Centre (ECMWF)

and other national meteorological services (ECMWF, 2012). The system is operational

since 1992, and a number of modifications have been implemented to its structure and

grid resolution for improving the numerical weather predictions. In this system there

are 50 different perturbed weather forecasts and an unperturbed control forecast. The

50 members, comprising an ensemble, are computed for a lead time of 15 days using

perturbed initial conditions and model physics (Pappenberger et al., 2005; Roulin and

Vannitsem, 2005). Each member of an ensemble is assumed to be equally probable and

provide useful information to address the uncertainty in future precipitation amounts

(Roulin, 2007). However, in the context of flow forecasting it is important to assess

the precipitation uncertainty in terms of the effect on runoff rather than in terms of

comparing forecasted precipitation against observed precipitation (Arnaud et al., 2011;

Nester et al., 2012). For example, Pappenberger et al. (2005) and more recently

Pappenberger et al. (2011) used meteorological ensembles in hydrological models with

different parameter settings to assess the uncertainty in flood forecasts. Similarly,

Randrianasolo et al. (2010) coupled weather ensemble prediction system products from

Météo-France with two hydrological models for forecasting discharges of 211 catchments

in France for a lead time of two days.

Obviously there are other sources of uncertainty in low flow forecasts in addition to the

model input (Meißner et al., 2012; Zappa et al., 2011). Hydrological models, whether

using observed (Cunha et al., 2012) or forecasted (Nester et al., 2012) rainfall, are also

limited by their capacity to represent the dominant processes in the river basin with

appropriate spatial and temporal scales. Effective values of model parameters affected

by local spatial heterogeneities and nonstationarities provide usually loose associations
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with dominant processes (Lawal et al., 1997; Pappenberger et al., 2005; Stravs and

Brilly, 2007). Therefore, the uncertainty due to model parameters will inevitably in-

fluence model outputs. There are a range of methods of quantifying model parameter

errors including Monte Carlo simulations and analytical approaches (Montanari and

Grossi, 2008). GLUE is a Monte Carlo based technique developed for calibration and

estimation of uncertainty of predictive models using equifinality concept (Beven and

Freer, 2001; Stedinger et al., 2008; Viola et al., 2009). Concerning the choice of the

likelihood measure, Beven and Binley (1992) pointed out that many different likelihood

measures in GLUE can be appropriate for a given application. Jin et al. (2010) com-

pared different likelihood measures and the model uncertainty. They found that a less

strict likelihood function, obviously leads to a wider confidence interval of the output

uncertainty. Therefore, neither a too strict nor a too relaxed likelihood is appropriate

for the GLUE assessment. The GLUE method has been widely used for flood forecast-

ing (Pappenberger et al., 2004; Pappenberger et al., 2005) and for simulation of both

high and low flows (Freer et al., 1996; Tian et al., 2013; Tolson and Shoemaker, 2008;

Vázquez et al., 2009; Viola et al., 2009). In addition, the GLUE method is simple

and relatively easy to implement. Therefore, GLUE is used in this study for model

calibration and uncertainty analysis.

The drawbacks and advantages of the GLUE method have been enormously discussed

in the hydrology literature (Beven et al., 2007; Beven et al., 2008; Beven and Young,

2003; Li et al., 2010; Mantovan and Todini, 2006; Montanari, 2005; Stedinger et al.,

2008).

Beven et al. (2007) showed that if a correct formal likelihood was used in the GLUE

method, the results would be identical with the formal Bayesian technique. Stedinger et

al. (2008) also showed that GLUE can produce meaningful uncertainty and prediction

intervals using a correct likelihood function. Beven (2006) argues whether the assump-

tions used in a formal Bayesian analysis are valid for any non-synthetic hydrologic

system being modeled. In our ensemble low flow forecasting case study, performing

a formal Bayesian method would require a very difficult process of deriving a correct

description of the residual errors which are correlated in time and space. As a result,

our study utilizes an elaborated low flow likelihood function within the GLUE method

to assess parameter uncertainty.

Uncertainty in initial condition of state variables can have a significant effect on low

flow forecasts. The summer forecasts, using a model initialised with an unsaturated soil

state and with a saturated soil, will be very different. During prolonged dry periods the

discharge largely originates from the release of groundwater storage (De Wit et al., 2007;

Tallaksen and Van Lanen, 2004). Therefore, uncertainty coming from the model initial

conditions and groundwater storage in particular should be treated separately from the

model parameter uncertainty, although model parameters and states are part of the

model structure (Butts et al., 2004). The uncertainties may be amplified when cascaded
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through the hydrological model (Nester et al., 2012). Komma et al. (2007) showed that

small errors in rainfall may result in larger errors in model outputs. They showed that

an uncertainty range of 70% in the precipitation ensemble increased to an uncertainty

range of 200% in forecasted runoff with a lead time of 48 h. Although they related this

to the nonlinearity of the catchment response, this amplification could also be caused

by uncertainties from precipitation measurements and model parameters (Nester et

al., 2012). Komma et al. (2007) also showed that the assessment of precipitation

uncertainty should be in terms of the effect on model outputs (herein forecasted low

flows) instead of comparing only forecasted precipitation and observed precipitation.

Different methods i.e. particle filter (DeChant and Moradkhani, 2011), ensemble

Kalman filter (Pasetto et al., 2012), have been applied to asses initial condition un-

certainty in the framework of ensemble streamflow prediction. The resulting update is

similar to the static GLUE application (Pasetto et al., 2012). These filters are examples

of data assimilation techniques that are often used in short term flood forecasts (Liu et

al., 2012; Moradkhani et al., 2012; Parrish et al., 2012).

The aforementioned studies demonstrate the need for a systematic uncertainty analysis

framework that isolates uncertainties due to various weather inputs, parameter estima-

tion and initial conditions. Understanding the relative contributions of these sources to

the total low flow forecast uncertainty and to the quality of forecasts can assist in the

future development of ensemble forecasting systems. All studies mentioned constrain

either to only flood forecast models or to simulation models used for low flows, but

no similar application to low flow forecasts is known to the authors which also uses a

sound model state updating procedure for assessing effect of initial condition uncer-

tainty. There have been studies using ENS products for flood forecasting (Devineni et

al., 2008; Fundel and Zappa, 2011; Jaun and Ahrens, 2009; Muluye, 2011; Nester et

al., 2012; Pagano et al., 2013; Renner et al., 2009; Thirel et al., 2010; Thirel et al.,

2008) and high resolution precipitation ensemble forecast of a regional climate model,

i.e. COSMO-LEPS (Addor et al., 2011; Zappa et al., 2011) but no study is known

to the authors which focuses on 10 day low flow forecasts. Only short-range low flow

forecasts up to 4 days are issued by different water authorities for the entire Rhine

basin (De Bruijn and Passchier, 2006). There have been different cross-border projects

such as ”Floods and low flow management in the Moselle and Saar Basin (FLOW

MS)” focusing on climate impacts on low flows (Görgen et al., 2010). However, low

flow forecasts followed by a systematic uncertainty analysis do not exist for the Rhine

basin and Moselle River in particular although there is a high demand (Meißner et al.,

2012; Rutten et al., 2008) from different sectors (e.g. freight shipment, drinking water

supply, and energy production).

The objectives of this study are to assess: (1) the uncertainty from ECMWF ensemble

forecasted precipitation and potential evapotranspiration (2) the uncertainty from the

parameters of two hydrological models by using the GLUE framework; (3) the uncer-
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tainty due to the initial conditions; (4) the effect of these uncertainties on different low

flow forecast quality and reliability measures.

Assessing the isolated three major sources of uncertainty, i.e. model input, parame-

ters and initial conditions, in ensemble low flow forecasts by applying all steps from

identification to communication of uncertainty, is an innovative way to understand and

explain the effects of different uncertainties on the skill of low flow forecasts. In terms

of model storage update, i.e. estimation of the model states at forecast issue day, a new

method is proposed using observed discharge. This is superior compared to using only

calibrated model run as there can be inevitable errors between simulated and observed

discharge affecting the model initial condition. A further interesting aspect of this

study is the use of a new hybrid low flow likelihood function for GLUE, which allows

evaluation of low flows. Low flows in the Moselle River are investigated to allow the

navigation and energy sectors to timely prepare for low flow conditions as they are the

most important economic river functions (Li et al., 2008; Rutten et al., 2008; Svensson

and Prudhomme, 2005). Since the River Rhine is a large scale river, the Moselle River

is selected as a case study. We use an exceedence probability of 75% (Q75) as a thresh-

old for the definition of low flows (Demirel et al., 2013a). The number of days with

low flows is sufficient to calibrate a forecast model, and low flows at this threshold are

still affecting the important river functions. Several types of ensemble weather forecast

products from the ENS dataset are incorporated in this study to prepare model inputs

i.e. daily precipitation (P) and potential evapotranspiration (PET) for lead time of

ten days from the ENS dataset. We address the model structure uncertainty by com-

paring two conceptual models with different complexities: the GR4J conceptual model

with four parameters (Perrin et al., 2003) and the HBV conceptual model with eight

parameters (Lindström et al., 1997). These models are assumed to represent dominant

low flow indicators (predictors) with their appropriate temporal scales as identified by

Demirel et al. (2013a). The GR4J model is a French conceptual hydrological model

with a simple structure (Perrin et al., 2003). With four parameters, it provides a min-

imum level of complexity. The HBV model has been calibrated and operationally used

for the River Rhine (Renner et al., 2009). Moreover, this model has been widely used

in Rhine studies such as for real-time flow forecasts (Reggiani and Weerts, 2008a), cli-

mate impact assessment (Eberle, 2005; Hurkmans et al., 2010; Te Linde et al., 2010;

Te Linde et al., 2011) and for assessing uncertainties in flood forecasts due to ensemble

weather forecasts by using a Bayesian postprocessor (Reggiani et al., 2009; Reggiani

and Weerts, 2008b).

The paper is organized as follows. In the next section, the study area and data are

presented. The model structures and the uncertainty analysis method are described in

section 3.3. The results are presented in section 3.4, and the conclusions are drawn in

section 3.5.
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3.2 Study area and data

3.2.1 Study area

The Moselle River has a surface area of approximately 27,262 km2 and a length of

545 km. The source of the river is in the forested slopes of the Vosges massif and

meanders before leaving France to form the border between Germany and Luxembourg

for a short distance. The river enters Germany and flows past Trier to its confluence

with the Rhine at Koblenz. Two major tributaries, the Sauer and Saar rivers flow

into the Moselle before the Trier dam. There are other dams in the Moselle and Saar

rivers whereas the Sauer river has a natural flow (Ackermann et al., 2000; Belz et

al., 1999). Moreover, the river channels in the Moselle and Saar are mostly canalised

for water management purposes and available for river navigation while the Sauer is

not navigable (Behrmann-Godel and Eckmann, 2003). Annual generated discharge in

the Moselle basin is about 410 mm (∼130 m3/s). The measured discharge at Cochem

station fluctuates between 14 m3/s in dry summers and a maximum of 4000 m3/s

during winter floods. The altitude ranges from 59 to 1326 m with a mean altitude of

340 m (Demirel et al., 2013a).

3.2.2 Data

Observed data

Observed daily precipitation (P) and potential evapotranspiration (PET) estimated

with the Penman-Wendling equation (ATV-DVWK, 2002) were obtained from the Ger-

man Federal Institute of Hydrology (BfG) in Koblenz (Germany). Both variables are

spatially averaged, i.e. disaggregated over 26 Moselle sub-catchments.

The mean altitude of these sub-catchments has been also provided by BfG. The outlet

discharge (Q) for the Moselle (station #6336050 at Cochem) has been provided by the

Global Runoff Data Centre (GRDC), Koblenz (Germany). The daily P, PET and Q

data series span from 1951 to 2006 (Table 3.1).

Table 3.1: Observed data
Data Index Spatial Resolu-

tion
Number of
stations/sub-
basins

Period Time
step

Source

Discharge Q Point (Cochem) 1 1951-2006 24h GRDC-Koblenz
Precipitation P Sub-catchments 26 1951-2006 24h BfG-Koblenz
Evapotranspiration PET Sub-catchments 26 1951-2006 24h BfG-Koblenz
Mean altitude h Sub-catchments 26 - - BfG-Koblenz
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Meteorological ensemble forecast data

Both precipitation and other meteorological forecast data used in this study are

originated from the ECMWF-ENS control and ensemble forecasts. These ensem-

bles are computed for a lead time of 1 – 10 days using perturbed initial conditions

and model physics (Table 3.2). A grid size of 0.25 degree (∼28km) is chosen to

retrieve weather forecast products using the ECMWF Mars retrieval system. The

PET forecasts are determined by the Penman-Wendling equation requiring only

forecasted surface solar radiation and temperature at 2 meter data (ATV-DVWK,

2002). This is consistent with the observed PET estimation carried out by the

Federal Institute of Hydrology in Koblenz, Germany. Both grid-based P and PET

ensemble forecast data are first interpolated over 26 Moselle sub-catchments us-

ing areal weights. These sub-catchment averaged data are then aggregated to the

Moselle basin level.

Table 3.2: Overview of the ensemble forecast data
Data Spatial

Resolution
Ensemble
size

Period Time
step

Lead
time

R2

(240h)
MAE
(240h)

Forecasted P 0.25 degree 50 + 1 control 2002-05 24h 240h 0,07 3,16 mm
Forecasted PET 0.25 degree 50 + 1 control 2002-05 24h 240h 0,77 0,59 mm

3.3 Methodology

3.3.1 Overview of the model structures

The two hydrological models (GR4J and HBV) are briefly described below. Fig-

ure 3.1 shows the simplified model structures.

GR4J

The GR4J conceptual model has a parsimonious structure with only four cali-

bration parameters and has been frequently used over hundreds of catchments

worldwide, with a broad range of climatic conditions from tropical to temperate

and semi-arid catchments (Perrin et al. , 2003). The GR4J model requires only

daily time series of precipitation (P) and potential evapotranspiration (PET) as

input (Figure 3.1a). The four parameters in GR4J represent the maximum ca-

pacity of the production store (X1), the groundwater exchange coefficient (X2),

the one day ahead capacity of the routing store (X3) and the time base of the

unit hydrograph (X4). All four parameters are used to calibrate the model and

estimate the parameter uncertainty (Table 3.3) based on Tian et al. (2013) and

Thyer et al. (2009). The upper and lower limits are selected based on previous
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Figure 3.1: Schematic of a) GR4J model and b) HBV model

works (Booij, 2005; Eberle, 2005; Perrin et al., 2003; Pushpalatha et al., 2011;

Tian et al., 2013).

HBV

The HBV conceptual model was developed by the Swedish Meteorological and

Hydrological Institute (SMHI) in the early 1970s (Lindström et al., 1997). The

HBV model consists of four subroutines: a precipitation and snow accumulation

and melt routine, a soil moisture accounting routine and two runoff generation

routines. The input data are daily P and PET. Since the Moselle basin is a rain-

fed basin, the snow routine and daily temperature data are not used in this study

(Figure 3.1b). The eight most important parameters in the HBV model (Table

3.3) are used to estimate the parameter uncertainty (Engeland et al., 2010; Tian

et al., 2013; Van den Tillaart et al., 2013).
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Table 3.3: Parameters of the models used and their prior uncertainty ranges
Parameter Unit Range Description

GR4J model
X1 [mm] 10-2000 Capacity of the production store
X2 [mm] -8 to +6 Groundwater exchange coefficient
X3 [mm] 10-500 One day ahead capacity of the routing store
X4 [d] 0-4 Time base of the unit hydrograph

HBV model
FC [mm] 100-800 Maximum soil moisture capacity
LP [-] 0.1-1 Soil moisture threshold for reduction of evapotranspiration
BETA [-] 1-6 Shape coefficient
CFLUX [mm/d] 0.1-1 Maximum capillary flow from upper response box to soil moisture zone
ALFA [-] 0.1-2 Measure for non-linearity of low flow in quick runoff reservoir
KF [d−1] 0.005-0.5 Recession coefficient for quick flow reservoir
KS [d−1] 0.0005-0.2 Recession coefficient for base flow reservoir
PERC [mm/d] 0.01-6 Maximum flow from upper to lower response box

3.3.2 Calibration and validation

The GR4J and HBV models are calibrated using the GLUE method and historical

Moselle low flows for the period from 01/01/1971 to 31/12/2001. The first forecast

issue date is 01/01/2002 and the number of low flow events (i.e. 2762 days with

low flows) is assumed to be long enough for calibrating a hydrological model

(Perrin et al., 2007). The validation period spans from 01/01/1951 to 31/12/1970.

The definition of low flows, i.e. discharges below the Q75 threshold of ∼113 m3/s,

is based on previous work by Demirel et al. (2013a).

The Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven and

Binley, 1992) uses the ”equifinality” concept rejecting only one optimal parameter

set, instead, it uses many parameters sets that provide relatively equal perfor-

mance (Beven and Freer, 2001). This method is developed as an extension of the

Generalised Sensitivity Analysis (GSA) of Spear and Hornberger (1980) based on

Bayesian Monte Carlo simulations. GLUE has been widely used for calibration

of hydrological models since it is easy to implement and allows flexible definition

of a likelihood function to evaluate the model outputs and to distinguish between

behavioural (accepted) and non-behavioural (rejected) parameter sets (Freer et

al., 1996; Ratto et al., 2007; Renard et al., 2010; Shen et al., 2012). Behavioural

parameter sets are then those that provide predicted low flows that fall within

the limits of acceptability with regard to a given likelihood measure (Zheng and

Keller, 2007). It should be noted that the selection of the behavioural parame-

ter sets is based on only the calibration period runs. In this study, the GLUE

method, consisting of the three steps below, is applied for the selection of be-

havioural parameter sets. It is assumed that these parameter sets represent the

uncertainty in model parameters.
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Step 1: definition of a hybrid likelihood function for low flows

The most commonly used likelihood function in GLUE literature is the Nash-

Sutcliffe (NS) coefficient (Beven and Freer, 2001; Nash and Sutcliffe, 1970; Shen

et al., 2012). However, other likelihood functions have been used for low flows

(Pushpalatha et al., 2012). In our study, we combined two low flow likelihood

functions using subjectively selected weights. The new hybrid likelihood function

(NShybrid) substantially improves the low flow forecasts as it combines NS based

on only low flows (NSa) and NS based on inverse discharge values (NSb) (see

equations (3.1)-(3.3)).

NSa = 1−
∑m

j=1 (Qsim(j)−Qobs(j))
2∑m

j=1

(
Qobs(j)− Q̄obs

)2 (3.1)

where Qobs and Qsim are the observed and simulated values for the j -th observed

low flow day (i.e. Qobs < Q75) and m is the total number of low flow days.

NSb = 1−
∑n

i=1 (1/(Qsim(i) + ε)− 1/(Qobs(i) + ε))2∑n
i=1

(
1/(Qobs(i) + ε)− 1/(Q̄obs + ε)

)2 (3.2)

where n is the total number of days (i.e. m < n), and ε is 1% of the mean

observed discharge to avoid infinity during zero discharge days.

NShybrid = α

(
NSa

2−NSa

)
+ β

(
NSb

2−NSb

)
(3.3)

where both NSa and NSb values range from -∞ to 1, with 1 indicating a perfect

fit (Pushpalatha et al., 2012). The weights α and β are selected as 0.3 and

0.7 respectively. These weights have been determined during calibration period.

First component of our hybrid likelihood function is strictly developed for the low

flows. Therefore, the resultant scores for this component can often be negative.

Second component considers the inverse of all discharge values. The weights

are determined for making the outcome values of our hybrid likelihood function

positive for the calibration runs. In other words, the weights keep the balance

between very strict and less strict likelihood functions since in cases with very

strict low flow calibration i.e. high α values, both the GR4J and HBV models

show results with very low likelihood values since the NSa values are negative for

both models.
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Step 2: sampling parameter sets for two conceptual models

Previous model calibration and sensitivity analysis of the GR4J (Perrin et al.,

2003; Pushpalatha et al., 2011) and HBV (Booij, 2005; Eberle, 2005; Tian et al.,

2013) in other rain-fed basins have allowed the prior uncertainty ranges of sensi-

tive parameters to be assessed. These studies also indicated significant uncertain-

ties for the sensitive parameters and emphasized the importance of inspecting the

upper and lower parameter limits more in detail. Therefore, a sensitivity analysis

is pursued using a large parameter space to select the most important parameters

and their appropriate upper and lower limit values.

Independent uniform distributions for each effective parameter are chosen due to

the lack of prior knowledge about the true distributions. The typical drawback

of the GLUE method is the computational time caused by its random sampling

strategy. Therefore, an improved sampling technique, i.e. Latin Hypercube Sam-

pling (LHS), was used with the GLUE method (McKay et al., 1979). Compared

to a standard GLUE random sampling, LHS substantially reduces the computa-

tional burden for sampling and provide a 10-fold greater efficiency in parameter

space coverage (Shen et al., 2012). The sampling size should be large enough to

ensure a sufficient calibration of the model. In this study, we generated 120,000

parameter sets for each conceptual model using LHS in the range of lower and

upper limits given in Table 3.3. To our knowledge, this is the largest LHS sample

size tested in low flow hydrology.

Step 3: threshold definition for behavioural model selection

The GR4J and HBV models are run for each of the 120,000 sets in the calibra-

tion. The output is evaluated against the observed daily discharge at Cochem

station located at the outlet of the Moselle sub-basin using the NShybrid likeli-

hood function to distinguish between behavioural parameter sets (accepted) and

non-behavioural parameter sets (rejected). The parameter sets meeting the pre-

defined threshold criterion (NShybrid>0.40) are accepted. Although the threshold

value is a subjective decision (Jin et al., 2010), we rigorously tested several thresh-

olds based on low flow simulations and the size of the behavioural parameter sets

for each model. The selected threshold resulted in two large behavioural param-

eter sets for parameter uncertainty analysis i.e. 9770 × 4 (GR4J) corresponding

to ∼8% of the sample parameter set and 10909×8 (HBV) corresponding to ∼9%

of the sample parameter set.
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3.3.3 Model storage update procedure

Model storage updating is based on the observed discharge on the forecast issue

day (Qobs). This is a crucial step for medium range and seasonal low flow forecasts

since the model initial state determines the model outputs (Wöhling et al., 2006).

There are two storages in the GR4J model and three storages in the HBV model

which are updated during low flow forecasts. The reader is referred to Perrin et

al. (2003) and Lindström et al. (1997) for details of the process formulations

in these models. A practical approach is used for both models. First, the two

calibrated models are run with their best performing parameter sets and model

states are analysed. This run is called the ”reference run” in other recent works

(Fundel and Zappa, 2011; Roulin, 2007; Roulin and Vannitsem, 2005). The

empirical relations between the simulated discharge and the fast runoff for each

model are used to divide the observed discharge between the fast and slow runoff

components (equations (3.4) and (3.5)).

kGR4J =
Qd

Qr +Qd

(3.4)

kHBV =
Qf

Qf +Qs

(3.5)

The Qr and Qd in the GR4J model, and Qf and Qs in the HBV model are

estimated using these fractions together with the observed discharge value at the

forecast issue day. Subsequently, the routing storage (R) in the GR4J model is

updated for a given value of the X3 parameter using Eq. (3.6). Further, the

surface water (SW ) and groundwater (GW ) storages in the HBV model can be

updated for a given value of KF, ALFA and KS parameters using equations (3.7)

- (3.8).

Qr = R

1−

[
1 +

(
R

X3

)4
]−1/4

 (3.6)

SW =

(
Qf

KF

)(1/(1+ALFA))

(3.7)
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GW =
Qs

KS
(3.8)

The other two storages S (in GR4J) and SM (in HBV) are difficult to update

using an empirical bottom-up approach. Instead, these two storages are updated

using the calibrated model run until the forecast issue day (i.e. top-down ap-

proach). It is assumed that the two updated storages (S and SM ) represent

the reality due to the calibrated model run. However, we are aware that, there

are inevitable uncertainties associated with this rough estimation of the initial

conditions based on observed discharges and calibrated models’ simulations.

3.3.4 Uncertainty sources and quantification

A robust assessment of uncertainties begins with identification of all sources (Ref-

sgaard et al., 2007). Obviously not all sources can be quantified. We used avail-

able classification schemes to identify and select the most important uncertainty

sources in the two conceptual models and for low flow forecasting (Walker et al.,

2003; Warmink et al., 2010). Three uncertainty sources and their quantification

are described in the following sections. It should be noted that errors in model

structure are also important for hydrological models (Götzinger and Bárdossy,

2008; Gupta et al., 2012; Renard et al., 2010; Tian et al., 2013). In this study,

the model structure uncertainty is addressed partly by comparing two different

model structures.

Input uncertainty

A rainfall event after the forecast issue day can easily increase flows above low

flow threshold in the Moselle River. Therefore, low flow forecasts are highly de-

pendent on the quality of ENS weather forecasts. These forecasts are available at

a spatial resolution of 0.25×0.25 degree for daily time steps. It has been reported

that after several days these forecasts are highly uncertain due to the modelling

limitations and complexity of the physical processes involved in the atmosphere

(Fundel and Zappa, 2011; Reggiani et al., 2009). In this study, the 51 ensemble

members are used to quantify the uncertainty of future precipitation and potential

evapotranspiration amounts. Obviously new uncertainties are introduced using

the empirical PET formula (ATV-DVWK, 2002) and grid data interpolation over

26 Moselle sub-catchments.
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Parameter uncertainty

The GLUE method is used for quantification of parameter uncertainties. This

method rejects the idea of an optimal system representation and applies the

equifinality concept accepting all forecasts using the behavioural parameter sets.

This parameter ensemble then allows assessment of the output uncertainty arising

from model parameters and partly from model structure (Pappenberger et al.,

2005). All four parameters of GR4J and eight parameters of the HBV are selected

to estimate the parameter uncertainty.

Initial condition uncertainty

The importance of initial conditions for hydrologic forecasting is well established

(Shukla and Lettenmaier, 2011; Wood and Lettenmaier, 2008). In most of the

hydrologic modelling studies, initial conditions refer only to land surface states

including soil moisture and snow cover (Li et al., 2009). In this study, how-

ever, all model states, present in the conceptual models used, are included in the

uncertainty analysis. This is from the fact that errors in estimated initial slow

and fast runoff storages directly affect the low flow forecasts. We demonstrate a

dynamic inverse-modelling approach based on observed discharge and uniformly

distributed behavioural parameter sets on the forecast issue day for exploring the

initial condition uncertainties and characterizing the relative importance of this

uncertainty source for low flow forecasts. The X3 parameter of GR4J and KF,

ALFA and KS parameters of HBV are uncertain parameters that are directly

linked to the model states (i.e. initial conditions). Other parameters are only

assumed uncertain in the parameter uncertainty assessment.

3.3.5 Uncertainty propagation

The three sources of uncertainty described above are propagated through the

GR4J and HBV models both separately and together. The latter case is executed

to encapsulate the total uncertainty arising from all three sources together. In

other words, this study employs the GLUE, an extended GSA method (Freer et

al., 1996; Ratto et al., 2007), to apportion the output uncertainty of a model to

different sources of uncertainty.

The 10 day low flow forecasts are issued every day for the test period from 1

January 2002 until 31 December 2005. The posterior distribution of the model

outputs (e.g. confidence interval) is based on 10.000 Monte Carlo runs for each

day (a total of 1461 days). The size of the Monte Carlo sample is assumed to

be reasonable based on the number of behavioural parameter sets and on the
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relevant literature (Blasone et al., 2008; Franz and Hogue, 2011; Rossa et al.,

2011; Shen et al., 2012).

For assessing the effect of the uncertainty in the forecasted input data, we run the

models using randomly selected P and PET values from 51 members while the

model parameters and model states are fixed according to the best performing

calibrated parameter values (Table 3.4).

For assessing uncertainty in model parameters, we run the models using randomly

selected behavioural parameter sets while the model inputs are fixed to ECMWF-

ENS control forecast P and PET, and the model states are updated using the

best performing calibrated parameter values.

For assessing the uncertainty in model states at forecast issue day, the rout-

ing storage (R) in the GR4J model is updated using randomly selected be-

havioural X3 parameter values, and the surface water (SW ) and groundwater

(GW ) storages in the HBV model are updated using randomly selected values

of KF, ALFA and KS parameters from behavioural parameter sets for each of

the 10.000 Monte Carlo runs for each day. The remaining model parameters are

fixed to the best performing calibrated parameter values and the model inputs

are fixed to ECMWF-ENS control forecast P and PET to evaluate the initial

condition uncertainty (Table 3.4).

Table 3.4: Overview of the uncertainty propagation test scheme

Assessed Uncertainty

Forecasted P and PET Parameters Initial Conditions

1 Control 51 Ensemble Calibrated set GLUE set Calibrated run
GLUE set

(X3, KF , ALFA and KS)

Deterministic 3 3 3

Input 3 3 3

Parameter 3 3 3

Initial Condition 3 3 3

Total 3 3 3

It should be noted that spatial and temporal consistency of the inputs are pre-

served to avoid nonphysical outcomes. For assessing the total uncertainty, we run

the models using randomly selected model inputs, behavioural parameter sets and

corresponding model states. For example, the storage S can never exceed the X1

parameter value in the GR4J model (Perrin et al., 2003). Similarly, we defined a

”saturation rate” as the fraction of SM storage to the calibrated FC parameter.

SM (k, t) = FC (k)× SMopt (t)

FCopt
(3.9)

For each k -th Monte Carlo run at each t-th forecast issue day, a new parameter

set is randomly selected from the behavioural set and SM is calculated using

Eq. (3.9). Therefore, the saturation rate is kept constant for a particular day
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throughout the entire uncertainty propagation framework.

3.3.6 Uncertainty presentation

Uncertainty presentation allows the low flow forecasts to be monitored, thus help-

ing to improve forecast quality by analysing uncertainties in the model outputs

and allowing comparison of different models. Obviously, the added value of a low

flow forecasts for decision makers depends on its uncertainty characteristics. We

employed three forecast quality measures to analyse the results of the uncertainty

quantification in 10 day low flow forecasts. These measures have been often used

in meteorology (WMO, 2012) and flood hydrology (Renner et al., 2009; Thirel et

al., 2008; Velázquez et al., 2010). In WMO (2012), three properties of an accu-

rate probabilistic forecast are defined as reliability, sharpness and resolution. In

this study, three forecast quality measures have been rigorously selected to eval-

uate these three properties of the forecasts i.e. Reliability diagram - reliability,

RCI - sharpness, and contingency table - resolution.

Relative confidence interval

The standard 90% confidence interval (90CI) was derived by ordering the 10.000

outputs on every day in the test period and then identifying the 5% and 95%

percentiles (i.e. Q5 and Q95). The 90CI, observed discharge and 50% percentile

(i.e. Q50 forecast median) are presented together. The relative confidence interval

(RCI) is then calculated for only low flow days j using Eq. (3.10) to monitor the

evolution of uncertainties with increasing lead time and to compare the effect of

different uncertainty sources on the relative confidence interval.

RCI =
1

m
×

m∑
j=1

Q95(j)−Q5(j)

Q50(j)
(3.10)

where m is the total number of low flow days.

Reliability diagram

The reliability diagram is an approach used to represent the performance of prob-

abilistic forecasts of selected events, i.e. low flows (Bröcker and Smith, 2007). A

reliability diagram shows the observed relative frequency as a function of forecast

probability and the 1:1 diagonal represents the perfect reliability line (Olsson and

Lindström, 2008; Velázquez et al., 2010). In the present study, non-exceedence

probabilities of 50%, 75%, 85%, 95%, and 99% are chosen as thresholds to catego-
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rize the discharges from mean flows to extreme low flows. The forecast probability

for each forecast day is estimated as the number of ensemble forecasts exceeding

these thresholds divided by the total number of ensemble forecasts (i.e. 10.000

ensembles) in that forecast day. The forecasts are then divided into bins of prob-

ability categories; here, five bins (categories) are chosen 0 – 20%, 20% – 40%,

40% – 60%, 60% – 80% and 80% – 100%. The observed frequency for each day is

estimated as 1 if the observed discharge exceeds the threshold, or 0, if not. The

forecast probability and observed frequency can then be drawn.

Contingency table

We used contingency tables to assess the effect of uncertainty on the performance

of low flow forecasts. Contingency tables, particularly used in flood warnings

(Martina et al., 2005), can be used to estimate the utility of hydrological forecasts

and, in their simplest form, indicate the forecast models ability to anticipate

correctly the occurrence or non occurrence of pre-selected events (i.e. Q75 low

flows). The definitions of four cases are given in a two-by-two contingency table

(Table 3.5).

Table 3.5: Contingency table for the assessment of threshold based forecasts

Low flow event (Q75) Observed Not observed

Forecasted hit : the event forecast to oc-
cur and did occur

false alarm: event forecast
to occur, but did not occur

Not forecasted miss: the event forecast not
to occur, but did occur

correct negative: event fore-
cast not to occur and did not
occur

The skill of a forecasting model can be represented on the basis of the hit rate

and the false-alarm rate (Cloke and Pappenberger, 2009; Martina et al., 2005).

Both ratios can be easily calculated from the contingency table using equations

(3.11) and (3.12).

hit rate =
hits

(hits+misses)
(3.11)

false alarm rate =
false alarms

(correct negatives+ false alarms)
(3.12)
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It should be noted that these ratios are also known as the probability of detection

and the probability of false detection in other hydrological studies (Velázquez et

al., 2010). The hit and false-alarm rates, indicate respectively the proportion of

events for which a correct warning was issued, and the proportion of non events

for which a false warning was issued by the forecast model.

3.4 Results and discussion

3.4.1 Calibration and validation

The best performing parameter sets of the two models are shown in Table 3.6.

The corresponding highest NShybrid values are 0.62 for the GR4J model and 0.56

for the HBV model. The GR4J model performs better than the HBV model

on low flows based on only the best performing simulation in the calibration

period. However, the HBV model performed better in the validation period.

The highest NShybrid values did not change using another global optimisation

technique i.e. a Genetic Algorithm (Velázquez et al., 2010) showing that 120,000

parameter sets for each model are enough for calibrating the models. Considering

the performance only in the low flow period (i.e. NSa), the performance of the

HBV model is better than the GR4J model in the calibration period. However,

the drop in performance of the HBV model in the validation and the forecast

periods is much larger than for the GR4J model. Such a drastic drop outside the

calibration period is expected from a relatively complex model like HBV with 8

parameters since it has more degrees of freedom to adjust to the basin behaviour

during the calibration period. This characteristic is somewhat concealed by the

NShybrid results due to the subjective weights and due to the insensitive inverse

performance index (i.e. NSb). That is why all three performance indices have

been presented in Table 3.6. The models are calibrated for a relatively wetter

climate with ∼910 mm mean annual precipitation than for the validation period

(∼890 mm) and forecast period (∼830 mm).
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Table 3.6: Calibration, validation and forecast results

Parameter and likelihood 1971-2001
Calibration

1951-1970
Validation

2002-05
Forecast

GR4J model
X1 [mm] 649.2
X2 [mm] -1.3
X3 [mm] 47.2
X4 [d] 2.9
NSa -0.68 -1.39 9.29
NSb 0.99 0.76 0.99
NShybrid 0.62 0.31 0.45

HBV model
FC [mm] 239.6
LP [-] 0.48
BETA [-] 2.13
CFLUX [mm/d] 0.13
ALFA [-] 1.77

KF [d−1] 0.01

KS [d−1] 0.01
PERC [mm/d] 0.76
NSa -0.23 -1.13 -70.16
NSb 0.92 0.9 0.99
NShybrid 0.56 0.47 0.41

The calibrated models are run for the test period (i.e. 2002-2005) to estimate

the fraction of fast runoff to total runoff in the two models (Figure 3.2) and to

update storages S and SM (i.e. top-down approach).

The exponential relation between the fraction values and the simulated discharge

shows that the total discharge is dominated by flows from the fast runoff storage

during high flows. These categorized values have been used to estimate fast and

slow runoff storages in the GR4J and HBV models. The kGR4J fraction is zero

for low flows and 0.04 for high flows above 6 mm whereas the kHBV fraction is

about zero for low flows and 1 for high flows above 6 mm. Table 3.7 shows the

empirical equations fitted to the simulation data presented in Figure 3.2.

Table 3.7: Empirical equations to divide observed discharge, (Qobs), into fast and slow
runoff

Qobs category (mm)

<=Q75 >Q75 and <=6 >6

kGR4J 0 −0.00007×Qobs3 + 0.001×Qobs2 + 0.0003×Qobs + 0.004 0.04

kHBV 4.9×Qobs3.7 + 0.002 0.81× e(0.02×Qobs) − 1.4× e(−1.9×Qobs) 1
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b)

a)

Figure 3.2: Fraction of fast runoff Qf or Qd to total runoff Qsim as a function of
simulated discharge, i.e. above and below Q75 for a) the GR4J and b) HBV models
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3.4.2 Effect of uncertainty on confidence intervals of low flow forecasts

For the purpose of determining the extent to which different sources of uncertainty

affects low flow forecasts for a lead time of 10 days, the degree of uncertainty in

model outputs is expressed by a 90% confidence interval (90CI). The 90CI, the

forecast median and the observed low flows for both models are shown in Figure

3.3. Daily discharge values (m3/s) have been presented on a logarithmic y axis.

There are significant differences between the two model results as 10 day ahead

low flows are mostly overestimated by the GR4J model under uncertain condi-

tions. As can be seen from Figure 3.3 the overestimation is more pronounced for

the parameter uncertainty case than for other cases. First thing to be considered

are the dependencies and interactions between groundwater storages and model

parameters since the fraction of fast runoff to total runoff is about zero showing

that the discharge, during low flows, is mainly produced in the groundwater stor-

age (Figure 3.2). The more pronounced overestimation of GR4J compared for

the underestimation of HBV may indicate that the slow responding groundwater

storage of the HBV is less sensitive to different behavioural parameter sets. The

more complex soil moisture and percolation components of the HBV model can

also be a reason for the successful low flow forecasts of the HBV model under un-

certain conditions. The systematic overestimation of forecasted precipitation is,

therefore, well handled by the HBV model. However, it should be noted that the

GR4J model is slightly better than HBV in deterministic 10 day forecasts (Table

3.6). Further, the low flows are usually underestimated by the HBV model, as

shown in the last plot in Figure 3.3b.
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b)

a)

Figure 3.3: Different uncertainty sources and confidence intervals of low flow forecasts
for a lead time of 10 days using a) the GR4J and b) HBV models
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Surprisingly, there have been excessive rainfall forecasts for several days in sum-

mer months (e.g. in August 2005) causing high forecasted discharges (Figure 3.3).

These days were carefully examined to determine if they significantly change the

overall RCI results. However, they caused very minor effects on the RCI results

that are based on the mean of the CI statistics from 567 low flow days. Thus the

uncertainty in 10 day low flow forecasts is larger in the GR4J model compared

to the HBV model. The GR4J model overestimates low flows for all sources of

uncertainty and for parameter uncertainty in particular, whereas the HBV model

tends to underestimate low flows.

Figure 3.4 compares two models and the effect of different uncertainty sources on

the RCI of low flow forecasts with increasing lead time. From Figure 3.4, we can

clearly see that the total uncertainty in the GR4J outputs is much higher than in

the HBV outputs. This is similar to the results that we have seen in Figure 3.3.

Comparing only 10 day forecasts issued by the two models, the RCI is ∼110%

for the HBV model and ∼300% for the GR4J model (i.e. nearly tripled). One

anticipated finding is that the RCI tends to increase with increasing lead time

for both models and for all evaluated uncertainty cases. The increase of RCI

for the initial condition uncertainty is slowest, showing that the initial condition

uncertainty is less sensitive to increasing lead time. This is expected since our

storage update procedure only depends on observed discharge and some of the

model parameters. However, the uncertainty due to the model inputs (forecast P

and PET) increases considerably with increasing lead time. This is from the fact

that the error in the ensemble meteorological forecasts increases for longer lead

times due to the atmospheric model limitations. It is interesting to note that

the 10 day forecasts are even better using zero precipitation as model input i.e.

NShybrid for the GR4J results is increased from 0.45 to 0.54 in the test period

from 2002 to 2005.
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b)

a)

Figure 3.4: Effect of different uncertainty sources on relative confidence intervals of low
flow forecasts with a) the GR4J and b) HBV, as a function of lead time
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The total uncertainty for the GR4J model is sum of the three sources of uncer-

tainty assessed in this study. Moreover, only half of the RCI comes from uncertain

GR4J parameters. The most striking result to emerge from the RCI results is that

the parameter uncertainty is dominating the total uncertainty in the HBV model

outputs. It is somewhat surprising that nearly all uncertainty comes from the

HBV parameters. Parameter interactions in the HBV model can be the main rea-

son for the unexpected total uncertainty which is not the sum of the three sources

of uncertainty. Interestingly, the results, as shown in Figure 3.4, indicate that

input uncertainty is even smaller than initial condition uncertainty. On the one

hand, this is not expected as ensemble meteorological forecasts are assumed to be

one of the most important uncertainty sources in streamflow forecasts (Engeland

et al., 2010; Thirel et al., 2008; Vrugt et al., 2008; Zappa et al., 2011). On the

other hand, the large range of soil moisture related parameters randomly selected

from the GLUE behavioural parameter set could enhance the impact of initial

condition uncertainty compared to input uncertainty from only 51 P and PET

forecast ensemble members. In other words, the dominating effect of parameter

uncertainty, certainly determines the impact of the initial condition uncertainty

due to the parameters used in the storage update procedure. Moreover, during

low flow periods slow responding processes like groundwater are more dominant

than precipitation as low flows usually occur after prolonged dry periods. This

can explain the smaller effect of uncertainty from precipitation compared to the

uncertainty from initial conditions. The total uncertainty in 10 day lead time low

flow forecasts is not a linear sum of three uncertainty sources in the HBV model

due to parameter interactions. This finding is in agreement with the findings of

Zappa et al. (2011) who showed the full spread obtained from uncertainty su-

perposition of three sources is growing non-linearly for a hydrological model (i.e.

PREVAH) similar to HBV.

3.4.3 Effect of uncertainty on reliability of low flow forecasts

Figure 3.5 compares the reliability of 10 day ensemble forecasts of low flows for

below Q75 and Q95 thresholds using the GR4J and HBV models. The figure

exhibits the portion of observed data inside predefined forecast intervals. The

reliability plots based on forecasts associated with different uncertainties show

that GR4J and HBV over- or under-estimate middle forecast intervals but the

narrowest (i.e. 0%–20%) and the 90% intervals are correctly estimated. From

Figure 3.5 we see clearly that the ensemble Q75 forecasts issued by HBV including

only the input uncertainty are the most reliable forecasts, and it is confirmed

that GR4J provides too wide forecast intervals if all sources of uncertainty are
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included. The plot for the evaluation of the Q75 forecasts using the HBV model

in Figure 3.5 shows that the average overestimation for the total uncertainty

is ∼25% inside the highest interval bin (i.e. 80%–100%). The Q75 low flow

event will then occur in only ∼75% of the cases when it is forecasted to almost

certainly happen, indicating that every fourth low flow warning will be a false

alarm. Initial condition uncertainty has less effect than parameter uncertainty

on the reliability of Q75 forecasts by the two models. For the Q95 low flows, all

intervals except for the narrowest interval (i.e. 0%–20%) are overestimated by

the HBV model. A comparison of the four subplots in Figure 3.5 reveals that

the parameter uncertainty has a negative effect on the reliability of the forecasts.

Moreover, the overestimation of the GR4J model and underestimation of the

HBV model are also visible in Figure 3.5. Finally, the forecasts of extreme low

flows (Q95) issued by the GR4J model are more reliable than the forecasts by

the HBV model.

Figure 3.5: Effect of different uncertainty sources on reliability of 10 day low flow
forecasts with GR4J and HBV as a function of two low flow thresholds (i.e. Q75 and
Q95)
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3.4.4 Effect of uncertainty on contingency table of low flow forecasts:

hits and false alarms

From operational point of view, the main purpose of investigating uncertainty

from 10 day ensemble low flow forecasts is to improve the forecasts (e.g. hits) and

to reduce false alarms and missed targets in the low flow contingency measures.

Figure 3.6 shows the comparison between the GR4J and HBV models, based on

the number of hits, false alarms, misses and correct rejections for the pre-selected

Q75 low flow events. It should be noted that a threshold probability of 0.5 is

used to issue a low flow forecast alarm from 10.000 forecasts each day in the test

period. Subsequently, a low flow event is assumed to occur if more than half of the

10.000 forecasts are low flows. Subsequently, the 10.000× 1461 forecast ensemble

matrix is transformed to a 1 × 1461 binary vector consists of zero (no low flow)

and one (low flow) values by applying the aforementioned warning threshold of

0.5. This corresponds to a total of 1461 forecasts divided into four subplots in

Figure 3.6.

Figure 3.6: Effect of different uncertainty sources on contingency table. Percentage of
a) hits b) false alarms c) misses d) correct rejections, to total warnings for 10 day
ahead forecasts issued in the test period (i.e. 1461 warnings in the test period)

The threshold approach was not necessary for the deterministic run as we run

the models only one time with calibrated parameters and control forecasts. The

y axes of the subplots show the percentage of different contingency measures

for each evaluated uncertainty source, i.e. input, parameter, initial condition and

total. We are aware that the contingency table is very sensitive to the pre-selected
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threshold and the number of forecasts (Devineni et al., 2008). From Figure 3.6a,

we can clearly see that the two models perform similar for the deterministic

run whereas the number of hits declines for the GR4J model forecasts for the

total uncertainty. This suggests that adding parameter uncertainty to the model

certainly reduces the number of hits. This is what we have seen also in Figure

3.3a. In case of the HBV model, there is no drop in the number of hits indicating

that most of the low flow events (a total of 567 events in the test period) are

correctly forewarned by the ensemble forecasts. This is a significant success for a

hydrological model calibrated for low flows. Moreover, non occurrence of low flow

events was also correctly indicated by the HBV model. This could be inferred

from the correct rejections plot in Figure 3.6d.

The most striking result to emerge from Figure 3.6b is that the percentage of false

alarms is highest (∼50%) for the forecasts issued by HBV including only input

uncertainty. This may seem contradictory with the results presented in Figure 3.5

as the same ensemble forecasts have been indicated as the most reliable forecasts.

However, it should be noted that these two quality measures evaluate the forecasts

from totally different aspects namely the reliability diagram for the reliability and

the contingency table for the sharpness of the forecasts (WMO, 2012).

Figure 3.7 shows the utility of the low flow forecasts as a function of lead time

using the hit rate and the false-alarm rate derived from contingency tables. What

is surprising is that the hit rate of GR4J drops significantly from 0.9 to 0.1 by

increasing the lead time whereas the hit rate of HBV is slightly increased from

0.9 to 1.
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Figure 3.7: Effect of different uncertainty sources on hit/false-alarm rate of two models
as a function of different lead times

Another important finding was that the hit rate and false alarm rate of the GR4J

and HBV models do not vary significantly as a function of lead time for the

deterministic forecasts. Moreover, the false-alarm rate of GR4J does not change

considerably by increasing the lead time and for different uncertainty sources.

The drop in false-alarm rate is higher for the HBV model. The importance of

parameter uncertainty for both models can be clearly seen in Figure 3.7. The

effect of the storage updating procedure and input uncertainty on both models

outputs is much smaller. The findings of the current study (see Figure 3.7) are

consistent with those of Zappa et al. (2011) who found slight decreases in the hit

rates of low flow forecasts for a leadtime of 1 day and 5 days.
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3.5 Conclusions

The performance of two hydrological models in the calibration, validation and

forecast periods have been compared, and the effect of different uncertainty

sources on the quality of 10 day low flow forecasts have been assessed. We ap-

plied a systematic uncertainty analysis to identify where the uncertainty comes

from and to provide quantified model output uncertainty information to make a

robust model comparison. An hybrid performance metric is used for evaluating

low flow simulations whereas the quality of the probabilistic low flow forecasts

has been assessed based on relative confidence intervals, reliability and hit/false

alarm rates. Based on the results presented in this study we can draw the follow-

ing conclusions.

• The 10 day ensemble forecast results show that the daily observed low flows

are captured by the 90% confidence interval for both models most of the

time. However, the GR4J model usually overestimates low flows whereas

HBV is prone to underestimate low flows. This is particularly the case if

the parameter uncertainty is included into the forecasts.

• The total uncertainty in the GR4J model outputs is higher than in the HBV

model.

• The parameter uncertainty has the highest effect and the input uncertainty

has the smallest effect on the low flow forecasts.

• A direct relation is found between the number of parameters and the pa-

rameter uncertainty according to the RCI results.

• The parameter uncertainty for 10 day low flow forecasts issued by the HBV

model with eight parameters is almost half of the parameter uncertainty

coming from the GR4J with four parameters. This is because the rainfall-

runoff process resulting in low flows in the study area is better described by

the HBV model.

• The forecast distribution based on 10 day low flow forecasts (i.e. Q75) issued

by the HBV model was the most reliable forecast distribution if only input

uncertainty is considered.

• The number of hits is about equal for two models only if the input un-

certainty is considered. The parameter uncertainty was the main reason

reducing the number of hits.

• The deterministic forecasts using the GR4J and HBV resulted in similar

performance indices and also similar hit false alarm rates.
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• The performance of the HBV model for correct rejections is remarkable in-

dicating that the model is not only successful for low flows but also correctly

indicates other flows above the Q75 threshold while being calibrated on low

flows below Q75.

• The number of false alarms is almost doubled for the GR4J model consid-

ering total uncertainty. The importance of parameter uncertainty on the

quality of forecast is emphasized by all forecast quality measures used in

this study.

In essence, this paper has shown that the output from two conceptual hydro-

logical models, calibrated for a medium sized ∼27.000 km2 river basin, fed by

raw ECMWF meteorological forecasts, is characterised by substantial uncertainty

from model parameters. This source of uncertainty effects both the reliability and

the sharpness of the forecasts. This finding is new for low flow forecasts as the

significance of the rainfall prediction error is well known and documented for high

flows (Pappenberger et al., 2005). This study has taken a step in the direction

of assessing major sources of uncertainties in medium range low flow forecasts

in addition to flood forecasts for the Moselle River. However, further research

has to be conducted on the effect of uncertainties on seasonal low flow forecasts

using coarse seasonal weather products. Different types of models, especially

data-driven models, may be considered to include in the uncertainty analysis

framework for assessing model structure uncertainty explicitly.
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Chapter 4

The skill of seasonal ensemble

low flow forecasts for four

different hydrological models

Abstract

This paper investigates the skill of 90 day low flow forecasts using two concep-

tual hydrological models and two data-driven models based on Artificial Neural

Networks (ANNs) for the Moselle River. One data-driven model, ANN-Indicator

(ANN-I), requires historical inputs on precipitation (P), potential evapotranspi-

ration (PET), groundwater (G) and observed discharge (Q), whereas the other

data-driven model, ANN-Ensemble (ANN-E), and the two conceptual models,

HBV and GR4J, use forecasted meteorological inputs (P and PET), whereby we

employ ensemble seasonal meteorological forecasts. We compared low flow fore-

casts without any meteorological forecasts as input (ANN-I) and five different

cases of seasonal meteorological forcing: (1) ensemble P and PET forecasts; (2)

ensemble P forecasts and observed climate mean PET; (3) observed climate mean

P and ensemble PET forecasts; (4) observed climate mean P and PET and (5)

zero P and ensemble PET forecasts as input for the other three models (GR4J,

HBV and ANN-E). The ensemble P and PET forecasts, each consisting of 40

members, reveal the forecast ranges due to the model inputs. The five cases are

compared for a lead time of 90 days based on model output ranges, whereas the

four models are compared based on their skill of low flow forecasts for varying lead

times up to 90 days. Before forecasting, the hydrological models are calibrated

and validated for a period of 30 and 20 years respectively. The smallest differ-

ence between calibration and validation performance is found for HBV, whereas

the largest difference is found for ANN-E. From the results, it appears that all
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models are prone to over-predict low flows using ensemble seasonal meteorological

forcing. The largest range for 90 day low flow forecasts is found for the GR4J

model when using ensemble seasonal meteorological forecasts as input. GR4J,

HBV and ANN-E under-predicted 90 day ahead low flows in the very dry year

2003 without precipitation data, whereas ANN-I predicted the magnitude of the

low flows better than the other three models. The results of the comparison of

forecast skills with varying lead times show that GR4J is less skilful than ANN-E

and HBV. Furthermore, the hit rate of ANN-E is higher than the two conceptual

models for most lead times. The seasonal low flows are correctly forecasted by

ANN-I, showing the ability of data-driven models in forecasting the magnitude

of low flows. However, ANN-I is not successful in distinguishing between low

flow events and non-low flow events. Overall, the uncertainty from ensemble P

forecasts has a larger effect on seasonal low flow forecasts than the uncertainty

from ensemble PET forecasts and initial model conditions.

This chapter is based on the paper: Demirel MC, Booij MJ, Hoekstra AY. (2013) The
skill of seasonal ensemble low flow forecasts for four different hydrological models (submitted).
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4.1 Introduction

Rivers in Western Europe usually experience low flows in late summer and high

flows in winter. These two extreme discharge phenomena can lead to serious

problems. For example, high flow events are quick and can put human life at

risk, whereas streamflow droughts (i.e. low flows) develop slowly and can affect a

large area. Consequently, the economic loss during low flow periods can be much

bigger than during floods (Pushpalatha et al., 2011; Shukla et al., 2012). In the

River Rhine, severe problems for freshwater supply, water quality, power produc-

tion and river navigation were experienced during the dry summers of 1976, 1985

and 2003. Therefore, forecasting seasonal low flows (Coley and Waylen, 2006; Li

et al., 2008; Towler et al., 2013) and understanding low flow indicators (Demirel

et al., 2013a; Fundel et al., 2013; Saadat et al., 2013; Vidal et al., 2010; Wang

et al., 2011) have both societal and scientific value. The seasonal forecast of

water flows is therefore listed as one of the priority topics in EU’s Horizon 2020

research program (EU, 2013). Further, there is an increasing interest to incorpo-

rate seasonal flow forecasts in decision support systems for river navigation and

power plant operation during low flow periods. We are interested in forecasting

low flows with a lead time of 90 days, and in presenting the effect of ensemble

meteorological forecasts for four hydrological models.

Generally, two approaches are used in seasonal hydrological forecasting. The first

one is a statistical approach, making use of data-driven models based on relation-

ships between river discharge and hydroclimatological indicators (Van Ogtrop

et al., 2011; Wang et al., 2011). The second one is a dynamic approach run-

ning a hydrological model with forecasted climate input. The first approach is

often preferred in regions where significant correlations between river discharge

and climatic indicators exist, such as sea surface temperature anomalies (Chowd-

hury and Sharma, 2009), AMO - Atlantic Multi-decadal Oscillation (Ganguli and

Reddy, 2013; Giuntoli et al., 2013), PDO - Pacific Decadal Oscillation (Soukup

et al., 2009) and warm and cold phases of the ENSO - El Niño Southern Oscilla-

tion - index (Chiew et al., 2003; Kalra et al., 2013; Tootle and Piechota, 2004).

Kahya and Dracup (1993) identified the lagged response of regional streamflow

to the warm phase of ENSO in the south-eastern United States. In the Rhine

basin, no teleconnections have been found between climatic indices, e.g. NAO

and ENSO, and river discharges (Bierkens and van Beek, 2009; Rutten et al.,

2008). However, Demirel et al. (2013a) found significant correlations between

hydrological low flow indicators (e.g. standard snow storage and groundwater in-

dices) and observed low flows. They also identified appropriate lags and temporal

resolutions of low flow indicators to build data-driven models.
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The dynamic seasonal forecasting approach has long been explored (Fundel et

al., 2013; Gobena and Gan, 2010; Pokhrel et al., 2013; Shukla et al., 2013; Van

Dijk et al., 2013; Wang et al., 2011), which has led to the development of the

current ensemble streamflow prediction system (ESP) used by different national

climate services like the National Weather Service in the United States. The

seasonal hydrologic prediction systems are most popular in regions with a high

risk of extreme discharge situations like hydrological droughts (Robertson et al.,

2013). Well-known examples are the NOAA Climate Prediction Centre’s seasonal

drought forecasting system (Shukla and Lettenmaier, 2011), the University of

Washington’s Surface Water Monitoring system (Wood and Lettenmaier, 2006),

Princeton University’s drought forecast system (Shukla et al., 2012) and Univer-

sity of Utrecht’s global monthly hydrological forecast system (Yossef et al., 2012).

These models provide indications about the hydrologic conditions and their evolu-

tion across the modelled domain using available weather ensemble inputs (Gobena

and Gan, 2010; Yossef et al., 2012). Many studies have investigated the seasonal

predictability of low flows in different rivers such as the Thames and different

other rivers in the UK (Bell et al., 2013; Wedgbrow et al., 2002; Wedgbrow et al.,

2005), the Shihmen and Tsengwen Rivers in Taiwan (Kuo et al., 2010), the River

Jhelum in Pakistan (Archer and Fowler, 2008), more than 200 rivers in France

(Giuntoli et al., 2013; Sauquet et al., 2008), five semi-arid areas in South Western

Queensland, Australia (Van Ogtrop et al., 2011), four rivers including the Blue

Nile in Africa (Dutra et al., 2013), the Bogotá River in Colombia (Felipe and Nel-

son, 2009), the Ohio in the eastern US (Li et al., 2009; Luo et al., 2007; Wood et

al., 2002), the North Platte in Colorado, US (Soukup et al., 2009), large rivers in

the US (Schubert et al., 2007; Shukla and Lettenmaier, 2011) and the Thur River

in the north-eastern part of Switzerland (Fundel et al., 2013). The common result

of the above mentioned studies is that seasonal forecasts made with global and

regional hydrological models are limited to lead times of 1-3 months (Shukla and

Lettenmaier, 2011; Wood et al., 2002) and these forecasting systems are all prone

to large uncertainties as their forecast skills mainly depend on the knowledge of

initial hydrologic conditions and weather information during the forecast period

(Doblas-Reyes et al., 2009; Li et al., 2009; Shukla et al., 2012; Yossef et al., 2013).

In a recent study, Yossef et al. (2013) used a global monthly hydrological model

to analyse the relative contributions of initial conditions and meteorological forc-

ing to the skill of seasonal streamflow forecasts. They included 78 stations in

large basins in the world including the River Rhine for forecasts with lead times

up to 6 months. They found that improvements in seasonal hydrological fore-

casts in the Rhine depend on better meteorological forecasts, which underlines

the importance of meteorological forcing quality particularly for forecasts beyond
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lead times of 1-2 months.

Most of the previous River Rhine studies use only one hydrological model, e.g.

PREVAH (Fundel et al., 2013) or PCR-GLOBWB (Yossef et al., 2013), to assess

the value of ensemble meteorological forcing, whereas in this study, we compare

four hydrological models with different structures varying from data-driven to

conceptual models. The objective of this study is to assess the effect of ensemble

seasonal forecasted precipitation and potential evapotranspiration on low flow

forecast quality and skill scores. By comparing four models with different model

structures we address the use of model structure uncertainty. Moreover, the effect

of initial model conditions is partly addressed using climate mean data in one of

the cases.

The analysis complements recent efforts to analyse the effects of ensemble weather

forecasts on low flow forecasts with a lead time of 10 days using two concep-

tual models (Demirel et al., 2013b), by studying the effects of seasonal ensemble

weather forecasts on 90 day low flow forecasts using not only conceptual models

but also data-driven models.

The outline of the paper is as follows. The study area and data are presented

in section 4.2. Section 4.3 describes the model structures, their calibration and

validation set-ups and the methods employed to estimate the different attributes

of the forecast quality. The results are presented in section 4.4 and discussed in

section 4.5, and the conclusions are summarised in section 4.6.
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4.2 Study area and data

4.2.1 Study area

The study area is the Moselle River basin, the largest sub-basin of the Rhine River

basin. The Moselle River has a length of 545 km. The river basin has a surface

area of approximately 27,262 km2. The altitude in the basin varies from 59 to

1326 m, with a mean altitude of 340 m (Demirel et al., 2013a). Approximately 410

mm (∼130 m3/s) discharge is annually generated in the Moselle basin (Demirel et

al., 2013b). The outlet discharge at Cochem varies from 14 m3/s in dry summers

to a maximum of 4000m3/s during winter floods.

4.2.2 Data

Observed data

Observed daily data on precipitation (P) and potential evapotranspiration (PET)

are obtained from the German Federal Institute of Hydrology (BfG) in Koblenz,

Germany (Table 4.1). PET is estimated using the Penman-Wendling equation

(ATV-DVWK, 2002) and both variables have been spatially averaged by BfG over

26 Moselle sub-basins using areal weights. Observed daily discharge (Q) data at

Cochem (station #6336050 ) are provided by the Global Runoff Data Centre

(GRDC), Koblenz. The daily observed data (P, PET and Q) are available for the

period 1951-2006.

Table 4.1: Overview of observed data used
Variable Name Number of

stations/sub-
basins

Period Time step
(days)

Spatial reso-
lution

Source

Q Discharge 1 1951-2006 1 Point GRDC
P Precipitation 26 1951-2006 1 Basin average BfG
PET Evapotranspiration 26 1951-2006 1 Basin average BfG
h Mean altitude 26 - - Basin average BfG

Ensemble seasonal meteorological forecast data

The ensemble seasonal meteorological forecast data, comprising 40 members,

are obtained from the European Centre for Medium-Range Weather Forecasts

(ECMWF) seasonal forecasting system (ECMWF, 2012). This dataset contains

regular 0.25×0.25 degree latitude-longitude grids and each ensemble member is

computed for a lead time of 184 days using perturbed initial conditions and

model physics (Table 4.2). We estimated the PET forecasts using the Penman-

Wendling equation requiring forecasted surface solar radiation, temperature at
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2 meter above surface and altitude of the sub-basin (ATV-DVWK, 2002). The

mean altitudes of the 26 sub-basins are provided by BfG in Koblenz, Germany.

The PET estimation is consistent with the observed PET estimation carried out

by BfG. The grid-based P and PET ensemble forecast data are firstly interpolated

over 26 Moselle sub-basins using areal weights. These sub-basin averaged data

are then aggregated to the Moselle basin level.

Table 4.2: Overview of ensemble seasonal meteorological forecast data

Data Spatial res-
olution

Ensemble
size

Period Time
step
(days)

Lead
time
(days)

Forecasted P 0.25 x 0.25 degree 39 + 1 control 2002-2005 1 1-90
Forecasted PET 0.25 x 0.25 degree 39 + 1 control 2002-2005 1 1-90

4.3 Methodology

4.3.1 Overview of model structures and forecast scheme

The four hydrological models (GR4J, HBV, ANN-E and ANN-I), calibration and

validation of the models and five cases with different combinations of ensemble

meteorological forecast input and climate mean input are briefly described in

sections below. Figure 4.1 shows the simplified model structures.

Figure 4.1: Schematisation of the four models. PET is potential evapotranspiration, P
is precipitation, G is groundwater, Q is discharge and t is the time (day).
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GR4J

The GR4J model (Génie Rural à 4 parametres Journalier) is used as it has a

parsimonious structure with only four parameters. The model has been tested

over hundreds of basins worldwide, with a broad range of climatic conditions

from tropical to temperate and semi-arid basins (Perrin et al., 2003). GR4J is a

conceptual model and the required model inputs are daily time series of P and

PET (Table 4.3). The four parameters in GR4J represent the maximum capacity

of the production store (X1), the groundwater exchange coefficient (X2), the

one day ahead capacity of the routing store (X3) and the time base of the unit

hydrograph (X4). All four parameters (Figure 4.1a) are used to calibrate the

model. The upper and lower limits of the parameters are selected based on

previous works (Perrin et al., 2003; Pushpalatha et al., 2011; Tian et al., 2013).

HBV

The HBV conceptual model (Hydrologiska Byr̊ans Vattenbalansavdelning) was

developed by the Swedish Meteorological and Hydrological Institute (SMHI) in

the early 1970s (Lindström et al., 1997). The HBV model consists of four subrou-

tines: a precipitation and snow accumulation and melt routine, a soil moisture

accounting routine and two runoff generation routines. The required input data

are daily P and PET. The snow routine and daily temperature data are not used

in this study as the Moselle basin is a rain-fed basin. Eight parameters (see

Figure 4.1b) in the HBV model are calibrated (Engeland et al., 2010; Tian et

al., 2013; Van den Tillaart et al., 2013). The ranges of the eight parameters for

calibration are selected based on previous works (Booij, 2005; Eberle, 2005; Tian

et al., 2013).

ANN-E and ANN-I

An Artificial Neural Network (ANN) is a data-driven model inspired by func-

tional units (neurons) of the human brain (Elshorbagy et al., 2010). A neural

network is a universal approximator capable of learning the patterns and relation

between outputs and inputs from historical data and applying it for extrapolation

(Govindaraju and Rao, 2000). Three-layer feed-forward neural networks (FNNs)

are the most widely preferred model architecture for prediction and forecasting

of hydrological variables (Adamowski et al., 2012; Kalra et al., 2013; Shamseldin,

1997). Each of these three layers has an important role in processing the infor-

mation. The first layer receives the inputs and multiplies them with a weight

(adds a bias if necessary) before delivering them to each of the hidden neurons in

the next layer (Gaume and Gosset, 1999). The weights determine the strength of
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the connections. The number of nodes in this layer corresponds to the number of

inputs. The second layer, the hidden layer, consists of an activation function (also

known as transfer function) which non-linearly maps the inputs data to output

target values. In other words, this layer is the learning element of the network

which simulates the relationship between inputs and outputs of the model. The

third layer, the output layer, gathers the processed data from the hidden layer

and delivers the final output of the network.

A hidden neuron is the processing element with n inputs (x1, x2, x3, . . . , xn),

and one output y using Eq. (4.1).

y = f(x1, x2, x3, . . . , xn) = logsig

[(
n∑
i=1

xiwi

)
+ b

]
(4.1)

where wi are the weights, b is the bias, and logsig is the logarithmic sigmoid

activation function. Based on our preliminary tests, the logsig activation func-

tion is selected for this study. ANN model structures are determined based on

the forecast objective. In this study, we used two different ANN model struc-

tures: ANN-Ensemble (ANN-E) and ANN-Indicator (ANN-I). The first model,

i.e. ANN-E, requires daily P, PET and historical Q as input. Historical Q from

the previous day is used to update the model states (Table 4.3). This is a one day

memory which also exists in the conceptual models, i.e. GR4J and HBV (Fig-

ure 4.1). The ANN-E is assumed to be comparable with the conceptual models

with similar model structures. The second model, ANN-I, uses historical Q to

update initial model conditions and three low flow indicators, i.e. P, PET and G,

as model input. The model uses historical data and does not require forecasted

weather inputs. The appropriate lags and temporal resolutions of these indica-

tors have been identified using the discharge data for the period of 1978-2006 in

a previous study by Demirel et al. (2013a). The determination of the optimal

number of hidden neurons in the second layer is an important issue in the devel-

opment of ANN models. Three common approaches are ad hoc (also known as

trial and error), global and stepwise (Kasiviswanathan et al., 2013). We used a

global approach (i.e. Genetic Algorithm) (De Vos and Rientjes, 2008) and tested

the performance of the networks with one, two and three hidden neurons corre-

sponding to a number of parameters (i.e. number of weights and biases) of 6, 11

and 16 respectively. Based on the parsimonious principle, testing ANNs only up

to three hidden neurons is assumed to be enough as the number of parameters

increases exponentially for every additional hidden neuron.



96 Chapter 4. The skill of seasonal ensemble low flow forecasts

Table 4.3: Model descriptions. PET is potential evapotranspiration, P is precipitation,
G is groundwater, Q is discharge and t is the time (day).

Calibration and validation of models

A global optimisation method, i.e. Genetic Algorithm (GA) (de Vos and Rientjes,

2008), and historical Moselle low flows for the period from 1971-2001 are used

to calibrate the models used in this study. The 30-year calibration period is

carefully selected as the first low flow forecast is issued on 01/01/2002. For all

GA simulations, we use 100 as population size, 5 as reproduction elite count size,

0.7 as cross over fraction, 2000 as maximum number of iterations and 5000 as

the maximum number of function evaluations based on the studies by De Vos

and Rientjes (2008) and Kasiviswanathan et al. (2013). The validation period

spans from 1951-1970. The definition of low flows, i.e. discharges below the Q75

threshold of ∼ 113 m3/s, is based on previous work by Demirel et al. (2013a).

Prior parameter ranges and deterministic equations used for dynamic model state

updates of the conceptual models based on observed discharges on the forecast

issue day are based on the study by Demirel et al. (2013b). In this study, we use

a hybrid Mean Absolute Error (MAE) based on only low flows (MAElow) and

inverse discharge values (MAEinverse) as objective function (see Eq. (4.4)).
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MAElow =
1

m

m∑
j=1

|Qsim(j)−Qobs(j)| (4.2)

where Qobs and Qsim are the observed and simulated values for the j -th observed

low flow day (i.e. Qobs < Q75) and m is the total number of low flow days.

MAEinverse =
1

n

n∑
i=1

| 1

Qsim(i) + ε
− 1

Qobs(i) + ε
| (4.3)

where n is the total number of days (i.e. m < n), and ε is 1% of the mean

observed discharge to avoid infinity during zero discharge days.

MAEhybrid = MAElow +MAEinverse (4.4)

Case description

In this study, four hydrological models are used for the seasonal forecasts. While

only historical input is used for the ANN-I model, five ensemble meteorological

forecast input cases for ANN-E, GR4J and HBV models are compared: (1) en-

semble P and PET forecasts (2) ensemble P forecasts and observed climate mean

PET (3) observed climate mean P and ensemble PET forecasts (4) observed

climate mean P and PET (5) zero P and ensemble PET forecasts (Table 4.4).

Cases 1-4 are the different possible combinations of ensemble and climate mean

meteorological forcing. Case 5 is analysed to determine to which extent the

precipitation forecast in a very dry year (2003) is important for seasonal low flow

forecasts.

Table 4.4: Details of the five input cases

Case Precipitation Potential evapotranspiration

1 Ensemble forecast Ensemble forecast
2 Ensemble forecast Climate mean
3 Climate mean Ensemble forecast
4 Climate mean Climate mean
5 Zero Ensemble forecast
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4.3.2 Forecast skill scores

Three probabilistic forecast skill scores (Brier Skill Score, reliability diagram, hit

and false alarm rates) and one deterministic forecast skill score (Mean Forecast

Score) are used to analyse the results of low flow forecasts with lead times of

1-90 days. Forecasts for each day in the test period (2002-2005) are used to esti-

mate these scores. The Mean Forecast Score focusing on low flows is introduced

in this study, whereas the other three scores have been often used in meteorol-

ogy (WMO, 2012) and flood hydrology (Renner et al., 2009; Thirel et al., 2008;

Velázquez et al., 2010). For the three models, i.e. GR4J, HBV and ANN-E, the

forecast probability for each forecast day is estimated as the ratio of the number

of ensemble members exceeding the pre-selected thresholds (here Q75) and the

total number of ensemble members (i.e. 40 members) for that forecast day. The

ANN-I model issues single deterministic forecast; therefore, the probability for

each forecast day is either zero or one.

Brier skill score

The Brier Skill Score (BSS) (Wilks, 1995) is often used in hydrology to evaluate

the quality of probabilistic forecasts (Devineni et al., 2008; Hartmann et al., 2002;

Jaun and Ahrens, 2009; Roulin, 2007; Towler et al., 2013).

BSS = 1− BSforecast
BSclimatology

(4.5)

where the BSforecast is the Brier Score (BS) for the forecast, defined as:

BS =
1

N

N∑
t=1

(Ft −Ot)
2 (4.6)

where Ft refers to the forecast probability, Ot refers to the observed probability

(Ot=1 if the observed flow is below the low flow threshold, 0 otherwise), and N

is the sample size. BSclimatology is the BS for climatology, which is also calculated

from Eq. (4.6) for every year using climatological probabilities. BSS values range

from minus infinity to 1 (perfect forecast). Negative values indicate that the

forecast is less accurate than the climatology. BSS=0 indicates equal skill, and a

BSS>0 indicates more skill compared to the climatology.
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Reliability diagram

The reliability diagram is used to evaluate the performance of probabilistic fore-

casts of selected events, i.e. low flows. A reliability diagram represents the

observed relative frequency as a function of forecasted probability and the 1:1 di-

agonal shows the perfect reliability line (Olsson and Lindström, 2008; Velázquez

et al., 2010). This comparison is important as reliability is one of the three prop-

erties of a hydrological forecast (WMO, 2012). A reliability diagram shows the

portion of observed data inside pre-selected forecast intervals.

In this study, non-exceedence probabilities of 50%, 75%, 85%, 95%, and 99% are

chosen as thresholds to categorize the discharges from mean flows to extreme

low flows. The forecasted probabilities are then divided into bins of probability

categories; here, five bins (categories) are chosen 0-20%, 20%-40%, 40%-60%,

60%-80% and 80%-100%. The observed frequency for each day is chosen to be 1

if the observed discharge non-exceeds the threshold, or 0, if not.

Hit and false alarm rates

We used hit and false alarm rates to assess the effect of ensembles on low flow

forecasts for varying lead times. The hit and false alarm rates indicate respec-

tively the proportion of events for which a correct warning was issued, and the

proportion of non events for which a false warning was issued by the forecast

model. These two simple rates can be easily calculated from contingency tables

(Table 4.5) using Eq. (4.7) and (4.8). These scores are often used for evaluating

flood forecasts (Martina et al., 2006), however, they can also be used to estimate

the utility of low flow forecasts as they indicate the models’ ability to correctly

forecast the occurrence or non-occurrence of pre-selected events (i.e. Q75 low

flows). There are four cases in a contingency table as shown in Table 4.5.

Table 4.5: Contingency table for the assessment of Q75 forecasts

Observed Not observed

Forecasted hit : the event fore-
casted to occur and did
occur

false alarm: event fore-
casted to occur, but did
not occur

Not forecasted miss: the event fore-
casted not to occur, but
did occur

correct negative: event
forecasted not to occur
and did not occur

hit rate =
hits

(hits+misses)
(4.7)
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false alarm rate =
false alarms

(correct negatives+ false alarms)
(4.8)

Mean forecast score

The Mean Forecast Score (MFS) is a new skill score which can be derived from

either probabilistic or deterministic forecast probabilities. These probabilities

are calculated only for the days that low flows occurred. Table 4.6 shows the low

flow contingency table for calculating MFS. In this study we used a deterministic

approach for calculating the observed frequency for all four models. However,

a deterministic approach for calculating the forecast probability is used only for

the ANN-I model. For the other three models, ensembles are used for estimating

forecast probabilities.

Table 4.6: Low flow contingency table for the assessment of forecasts

The score is calculated as below for only for deterministic observed low flows (left

column in Table 4.6).
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MFS =
1

m

m∑
j=1

Fj (4.9)

where Fj is the forecast probability for the j -th observed low flow day (i.e. Oj ≤
Q75) and m is the total number of low flow days. For instance, if 23 of the 40

ensemble forecast members indicate low flows for the j -th low flow day then Fj

= 23/40. It should be noted that this score is not limited to low flows as it

has a flexible forecast probability definition which can be adapted to any type of

discharges. MFS values range from zero to 1 (perfect forecast).

4.4 Results

4.4.1 Calibration and validation

Table 4.7 shows the parameter ranges and the best performing parameter sets

of the four models. The GR4J and HBV models have both well-defined model

structures; therefore, their calibration was more straightforward than the calibra-

tion of the ANN models. Calibration of the ANN models was done in two steps.

First, the number of hidden neurons was determined by testing the performance

of the ANN-E model with one, two and three hidden neurons.

The daily P, PET and Q are used as three inputs for the tested ANN-E model

with one, two and three hidden neurons due to the fact that these inputs are

comparable with the inputs of the GR4J and HBV models. Figure 4.2a shows

that the performance of the ANN-E models does not improve with additional

hidden neurons. Based on the performance in the validation period, one hidden

neuron is selected. Second, GR4J, HBV and ANN-I are calibrated. Based on

the results of the first step, ANN-I with one hidden neuron is calibrated for its

long term averaged inputs. The results of the four models used in this study are

presented in Figure 4.2b.

The performances of GR4J and HBV are similar in the calibration period, whereas

HBV performs better in the validation period (Figure 4.2b). This is not sur-

prising, since HBV has a more sophisticated model structure than GR4J. The

performance of ANN-E and ANN-I is similar in both calibration and validation

periods.
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Table 4.7: Parameter ranges and calibrated values of the pre-selected four models
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Figure 4.2: Calibration and validation results of a) the ANN-E model with one, two and
three hidden neurons and b) the four models used in this study. The same calibration
(1971-2001) and validation (1951-1970) periods are used for both plots.

4.4.2 Effect of ensembles on low flow forecasts for 90 day lead time

The effect of ensemble P and PET on GR4J, HBV and ANN-E is presented as a

range bounded by the lowest and highest forecast values in Figure 4.3 and Figure

4.4. In these figures, there is no range for the ANN-I results as the model issues

only one forecast using historical low flow indicators as input. The two years, i.e.

2002 and 2003, are carefully selected as they represent a relatively wet year and a

very dry year respectively. Figure 4.3 shows that there are significant differences

between the four model results. The 90 day ahead low flows in 2002 are mostly

overpredicted by the ANN-E model, whereas GR4J, HBV and ANN-I models

overpredict and underpredict low flows observed after August. The forecast re-

sults of ANN-I are considerably better than the results of the other three models.

The overprediction of low flows is more pronounced for GR4J than for the other

three models. The overprediction of low flows by ANN-E is mostly at the same

level. This less sensitive behaviour of ANN-E to the forecasted ensemble inputs

shows the effect of the logarithmic sigmoid transfer function on the results. Due

to the nature of this algorithm, input is rescaled to a small interval [0, 1] and

the gradient of the sigmoid function at large values approximates zero (Wang et

al., 2006). Further, ANN-E is also not sensitive to the initial model conditions

updated on every forecast issue day. The less pronounced overprediction of low

flows by HBV compared to GR4J may indicate that the slow responding ground-

water storage in HBV is less sensitive to different forecasted ensemble P and PET

inputs.
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Figure 4.3: Range (shown as grey shade) of low flow forecasts in 2002 (the wettest year
of the test period) for a lead time of 90 days using ensemble P and PET as input for
GR4J, HBV and ANN-E models and using historical P, PET and G as input for the
ANN-I model (case 1 - 2002).

The results for 2003 are slightly different than those for 2002. As can be seen

from Figure 4.4 the number of low flow days has increased in the dry year, i.e.

2003, and the low flows between August and November are not captured by any

of the 40-ensemble forecasts using ANN-E. Moreover, ANN-I performed better

in 2002 than in 2003. The most striking result in Figure 4.4 is that the low

flows observed in the period between April and June are not captured by any of

the three models, i.e. GR4J, HBV and ANN-E. The 90 day low flows between

October and November are better forecasted by GR4J and ANN-I than the other

two models.
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Figure 4.4: Range (shown as grey shade) of low flow forecasts in 2003 (the driest year
of the test period) for a lead time of 90 days using ensemble P and PET as input for
GR4J, HBV and ANN-E models and using historical P, PET and G as input for the
ANN-I model (case 1 - 2003).

For the purpose of determining to which extent ensemble P and PET inputs and

different initial conditions affect 90 day low flow forecasts, we run the models

with different input combinations such as ensemble P or PET and climate mean

P or PET and zero precipitation. Figure 4.5 shows the forecasts using ensemble

P and climate mean PET as input for three models. The picture is very similar to

Figure 4.4 as most of the observed low flows fall within the constructed forecast

range by GR4J and HBV. The forecasts issued by GR4J are better than those

issued by the other two models. However, the range of forecasts using GR4J is

larger than for the other models showing the sensitivity of the model for different

precipitation inputs. It is obvious that most of the range in all forecasts is caused

by uncertainties originating from ensemble precipitation input. The results of the

fourth model, ANN-I, are the same as in Figure 4.4 and therefore, they are not

presented again in the remaining figures.
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Figure 4.5: Range (shown as grey shade) of low flow forecasts in 2003 for a lead time of
90 days using ensemble P and climate mean PET as input for GR4J, HBV and ANN-E
models (case 2).

Figure 4.6 shows the forecasts using climate mean P and ensemble PET as input

for three models, i.e. GR4J, HBV and ANN-E. Interestingly, only GR4J could

capture the 90 day low flows between July and November using climate mean

P and ensemble PET showing the ability of the model to handle the excessive

rainfall. None of the low flows were captured by HBV, whereas very few low flow

events were captured by ANN-E (Figure 4.6).
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Figure 4.6: Range (shown as grey shade) of low flow forecasts in 2003 for a lead time of
90 days using climate mean P and ensemble PET as input for GR4J, HBV and ANN-E
models (case 3).

Figure 4.7 shows the forecasts using climate mean P and PET as input for three

models. The results are presented by point values without a range since only one

deterministic forecast is issued. There are significant differences in the results

of the three models. For instance, all 90 day ahead low flows in 2003 are over-

predicted by HBV, whereas the over-prediction of low flows is less pronounced for

ANN-E. Moreover, GR4J results are better than those for the other two models as

GR4J can forecast some of the low flows accurately. It is remarkable that GR4J

can forecast a very dry year accurately using the climate mean. The low values

of the calibrated maximum soil moisture capacity and percolation parameters of

HBV (FC and PERC ) can be the main reason for over-prediction of all low flows

as the interactions of parameters with climate mean P input can result in higher

model outputs. The errors in the forecasts by GR4J and HBV models can also

be caused by the uncertainty originating from the model initial conditions.
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Figure 4.7: Low flow forecasts in 2003 for a lead time of 90 days using both climate
mean P and PET as input for GR4J, HBV and ANN-E models (case 4).

Figure 4.8 shows the forecasts using zero P and ensemble PET as inputs for three

models. Not surprisingly, both GR4J and HBV underpredicted most of the low

flows when they are run without precipitation input. The results from Figure 4.8

confirm that the P input is very crucial for improving low flow forecasts although

obviously less precipitation is usually observed in a low flow period compared

to other periods. Interestingly, the results of ANN-E are much better than the

other two conceptual models showing the ability of partly data-driven models for

seasonal low flow forecasts.
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Figure 4.8: Range (shown as grey shade) of low flow forecasts in 2003 for a lead time of
90 days using zero P and ensemble PET as input for GR4J, HBV and ANN-E models
(case 5).

4.4.3 Effect of ensembles on low flow forecast skill scores

Figure 4.9 compares the three models and the effect of ensemble P and PET

on the skill of probabilistic low flow forecasts with varying lead times. In this

figure, four different skill scores are used to present the results of probabilistic low

flow forecasts issued by GR4J, HBV and ANN-E. From an operational point of

view, the main purpose of investigating the effect of ensembles and model initial

conditions on ensemble low flow forecasts with varying lead times is to improve

the forecast skills (e.g. hits, reliability, BSS and MFS) and to reduce false alarms

and misses. As anticipated, all scores decrease with increasing lead time. From

Figure 4.9 we can clearly see that the results of GR4J show the lowest BSS, MFS

and hit rate. The false alarm rate of forecasts using GR4J is also the lowest

compared to those using other models. This indicates that the non-occurrence of

low flow days is better forecasted by GR4J than the other models. It appears from

the results that ANN-E and HBV show comparable skill in forecasting low flows

up to a lead time of 90 days. It should be noted that the probabilistic skill scores

for ANN-I were calculated only for a leadtime of 90 days and are not shown in

Figure 4.9. The mean forecast score and hit rate are equal to one, confirming the

good deterministic ANN-I forecast results in Figure 4.3 and Figure 4.4. However,
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the ANN-I model is less skilful than climatology (i.e. BSS<0) for non-low flow

events. Similarly, the false alarm rate of ANN-I is equal to one, showing that the

model predicts only low flows and misses all non-low flow events. This is from the

fact that ANN-I is solely developed for forecasting low flow days. In other words,

only observed low flows and corresponding input data with appropriate lags and

temporal resolution were introduced to the ANN-I model during calibration and

validation.

Figure 4.9: Skill scores for forecasting low flows at different lead times for three different
hydrological models.



4.5 Discussion 111

Figure 4.10 compares the reliability of probabilistic 90 day low flows forecasts

below different thresholds (i.e. Q75, Q90 and Q95) using ensemble P and PET as

input for three models. The figure shows that the Q75 and Q90 low flow forecasts

issued by the HBV model are most reliable compared to the other models. More-

over, all three models under-predicts most of the forecast intervals. It appears

from Figure 4.10c that very critical low flows (i.e. Q99) are under-predicted by

GR4J model.

Figure 4.10: Reliability diagram for different low flow forecasts a) Low flows below
Q75 threshold b) Low flows below Q90 threshold c) Low flows below Q99 threshold.
The forecasts are issued for a lead time of 90 days for the test period 2002-2005 using
ensemble P and PET as input for GR4J, HBV and ANN-E models.

4.5 Discussion

To evaluate the effects of seasonal meteorological forecasts on low flow forecasts,

40-member ensembles of ECMWF seasonal meteorological forecasts were used

as input for four low flow forecast models. Different input combinations were

compared to distinguish between the effects of ensemble P and PET and model

initial conditions on 90 day low flow forecasts. The models could reasonably
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forecast low flows when the amount of precipitation, i.e. ensemble P was intro-

duced into the models. This result is in line with that of Shukla and Lettenmaier

(2011) who found that seasonal meteorological forecasts have a greater influence

than initial model conditions on the seasonal hydrological forecast skills. Two

other related studies also showed that the effect of a large spread in ensemble

seasonal meteorological forecasts is larger than the effect of initial conditions on

hydrological forecasts with lead times longer than 1-2 months (Li et al., 2009;

Yossef et al., 2013). The encouraging results of low flow forecasts using ensemble

seasonal precipitation forecasts for the hydrological models confirm the utility of

seasonal meteorological forcing for low flow forecasts. Not surprisingly, all models

under-predicted low flows without rainfall information (zero P).

In this study, we also assessed the effects of ensemble P and PET on the skill

scores of low flow forecasts with varying lead times up to 90 days. In general,

the four skill scores show similar results. The most evident two patterns in these

scores are that; first, the forecast skill drops sharply until a lead time of 30 days

and second, the skill of probabilistic low flow forecasts issued by GR4J is lowest,

whereas the skill of forecasts issued by ANN-E is highest compared to the other

three models. Further, our study showed that data-driven models can be good

alternatives to conceptual models for issuing seasonal low flow forecasts.

It is noteworthy to mention that the two data-driven models developed in this

study, i.e. ANN-E and ANN-I, can be applied to other large river basins elsewhere

in the world. Surprisingly, ANN-E and HBV showed similar skill on seasonal

forecasts although we expected the two conceptual models, GR4J and HBV,

would show similar results up to a lead time of 90 days. The skill score results

of ANN-I may seem contradictory, but it shows that ANN-I is useless to predict

whether low flow (as defined, below a threshold) will occur or not. Therefore, one

of the other three models will be required. Though, if one of the other models

predicts that low flow below a threshold will occur, ANN-I can be used to predict

the magnitude of low flows, better than the other three models.

For that, the low flow indicators in the basin and their appropriate temporal

scales should be firstly identified. Identification of low flow indicators in a small

size basin can be cumbersome due to the slow responding storages and the large

spatial extent of groundwater aquifers.
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4.6 Conclusions

Four hydrological models have been compared regarding their performance in the

calibration, validation and forecast periods, and the effect of seasonal meteorolog-

ical forecasts on the skill of low flow forecasts has been assessed for varying lead

times. We run the models with different input combinations, e.g. climate mean

precipitation and ensemble potential evapotranspiration, to identify which input

source led to the largest range in the forecasts. A new hybrid low flow objective

function, comprising the mean absolute error of low flows and the mean absolute

error of inverse discharges, is used for comparing low flow simulations, whereas

the skill of the probabilistic seasonal low flow forecasts has been evaluated based

on the ensemble forecast range, Brier Skill Score, reliability, hit/false alarm rates

and Mean Forecast Score. The latter skill score (MFS) focusing on low flows is

firstly introduced in this study. In general our results showed that;

• Based on the results of the calibration and validation, one hidden neuron

was found to be enough for seasonal forecasts as additional hidden neurons

in ANNs did not increase the simulation performance. Interestingly, the

data-driven models, i.e. ANN-E and ANN-I performed similarly in the

calibration and validation periods showing the utility of identified indicators

in simulating low flows by ANN-I. The difference between calibration and

validation performances was smallest for the HBV model, i.e. the most

sophisticated model used in this study.

• Based on the results of the comparison of different model inputs, the largest

range for 90 day low flow forecasts is found for the GR4J model when using

ensemble seasonal meteorological forecasts as input. Moreover, the uncer-

tainty arising from ensemble precipitation has a larger effect on seasonal

low flow forecasts than the effects of ensemble potential evapotranspiration.

All models are prone to over-predict low flows using ensemble seasonal me-

teorological forecasts. However, the precipitation forecasts in the forecast

period are crucial for improving the low flow forecasts. As expected, all

three models, i.e. GR4J, HBV and ANN-E underpredicted 90 day ahead

low flows in 2003 without rainfall data.

• Based on the results of the comparison of forecast skills with varying lead

times, the low flow forecasts using GR4J are less skilful than the other three

models. However, the false alarm rate of GR4J is also the lowest indicating

the ability of the model of forecasting non-occurrence of low flow days. The

low flow forecasts issued by HBV model are most reliable compared to the

other models. The ANN-I model can predict the magnitude of the low
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flows better than the other three models. However, ANN-I is not successful

in distinguishing between low flow events and non-low flow events for a

lead time of 90 days. The hit rate of ANN-E is higher than that of the two

conceptual models used in this study. Overall, the ANN-E and HBV models

are the best performing two of the three models using ensemble P and PET.
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Chapter 5

Impacts of climate change on the seasonality of

low flows in 134 catchments in the River Rhine

basin using an ensemble of bias-corrected

regional climate simulations

Abstract

The impacts of climate change on the seasonality of low flows were analysed

for 134 sub- catchments covering the River Rhine basin upstream of the Dutch-

German border. Three seasonality indices for low flows were estimated, namely

the seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted

persistence (WP). These indices are related to the discharge regime, timing and

variability in timing of low flow events respectively. The three indices were esti-

mated from: (1) observed low flows; (2) simulated low flows by the HBV model

using observed climate as input; (3) simulated low flows using simulated inputs

from seven combinations of General Circulation Models (GCMs) and Regional

Climate Models (RCMs) for the current climate (1964-2007); (4) simulated low

flows using simulated inputs from seven combinations of GCMs and RCMs for

the future climate (2063-2098) including three different greenhouse gas emission

scenarios. These four cases were compared to assess the effects of the hydrological

model, forcing by different climate models and different emission scenarios on the

three indices.

Significant differences were found between cases 1 and 2. For instance, the HBV

model is prone to overestimate SR and to underestimate WP and simulates very

late WMODs compared to the estimated WMODs using observed discharges.

Comparing the results of cases 2 and 3, the smallest difference was found for



116 Chapter 5. Impacts of climate change on the seasonality of low flows

the SR index, whereas large differences were found for the WMOD and WP

indices for the current climate. Finally, comparing the results of cases 3 and 4,

we found that SR decreases substantially by 2063-2098 in all seven sub-basins of

the River Rhine. The lower values of SR for the future climate indicate a shift

from winter low flows (SR >1) to summer low flows (SR <1) in the two Alpine

sub-basins. The WMODs of low flows tend to be earlier than for the current

climate in all sub-basins except for the Middle Rhine and Lower Rhine sub-

basins. The WP values are slightly larger, showing that the predictability of low

flow events increases as the variability in timing decreases for the future climate.

From comparison of the error sources evaluated in this study, it is obvious that

different RCMs and GCMs have a larger influence on the timing of low flows than

different emission scenarios. Finally, this study complements recent analyses of

an international project (Rhineblick) by analysing the seasonality aspects of low

flows and extends the scope further to understand the effects of hydrological model

errors and climate change on three important low flow seasonality properties:

regime, timing and persistence.

This chapter is based on the paper: Demirel MC, Booij MJ, Hoekstra AY, (2013). Impacts
of climate change on the seasonality of low flows in 134 catchments in the River Rhine basin
using an ensemble of bias-corrected regional climate simulations, Hydrology and Earth System
Sciences, 17 (10): 4241-4257, doi:10.5194/hess-17-4241-2013.
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5.1 Introduction

The rivers in Western Europe have a seasonal discharge regime with high flows

in winter and low flows in late summer. Many cities are located along these

rivers like the River Rhine, as the rivers are used for drinking water supply and

industrial use. The rivers are also used for irrigation, power production, freight

shipment (Demirel et al., 2010; Jonkeren et al., 2013) and fulfil ecological and

recreational functions (De Wit et al., 2007). Floods and low flows in these rivers

may cause several problems to society. Since floods are eye-catching, quick and

violent events risking human-life, water authorities often focus on flood issues.

In contrast, hydrological droughts, causing low flows, develop slowly and affect

a much larger area than floods (Van Lanen et al., 2013). Low flows in rivers

may negatively affect all important river functions. Severe problems, e.g. water

scarcity for drinking water supply and power production, hindrance to navigation

and deterioration of water quality, have already been seen during low flow events

in the River Rhine in dry summers such as in 1976, 1985 and 2003. Consequently,

understanding low flows and its seasonal to inter-annual variation has both soci-

etal and scientific value as there is a growing concern that the occurrence of low

flows will intensify due to climate change (Grabs et al., 1997; Huang et al., 2013;

Middelkoop et al., 2001) and reduced summer runoff contribution from Alpine

glaciers (Huss, 2011). We are interested in evaluating the effects of climate change

on the seasonality of low flows, and in presenting corresponding uncertainty to

provide low flow seasonality information under different climate projections.

Assessing the impacts of climate change and associated uncertainties of the cli-

mate change projections is an important field in hydroclimatology (Arnell and

Gosling, 2013; Bennett et al., 2012; Chen et al., 2011; Jung et al., 2013; Minville

et al., 2008; Prudhomme and Davies, 2009; Taylor et al., 2012). The assessment

of the effect of climate change impacts on hydrological catchment response is

based on predicted meteorological variables like precipitation and temperature

by climate models. Currently available climate change projections are mainly

based on the outputs of general circulation models (GCMs) and additionally the

outputs of regional climate models (RCMs) with a higher spatial resolution than

GCMs. However, it is obvious that regional climate change projections based on

these climate model outputs are highly uncertain due to unknown future green-

house gas emissions and the simplified representation of processes in both RCMs

and GCMs (Graham et al., 2007). Therefore, design practices will face new chal-

lenges which will require a better quantitative understanding of potential changes

in seasonality of low flows complicated by several sources of uncertainty linked to

climate change.
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Many studies have investigated the impacts of climate change on hydrological

regimes of different rivers such as the Nile River (Beyene et al., 2010), the

Columbia River in Canada (Schnorbus et al., 2012), the Thames in the UK (Diaz-

Nieto and Wilby, 2005; Wilby and Harris, 2006) and the River Rhine (Bosshard et

al., 2013; Lenderink et al., 2007; Shabalova et al., 2003). Most of the River Rhine

studies focus on the snow processes in the Swiss Alps (Bormann, 2010; Horton

et al., 2006; Jasper et al., 2004; Schaefli et al., 2007). The River Rhine studies

show that the projected temperature increase by GCMs strongly determines the

temporal evolution of snowmelt and, accordingly, high flows in the catchments

studied. Shabalova et al. (2003) showed a decrease of summer low flows and an

increase of winter high flows in the River Rhine leading to an increased flood risk

in the winter period. Jasper et al. (2004) used 17 combinations of GCMs and

emission scenarios to assess the impact of climate change on runoff in two Swiss

catchments. They found substantial reductions in snowpack and shortened dura-

tion of snow cover, resulting in time-shifted and reduced runoff peaks. The recent

Rhineblick project (Görgen et al., 2010) focused on climate change impacts on

the magnitude of different discharge regimes, high flows in particular.

Several studies documented potential effects of climate change on low flows in

the River Rhine (Huang et al., 2013; Te Linde et al., 2010) and on low flows

in the Thames River (Diaz-Nieto and Wilby, 2005; Wilby and Harris, 2006).

Huang et al. (2013) analysed the effects of three climate change projections on

the length of the low flow period and on the 50-year return period of deficit

volumes for the Rhine sub-catchments in Germany. Their study showed that

low flow events are likely to occur more frequently by 2061-2100 in Western

Germany (Huang et al., 2013). Wilby and Harris (2006) assessed the effects of

emission scenarios, GCMs, statistical downscaling methods, hydrological model

structure and hydrological model parameters on simulating changes in low flows.

Their study showed that GCMs and the downscaling method were the most

important sources of uncertainty. Although GCMs are a very important source

of uncertainty (Graham et al., 2007; Prudhomme and Davies, 2009), the effects of

uncertainty from RCMs should not be neglected (Horton et al., 2006; Yimer and

Andreja, 2013). The uncertainty due to the hydrological model used generally is

relatively small compared to the uncertainty from emission scenarios and climate

models (Prudhomme and Davies, 2009).

Most of the above mentioned studies focus on the effects of climate change un-

certainty on river flow regimes. Earlier work exists for seasonality analysis of

observed low flows (Laaha and Blöschl, 2006; Tongal et al., 2013) and floods

(Parajka et al., 2009; Parajka et al., 2010) to understand the hydrological pro-

cesses in the studied catchments. However, only few studies analysed the impacts



5.1 Introduction 119

of climate change on the seasonality of floods in Switzerland (Köplin et al., 2013)

and the seasonality of dam inflows in Korean rivers (Jung et al., 2013). The first

study by Köplin et al. (2013) assessed the changes in the seasonality of annual

mean and annual maximum flows for a 22 year period for 189 catchments in

Switzerland using circular statistics and an ensemble of climate scenarios. They

assessed both changes in the mean occurrence date of floods as well as changes

in the strength of the flood seasonality. The latter study by Jung et al. (2013)

has investigated monthly dam inflow series and the standard deviation of these

monthly series to reflect the seasonality of dam inflows using 39 climate simu-

lations (13 GCMs with three emission scenarios) and three hydrologic models.

They explicitly take into account the hydrological model uncertainty (Jung et

al., 2013). To our knowledge, so far no study has assessed the impacts of climate

change, driven by state of the art climate scenarios, on the seasonality of low

flows.

The objective of this study is to assess the effects of climate change on the season-

ality of low flows in the River Rhine basin using different climate change projec-

tions. The effects of the hydrological model, the forcing by different combinations

of GCMs and RCMs, and different emission scenarios on the seasonality of low

flows are evaluated. The seasonality of a hydrological variable is often described

in terms of mean value during fixed seasons (e.g. June, July, and August, or JJA)

(Baldwin and Lall, 1999; Guo et al., 2008). In this study, following the study

of Laaha and Blöschl (2006), seasonality of low flows is described through the

analysis of three indices namely the Seasonality Ratio (the ratio of summer low

flow and winter low flow), the Weighted Mean Occurrence Day and the Weighted

Persistence (measuring the variability in timing) of low flows. Daily observed

low flow series from 101 sub-catchments and simulated low flow series from 134

sub-catchments are available and used to assess the effects of climate change on

the three indices. This study complements the recent analyses of the Rhineblick

project (Görgen et al., 2010) by analysing the effects of climate change on three

important low flow seasonality properties (regime, timing and persistence of tim-

ing) and extending the scope further to understand the effects of hydrological

model errors and climate change on these seasonality properties: regime, timing

and persistence.

The outline of the paper is as follows. The study area is introduced in section

5.2. The seasonality indices, the hydrological model and the data used in this

study are described in section 5.3. The results are presented in section 5.4. The

findings are discussed in section 5.5, and the conclusions are drawn in section 5.6.
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5.2 Study area

The River Rhine basin is a major and densely populated river basin in West-

ern Europe accommodating nearly 60 million inhabitants. The surface area of

the basin is approximately 185,300 km2 and the river flows along a 1,233 km

course from the Alps to the North Sea. The topography of the basin is quite

diverse varying from high Alpine mountains to flat lands in the downstream part.

In addition to its importance as an inland water, the River Rhine serves as a

vital freshwater resource for the Netherlands as well as for the other upstream

countries such as Luxemburg, Germany and Switzerland (Middelkoop and Van

Haselen, 1999). The average discharge downstream of the Alpine mountains is

approximately 1000 m3/s. It then increases up to 2,300 m3/s at the Lobith gaug-

ing station after the German-Dutch border. The minimum observed discharge at

this gauging station was 575 m3/s in 1929. The contribution of the Alps to the

total discharge can be more than 70% in summer, whereas it is only about 30%

in winter (Middelkoop and Van Haselen, 1999). In the winter period, the precip-

itation is stored as snow and ice in the Alps until late spring. Due to the high

evapotranspiration and little melt-water input from the Alps, low flows typically

occur in late summer or autumn (Nilson et al., 2012).

Figure 5.1 shows the River Rhine basin at two spatial scales, i.e. 134 sub-

catchments and seven sub-basins. The hydrology of the River Rhine basin has

already been modelled at a spatial scale of 134 sub-catchments (Eberle, 2005;

Görgen et al., 2010; Renner et al., 2009; Te Linde et al., 2008), whereas the in-

dicators of low flow events have been assessed at an aggregated spatial scale of

seven major sub-basins by Demirel et al. (2013a).
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Figure 5.1: Schematisation of the 134 sub-catchments (spatial scale of HBV model)
and seven major sub-basins of the River Rhine upstream of Lobith.

The spatial scales of 134 sub-catchments and seven sub-basins are used to present

our results. The first spatial scale allows us to compare the differences in the three

indices at a very detailed level, whereas the second spatial scale gives insight about

the hydrological processes in the major tributaries of the River Rhine. The outlet

discharges for the East Alpine (EA) (station #2143 at Rekingen), West Alpine

(WA) (station #2016 at Aare-Brugg), Neckar (station #6335600 at Rockenau),

Main (station #24088001 at Frankfurt), Moselle (station #6336050 at Cochem),

Middle Rhine (MR) (station #6335070 at Andernach) and Lower Rhine (LR)

(station #6435060 at Lobith) are used in the seasonality assessment. Although

the MR and LR sub-basins have mixed discharge regimes originating from snow-

and rainfall-dominated sub-catchments, they are also included in this study.
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5.3 Methods and data

In this study, a simulation approach was used to assess the effects of climate

change on the seasonality of low flows in the River Rhine. In this approach,

observed inputs and simulated inputs from bias-corrected outputs of seven climate

scenarios were used as forcing for the hydrological model. Observed low flows

(case 1 in Table 5.1) and the outputs of the hydrological model (case 2, 3 and 4)

were then used to estimate three seasonality indices as discussed below.

Table 5.1: Overview of the seasonality calculations.

Case
number

Number of
calculations

Description of calculations

1 1 The three indices are based on observed discharge
series with varying lengths

2 1 The three indices are based on simulated discharge
using observed climate for 1964-2007 as input

3 7 The three indices are based on simulated discharge
using simulated climate for 1964-2007 as input

4 7 The three indices are based on simulated discharge
using simulated climate for 2063-2098 including
three emission scenarios as input

Cases 1 and 2 are compared to assess the effects of the hydrological model errors

on the three seasonality indices. Secondly, we compare cases 2 and 3 to assess

the effects of the meteorological forcing on the three indices. In the third and

final comparison, cases 3 and 4 are used to assess the effects of different emission

scenarios on the seasonality of low flows. We present the three indices at two

spatial scales that are 134 sub-catchments and seven major sub-basins.
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5.3.1 Seasonality indices

Laaha and Blöschl (2006) give an overview of seasonality indices and how they can

be estimated based on discharge time series. Seasonality indices were estimated

to describe different aspects of the discharge regime of a river. We used three

seasonality indices described below as they focus on the differences in discharge

regime, timing and variability in timing of the recurrent event (persistence).

Seasonality ratio

The Seasonality Ratio (SR) index reveals the low flow characteristics in sum-

mer and winter periods (Laaha and Blöschl, 2006). The definitions of a low flow

threshold and the seasons are crucial for the SR results as the underlying hy-

drological processes for summer and winter low flows are different (Laaha and

Blöschl, 2006; Tongal et al., 2013). Following De Wit et al. (2007), we selected

the period from November to April as winter half-year and the period from May

to October as summer half-year season. The low flow series were then divided

into winter and summer low flow series. We used the 75% exceedence probability

(Q75), as in Demirel et al. (2013a), as a threshold for defining summer low flow

(Q75) and winter low flow (Q75w). The SR index is calculated as the ratio of Q75s

and Q75w (Eq. 5.1) (Laaha and Blöschl, 2006).

SR =
Q75s

Q75w

(5.1)

A value of SR greater than one indicates the presence of a winter low flow regime

and a value smaller than one indicates the presence of a summer low flow regime.

Weighted mean occurrence day

The Weighted Mean Occurrence Day (WMOD) is an index similar to the season-

ality index of Laaha and Blöschl (2006). For each sub-catchment, the days on

which the discharge is below the Q75 threshold are transformed into Julian dates

Di, i.e. the day of the year ranging from 1 to 365 in regular years and 1 to 366 in

leap years. The day number of each low flow event (Di) is weighted by the inverse

low flow value (1/Qi) on the same day to address the severity of a low flow event

as well as its occurrence day. The weighted mean occurrence day is estimated first

in radians to represent the annual cycle correctly. Otherwise, a simple averaging

of low flow occurrences in winter months, e.g. January and December, can lead

to a large error in the results. The weighted mean of Cartesian coordinates xθ

and yθ of a total number of low flow days i is defined as
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xθ =

∑
i

cos(
Di×2π

365
)

Qi∑
iQ

−1
i

(5.2)

yθ =

∑
i

sin(
Di×2π

365
)

Qi∑
iQ

−1
i

(5.3)

The directional angle (θ) is then estimated by

θ = arctan

(
yθ
xθ

)
1st and 4th quadrants : xθ > 0 (5.4)

θ = arctan

(
yθ
xθ

)
+ π 2nd and 3rd quadrants : xθ < 0 (5.5)

The values of θ can vary from 0 to 2, where a zero value indicates 1st of January,

π/2 represents 1st of April, π represents 1st of July and 3π/2 represents 1st of

October. The main advantage of using circular statistics is that it allows us to

correctly average low flow occurrences in the winter half-year period. The WMOD

is then obtained by back-transforming the weighted mean angle to a Julian date:

WMOD = θ
365

2π
(5.6)

Weighted persistence

The weighted persistence (WP) is calculated using the weighted mean of Carte-

sian coordinates xθ and yθ in Eq. (5.7).

WP =
√
x2θ + y2θ (5.7)

The dimensionless WP indicates the variability in timing of low flows, where a

value of 1 indicates that low flow events occurred on exactly the same day of

the year (high persistence) and a value of zero indicates that low flow events are

uniformly distributed over the year (no persistence) (Laaha and Blöschl, 2006).
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5.3.2 Hydrological model

The HBV-96 model (Hydrologiska Byr̊ans Vattenbalansavdelning) is a semi dis-

tributed conceptual hydrological model which was developed by the Swedish Me-

teorological and Hydrological Institute (SMHI) in the early 1970s (Bergström,

1976; Lindström et al., 1997). It consists of five subroutines for snow accumu-

lation and melt, soil moisture accounting, fast runoff, groundwater response and

river routing. It operates at a daily time step using precipitation (P) and po-

tential evapotranspiration (PET) as inputs. The HBV model has been used in

the field of operational forecasting and climate impact modelling in more than

50 countries around the world (Şorman et al., 2009), in northwestern Europe in

particular (Booij, 2005; Driessen et al., 2010; Engeland et al., 2010; Görgen et

al., 2010; Te Linde et al., 2008; Wöhling et al., 2006). Its good performance

with a low number of parameters is the main advantage of the HBV model for

large basins (Te Linde et al., 2008). The HBV model has been applied to the

River Rhine since 1997 by the Dutch Water authorities, i.e. Rijkwaterstaat Wa-

terdienst (previously RIZA) and Deltares, and the German Federal Institute of

Hydrology (BfG) in Koblenz. We use the HBV-96 model running at a daily time

step and covering the area upstream of the Lobith gauging station comprising

134 sub-catchments. The HBV model was first calibrated by Eberle (2005) on

the basis of expert knowledge at the BfG in Koblenz. The HBV model upstream

of Maxau has been recalibrated again by Berglöv et al. (2009) at SMHI using a

hybrid objective function (NSHBV in Eq. 5.8) to improve low flow simulations.

The calibration was carried out locally for 95 sub-catchments, and validated both

locally and for the total river flow. Further, the calibration was mainly done us-

ing an automatic routine (Lindström et al., 1997) for the period 01/11/2000 -

01/11/2007 and the period 01/11/1996 - 01/11/2000 was used for validation.

NSHBV = 0.5 ·R2 + 0.5 ·R2
log + 0.1 · relaccdiff (5.8)

Where R2 is the efficiency criterion based on Nash and Sutcliffe (Nash and Sut-

cliffe, 1970), R2
log is similar to R2 but using the logarithmic discharge values

giving more weight to low flows, and relaccdiff is the accumulated relative differ-

ence between the simulated and observed discharge (see Eq. (5.9), Berglöv et al.

(2009)).

relaccdiff =

∑
i (Qsim,i −Qobs,i)∑

iQobs,i

(5.9)
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The HBV model has served as a robust platform for climate impact studies in

the River Rhine basin (Görgen et al., 2010; Nilson et al., 2012; Te Linde et al.,

2010). The model simulations for the current and future climate were started on

the 1st of January 1961 and 2060 respectively. The first three years were used

as a ” warm-up” period and model simulation results for these periods were not

used in the estimation of the seasonality indices.

5.3.3 Observed data

Daily observed discharge (Qobs) data at the outlets of 101 of the 134 sub-catchments

were provided by the Global Runoff Data Centre (GRDC) in Koblenz (Germany)

and the Bundesamt für Umwelt (BAFU) in Bern (Switzerland). A complete set

of daily P, T and PET data were obtained from Deltares (the Netherlands) and

the German Federal Institute of Hydrology (BfG) in Koblenz. PET has been

estimated with the Penman-Wendling equation (ATV-DVWK, 2002). All three

climate variables were spatially averaged over each of the 134 sub-catchments.

The mean altitude of these sub-catchments has been provided by the International

Commission for the Hydrology of the Rhine basin (CHR). The daily P, T and

PET data series span from 1961 to 2007, whereas the length of the Qobs data

series varies from station to station.

5.3.4 Bias-corrected climate model outputs and transformation to

catchment average

All seven regional climate model (RCM) outputs (Jacob, 2006) that were used

in this study were provided by the Royal Netherlands Meteorological Institute

(KNMI) and BfG in Koblenz. The grid-based RCM outputs have firstly been

transferred into daily catchment averages over 134 sub-catchments of the River

Rhine basin and then corrected for biases by Görgen et al. (2010) for the

Rhineblick2050 project. The daily time series of areally-averaged PET estimated

following the approach of Penman-Wendling (ATV-DVWK, 2002). This is con-

sistent with the observed PET estimation carried out by the Federal Institute of

Hydrology in Koblenz, Germany. The main characteristics of the pre-processed

climate dataset, comprising an ensemble of bias-corrected outputs of scenarios

based on four regional climate models (RCMs), four driving global climate mod-

els (GCMs) and three different emission scenarios (SRES), are shown in Table

5.2.

The three scenarios, i.e. A2, A1B and B1, are based on three different green-

house gas emission scenarios as defined by the Intergovernmental Panel on Cli-

mate Change (IPCC) in the Special Report on Emissions Scenarios (Hurkmans et
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Table 5.2: Climate data availability and seven climate scenarios (CSs).

ID SRES GCM RCM Bias correction Common Period

CS 1 A1B ECHAM5r3 RACMO

Eq. (5.10) and (5.11)
(Görgen et al., 2010)

1961-2007
CS 2 A1B ECHAM5r3 REMO (Current)
CS 3 A1B HADCM3Q16 HADRM3Q16
CS 4 A1B HADCM3Q3 HADRM3Q3 2060-2098
CS 5 A1B ECHAM5r1 REMO (Future)
CS 6 A2 ECHAM5r1 REMO
CS 7 B1 ECHAM5r1 REMO

al., 2010; Nakićenović and Swart, 2000). The A2 scenario assumes a world with a

continuously increasing population and very regionally oriented economic growth,

whereas A1B indicates a globalized, very rapidly growing economy with fast in-

troduction of new technologies that are balanced between fossil fuel intensive and

sustainable and clean ones. The global population in the A1B scenario increases

rapidly until the middle of 21st the century and decreases thereafter. The third

scenario, B1, assumes a globalized, rapidly growing population with changes in

economic structure with an environmental emphasis and fast introduction of clean

and efficient technologies.

Transferring the indicators of climate change from climate models to hydrological

models is not a straightforward process due to the systematic errors in simulated

meteorological variables, i.e. precipitation and temperature. For example, many

RCMs exhibit a bias in the order of 25% for the amount of summer precipita-

tion in the Alpine region (Graham et al., 2007). Hydrological simulations using

uncorrected inputs would be pointless for assessing impacts of climate change on

low flow seasonality as summer precipitation amounts are crucial for low flows

(Demirel et al., 2013a). The biases from the RCM outputs for precipitation have

been corrected by Görgen et al. (2010) using the following equation:

Pcor = a P b
RCM (5.10)

where Pcor (mm) is the bias-corrected precipitation, PRCM (mm) is the precip-

itation from RCMs and, a and b are transformation coefficients which are de-

termined separately for each of the 134 sub-catchments and for each of the 12

calendar months. The frequency distribution of the wet-day precipitation, i.e.

location and shape, is not affected by this nonlinear bias-correction method (Eq.

5.10), whereas the frequency of wet days is corrected as in most RCMs the fre-

quency of wet days is overestimated (Görgen et al., 2010). The biases from the

RCM outputs for temperature have been corrected by Görgen et al. (2010) using

the following equation:
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Tcor =
σo
σm

(TRCM − T̄m) + T̄o (5.11)

where Tcor (◦C) is the bias-corrected temperature, σo (◦C) is the standard de-

viation of the observed daily temperature, σm (◦C) is the standard deviation of

the daily RCM temperature, TRCM (◦C) is the RCM temperature, T̄m (◦C) is the

long term mean of the RCM temperature and, T̄o (◦C) is the long term mean of

the observed temperature series for each of the 134 sub-catchments. By using Eq.

(5.11) the mean and standard deviation of the bias-corrected RCM temperature

data are forced to be equal to those of the observed current climate data. The

bias-corrections are described in detail in Görgen et al. (2010).

5.4 Results

5.4.1 Sensitivity of low flow seasonality to hydrological model

Figure 5.2 shows the three seasonality indices based on observed and simulated

low flows for the common 101 catchments. These catchments are grouped into

the seven major sub-basins as consistent with the previous low flow studies in the

River Rhine (Demirel et al., 2013a).

The results in Figure 5.2 reveal that there are significant differences between ob-

served and simulated seasonality indices. The differences in the rain-dominated

catchments are smaller than in the snow-dominated catchments. The differences

in snow-dominated catchments can be partly explained by the effect of dam op-

erations in the Alpine catchments. Obviously the dam effect is recorded in the

observed discharge data, but dams are not incorporated in the hydrological model.

Although HBV simulates overall low flows with an error of less than 5% in the

simulation of the mean of minimum annual discharges (Eberle, 2005), dam oper-

ations can still affect the seasonality characteristics of the low flows (e.g. WP).

The results in Figure 5.2 are presented as a function of the mean catchment alti-

tude. This altitude sorting (high to low altitude from left to right) is done within

the seven major sub-basins since the mean catchment altitude is an important

catchment characteristic for the discharge regime in the Rhine basin. A signif-

icant correlation (r = ∼ 0.7, p < 0.05) between SR and catchment altitude is

found in the 101 sub-catchments as catchments with a higher altitude tend to

have winter low flows and higher SR values. Contrary to expectations, no signif-

icant correlations are found between SR and catchment altitude in the Main and

Moselle sub-basins. Further, no significant relation is found between catchment

altitude and the two other indices, WMOD and WP.
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Figure 5.2: Three seasonality indices estimated from observed (case 1) and simulated
(case 2) low flows in 101 catchments for the period 1964-2007. The grey line is used to
connect observed and simulated indices for each catchment.

The weighted mean occurrence days (WMODs) of simulated low flow events are

too late for the EA and WA sub-basins. The WMODs for observed low flows

in these Alpine sub-basins are mostly around October, whereas the WMODs for

the simulated low flows considerably vary from October to March showing the

uncertainty originating from the HBV model and its inputs (Figure 5.2). It should

be noted that the effect of the varying lengths of observed discharge time series on

the estimation of the WMODs can be substantial for different catchments. This

finding for the low flow simulation performance is consistent with that of Te Linde

et al. (2008), who found variable performance of HBV on the low flow timing and

significant errors in the duration of low flows. The weighted persistence (WP) of

low flow events in the WA sub-basin is better simulated than in other sub-basins.

Figure 5.3 shows the three seasonality indices based on simulated low flows for

the 134 catchments. From the SR and WMOD plots in Figure 5.3, it is apparent

that the Alpine catchments have winter low flows, whereas other catchments have

summer low flows. The WMODs for the simulated winter low flows are mostly in

January and February, whereas those for the simulated summer low flows are in

September and October. Moreover, the WP in the rain-dominated catchments is

generally higher than in the Alpine catchments. The dam operations in the Alpine
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catchments in winter periods can marginally affect the WP as the dam operations

are usually carried out in high flow periods for flood prevention (Bosshard et al.,

2013; Middelkoop and Van Haselen, 1999).

Table 5.3 compares the differences between the three seasonality indices based

on observed and simulated low flows at the outlets of the seven sub-basins. It

should be noted that the relative differences for SR and WP are presented as a

percentage, whereas the difference for WMOD is equal to the difference in days

at the outlet of the seven sub-basins.

Table 5.3: Differences between the three seasonality indices estimated from observed
(case 1) and simulated (case 2) low flows at the outlets of the seven sub-basins in the
River Rhine for the period 1964-2007.

East
Alpine

West
Alpine

Middle
Rhine

Neckar Main Moselle Lower
Rhine

SR (%)* -11 -2 1 11 9 29 2
WMOD (days)** -10 23 -83 33 5 54 -30
WP (%)* -85 -17 -16 6 56 52 -34

* (Simulated index - Observed index) / Observed index

** Simulated WMOD - Observed WMOD
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Figure 5.3: Low flow threshold (Q75 in mm/day and three seasonality indices (SR,
WMOD and WP) estimated from simulated low flows using observed climate as model
input in 134 sub-catchments for the period 1964-2007 (case 2).
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No significant differences in SR were found between simulated and observed low

flows in the WA, MR, Main and LR sub-basins, whereas the largest difference

in SR was found in the Moselle sub-basin. The negative differences in SR were

found only in the EA and WA sub-basins showing that the SR estimated from

simulated low flows (case 2) is smaller than the SR estimated from observed low

flows (case 1) at the outlet of the two Alpine sub-basins. It is obvious that the

MR and LR sub-basins have mixed discharge regimes and, therefore, they are

affected by the differences in the upstream sub-basins. For instance, the WMOD

in the EA sub-basin, which is 10 days earlier than the WMOD estimated from

observed low flows (case 1), resulted in 83 days earlier WMOD in the MR sub-

basin. The effect is reduced to a 30 days earlier WMOD in the LR sub-basin after

the inclusion of other tributaries with late WMODs. The large differences in the

WPs in all sub-basins except for the Neckar sub-basin show that the simulation

of the distribution of low flow events in a year is a difficult task in hydrological

modelling.

5.4.2 Sensitivity of low flow seasonality to meteorological forcing

The sensitivity of the three indices to different meteorological forcings is assessed

at two spatial scales, i.e. 134 sub-catchments and seven major sub-basins. This

is done for the current climate (1964-2007) using observed and simulated inputs

for HBV. From the results in Table 5.4, we can see that the outputs of climate

scenarios 3 and 4 result in smaller SRs than those simulated using observed cli-

mate as input for all sub-basins except the WA sub-basin for the current climate.

The largest difference in SR is found for the Moselle sub-basin. The differences

(mostly negative) for climate scenarios 3 and 4, both having boundary conditions

from the HADCM3 GCM, are larger than the other five climate scenarios (except

for the EA and WA sub-basins).
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Table 5.4: Differences between the three seasonality indices estimated from simulated
low flows using observed inputs for the reference period 1964-2007 (case 2) compared
to the simulated low flows using simulated inputs from seven climate scenarios (CSs)
for the same period (case 3)

Index Climate Sce-
nario

East
Alpine

West
Alpine

Middle
Rhine

Neckar Main Moselle Lower
Rhine

SR (%)*

CS 1 (A1B) 6 13 6 5 -9 -5 7
CS 2 (A1B) 9 19 12 23 6 8 12
CS 3 (A1B) -5 0 -13 -25 -19 -33 -12
CS 4 (A1B) -9 1 -15 -29 -13 -31 -13
CS 5 (A1B) 8 20 6 18 14 -1 8
CS 6 (A2) 10 23 10 21 16 -1 11
CS 7 (B1) 6 19 4 13 11 -3 6

WMOD
(days)**

CS 1 (A1B) 45 12 90 11 -24 -67 75
CS 2 (A1B) -11 14 64 -1 -1 -16 56
CS 3 (A1B) 72 9 56 21 11 -16 55
CS 4 (A1B) 67 -5 27 -25 -29 -53 14
CS 5 (A1B) -1 18 81 7 -17 -30 72
CS 6 (A2) 45 33 102 1 19 25 94
CS 7 (B1) 26 24 87 -9 0 102 78

WP (%)*

CS 1 (A1B) 302 4 23 33 -62 -53 -24
CS 2 (A1B) 57 -34 -3 13 -80 -72 -40
CS 3 (A1B) 475 49 126 42 12 -4 106
CS 4 (A1B) 390 14 37 8 -20 -42 64
CS 5 (A1B) 232 -33 14 10 -63 -55 7
CS 6 (A2) 325 -4 23 -4 -58 -84 13
CS 7 (B1) 259 -5 41 20 -59 -75 32

* (Based on simulated input - Based on observed input) / Based on observed input

** Based on simulated input - Based on observed input

The differences in the WMODs of low flows in the WA, Neckar and Main sub-

basins are mostly less than 30 days, showing that the weighted mean occurrence

day of low flows in these sub-basins is simulated well using the outputs of seven

climate scenarios for the current climate. The picture is very different for the

other sub-basins. For instance, the WMODs based on simulated current climate

as input in the HBV model in the EA, MR, Moselle and LR sub-basins are very

different from the WMODs simulated using observed climate. The differences

vary from 1 day (by climate scenario 5) in the EA sub-basin to 102 days (by

climate scenarios 6 and 7) in the MR and LR sub-basins respectively. Very large

differences in the WPs in all seven sub-basins, in the EA sub-basin in particular,

are simulated using the outputs of climate scenarios. All these differences are

positive for the EA sub-basin, showing a substantially smaller variability in timing

of low flow events (WPs), whereas all the differences are negative for the Moselle

sub-basin, showing a larger variability in WPs. Since large differences are found

in the WP index, we also present the detailed effects of seven climate scenarios

on the weighted persistence in the 134 sub-catchments in Figure 5.4.
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Figure 5.4: Relative differences (%)* between low flow persistence estimated from sim-
ulated low flows using simulated inputs from seven climate scenarios for the reference
period 1964-2007 (case 3) and simulated low flows using observed inputs for the same
period (case 2).
∗ (Based on simulated input - Based on observed input) / Based on observed input

There are large differences in the WPs using the outputs of climate scenarios.

Climate scenarios 3 and 4 result in a higher WP than those simulated using

observed climate as input. However, climate scenario 2 results in a lower WP

than that simulated using observed climate as input. It should be noted that

the WPs from climate scenarios 5, 6 and 7 are similar as the same version of

ECHAM5 and REMO climate models with different emission scenarios are used

in these climate scenarios. The significant differences in the climate scenarios

can be partly explained by the inter-annual variability of monthly P and PET

simulated by the climate scenarios over a year. We found large differences between

cases 2 and 3 in the inter-annual variability of monthly P in winter months for

all sub-basins, whereas large differences in the inter-annual variability of monthly

PET in winter months were found only in rain-dominated sub-basins like in the

Moselle sub-basin.
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5.4.3 Sensitivity of low flow seasonality to changed climate

Figure 5.5 shows the differences in the three indices between the current and

future climate. Here, the effects of the three emission scenarios (A1B, A2 and

B1) on the sensitivity of the three indices are also evaluated.

Figure 5.5: Range (shown as bar) of three seasonality indices in the seven sub-basins
for the current climate (calculations for case 3) and future climate (calculations for case
4).

From the results in Figure 5.5, it is apparent that the range of SRs in all seven

sub-basins for the future climate is not overlapping with those for the current

climate. The uncertainty in SRs is considerably smaller than the uncertainty in

the other two indices. Further, the SRs are always lower than for the current

climate. The lower values of SR for the EA and WA sub-basins, for the latter in

particular, indicate a substantial shift from winter low flows (SR >1) to summer

low flows (SR <1) which is in line with other climate impact studies (Blenkinsop

and Fowler, 2007; Bormann, 2010; Bosshard et al., 2013; Huang et al., 2013;

Hurkmans et al., 2010).

Comparing the results for the WMODs, it appears that only the range of WMODs

in the WA sub-basin for the future climate is not overlapping with that for the

current climate. The largest range of WMODs for the current climate is found
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in the Moselle sub-basin. Interesting is that low flows in most of the sub-basins

tend to occur earlier by 2063-2098 based on the WMOD results in Figure 5.5.

The uncertainty in the WMODs varies from several weeks to five months in the

sub-basins.

Large ranges are found for WP for all sub-basins except for the WA sub-basin

using the inputs from seven climate scenarios, indicating that the WP index is

highly uncertain. The distribution of precipitation over a year can affect the WP

results significantly as the distribution of precipitation determines the variability

in simulated discharges. A significant decrease in the variability in timing of low

flows (WPs) in the EA sub-basin is found for the future climate. The existence of

large lakes in the WA sub-basin can be a reason for a less sensitive WP. The most

striking result from the WP plot in Figure 5.5 is that the weighted persistence

is increased in all sub-basins for the future climate suggesting less variability in

the timing of low flows. This finding is in line with the scientific consensus that

climate change will likely increase the persistence of both high and low flows due

to decreasing snowfall and earlier snowmelt, resulting in an earlier occurrence

of snowmelt-induced peaks and drier summers (Hortonet al., 2006; Jung et al.,

2013). This means that the magnitude of extreme high and low flows will be

amplified, whereas the timing of these extreme events is more predictable by

2063-2098.

Figure 5.6 shows the changes in the three indices for each climate scenario in the

seven sub-basins. Substantial changes in the SR index are found, being more

pronounced in the rain-dominated sub-basins than in the two Alpine sub-basins.

Moreover, the SRs estimated from inputs by climate scenario 4 show the smallest

change in all sub-basins except for the Main sub-basin, whereas climate scenario 5

shows the largest change in SR. Interestingly, the SRs estimated from the inputs

by climate scenarios 2 and 5 are slightly different in all sub-basins although these

two climate scenarios both use ECHAM5 (versions 1 and 3) as GCM and REMO

as RCM. The difference in SR between these two climate scenarios with the

same GCM, RCM and emission scenario can be explained by the different initial

conditions used in their driving GCM (Görgen et al., 2010).
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Figure 5.6: The relative changes (*) in SR and WP and the changes in WMOD (**) at
the outlet of the seven sub-basins estimated from simulated low flows using simulated
inputs for the future period 2063-2098 (case 4) compared to simulated low flows using
simulated inputs for the reference period 1964-2007 (case 3) from seven climate scenarios
(CSs).
∗ (Based on simulated input for future climate - Based on simulated input for current climate) / Based

on simulated input for current climate
∗∗ Based on simulated input for future climate - Based on simulated input for current climate

From the results in Figure 5.6, it is apparent that climate change result in a

negative change in WMODs for the EA and WA sub-basins. Climate scenario 7

shows a very large change in WMOD for the Moselle sub-basin. The influence

of climate scenario 2 on the change in the WP in the Main sub-basin and the

influence of climate scenario 6 on the change in the WP in the Moselle sub-basin

are both about 400%, suggesting much less variability in the timing of low flows

in these sub-basins. Since large changes are found in the WP index for the future

climate, we present Figure 5.7 to compare the effects of seven equally probable

climate scenarios on the weighted persistence in the 134 sub-catchments. It is

obvious from Figure 5.7 that the outputs of climate scenario 2 show the largest

change in WPs in the 134 sub-catchments for the future climate, whereas climate

scenario 3 shows the smallest change in the WPs.

It should be noted that the WPs from climate scenarios 5, 6 and 7 are significantly
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different as different emission scenarios are used in these scenarios. The large

changes in these climate scenarios for the future climate can be partly explained

by the inter-annual variability of monthly P and PET simulated by the climate

scenarios. We found large changes in the inter-annual variability of monthly P

in all months in the Alpine sub-basins, whereas large changes are found mostly

in summer months in the rain-dominated sub-basins. Further, large changes in

the inter-annual variability of monthly PET were found in winter months in all

sub-basins. Some of the Alpine catchments show significant increases in the low

flow persistence which is consistent with the results of Huang et al. (2013) who

reported less variability in the occurrence of low flows for the Alpine regions for

all climate scenarios investigated.

Figure 5.7: Relative change (%)* in low flow persistence in 134 sub-catchments based on
simulated low flows using simulated inputs from seven climate scenarios for the future
period 2063-2098 (case 4) compared to simulated low flows using simulated inputs for
the reference period 1964-2007 (case 3).
∗ (Future period - Current period) / Current period
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5.5 Discussion

For the River Rhine basin, a number of hydrological simulations were carried

out using observed inputs and the outputs from an ensemble of seven climate

scenarios. This was done to transfer the climate change signal from RCMs to a

hydrological model and to evaluate the effects of climate change on the seasonality

of low flows. The good low flow simulation performance of the hydrological model,

i.e. an error of less than 5% in the simulation of the mean of minimum annual

discharges (Eberle, 2005), was one of the reasons to select HBV for climate impact

assessment. The difference between observed and simulated seasonality indices,

and the change for the future climate, vary between the sub-basins. Moreover,

the differences and changes also depend on the seasonality index considered. The

dam operations, large lakes and the contribution of glacier storage are not explic-

itly incorporated in the HBV model structure (Berglöv et al., 2009). However,

all these factors are important for determining the seasonality characteristics of

low flows and they can explain the significant differences between observed and

simulated seasonality indices in the Rhine catchments and in the Alpine catch-

ments in particular. This result is in line with that of Tallaksen and Van Lanen

(2004), who found that the release from other large storages controlled by gravity,

such as large lakes, snow storage and glaciers, can be important in sustaining low

flows.

It appears from the results that the difference between observed and simulated

indices is significantly larger compared to the change in the three indices between

the current and future climate. This result is in line with that of Booij (2005)

who found that the change with respect to the current climate conditions is like a

systematic trend and much smaller than the uncertainty in modelling the extreme

flow conditions.

The correlation coefficients between the three indices estimated from 134 catch-

ments show that the seasonality ratio and weighted persistence indices are signifi-

cantly negatively correlated. However, Figure 5.3 shows that the sub-catchments

with lower seasonality ratio values (rainfed sub-catchments) show higher persis-

tence. Similarly, the sub-catchments with higher seasonality ratio values (Alpine

sub-catchments) experience low flow events in early winter months in the year

compared to the downstream sub-catchments facing low flows in late summer.

Therefore, the correlations are negative. It should be noted that the correlation

coefficient between seasonality ratio and weighted persistence (i.e. -0.6) is higher

than the correlation between seasonality ratio and weighted mean occurrence day

(i.e. -0.4) and no significant correlation is found between weighted persistence

and weighted mean occurrence day (i.e. 0.1). Regarding interrelations between
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RCM outputs, as expected for time series resulting from stochastic processes

in RCMs, no significant correlations were found (not shown). Moreover, in the

IPCC special report on emission scenarios by Nakićenović and Swart (2000), it

has been clearly stated that all A and B emission scenarios are equally valid with

no assigned probabilities of occurrence.

The uncertainty originating from the RCMs, GCMs and emission scenarios is

evaluated using the outputs from an ensemble of seven climate scenarios. If

these seven climate scenarios are representative of climate change uncertainty,

it appears from Figure 5.6 that the GCM and RCM uncertainty has the largest

influence on weighted persistence. This result is in line with that of Prudhomme

and Davies (2009) who found that the effect of emission scenario uncertainty

was not larger than the effect of GCM uncertainty on the magnitude of changes

in monthly summer flows. Further, the present findings seem to be consistent

with other studies, which found that GCMs and RCMs were the most important

sources of uncertainty in simulating climate change impacts on low flows (Wilby

and Harris, 2006). Moreover, based on the ranges in average change in the three

indices using simulated inputs from seven climate scenarios, shown in Figure 5.6,

it appears that the influence of GCM and RCM uncertainty on seasonality ratio is

slightly larger than the influence of emission scenario uncertainty on seasonality

ratio, whereas the influence of GCM and RCM uncertainty on weighted mean

occurrence day is similar to the influence of emission scenario on weighted mean

occurrence day.

In this study, the errors induced by the hydrological model and observed inputs

were not explicitly assessed as they are reported as less important than the uncer-

tainty due to the climate predictions (Blenkinsop and Fowler, 2007; Muerth et al.,

2013). Further, the measurement errors in the observed discharges and the effect

of different data lengths for the observed discharge series were implicitly addressed

in this study. Nevertheless, it would be interesting to use a multi-model approach

to assess model structural uncertainties and employing additional bias-correction

techniques like quantile mapping (Teutschbein and Seibert, 2012; Gudmundsson

et al., 2012) to the outputs from different RCMs.



5.6 Conclusions 141

5.6 Conclusions

The results of this study about climate change impacts on the seasonality of low

flows are based on a simulation approach using the outputs of an ensemble of

climate models to drive a hydrological model. Three seasonality indices, namely

the seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted

persistence (WP), are used to reflect the discharge regime, timing and variability

in timing of low flow events respectively. Our analysis focuses on the effects

of the hydrological model and its inputs, the use of different GCMs and RCMs

and the use of different emission scenarios. Sixteen model runs were considered.

They are based on two periods, i.e. 1964-2007 and 2063-2098, four different

GCMs, four different RCMs and three emission scenarios (A1B, A2 and B1).

The 134 sub-catchments studied cover the entire River Rhine basin upstream of

the Lobith gauging station at the Dutch-German border. They are representative

of the different hydro-climatic regions and two distinct low flow regimes, winter

and summer low flows, due to the Swiss Alps in the upstream part and rain-

dominated catchments in the middle and downstream part of the basin. From

the results presented in this study, we can draw the following conclusions.

• Significant differences have been found between seasonality indices based on

observed low flows and simulated low flows with observed climate as input

due to the uncertainty arising from hydrological model inputs and structure.

The weighted mean occurrence day and the weighted persistence in the two

Alpine sub-basins showed larger differences compared to the rain-dominated

sub-basins.

• The comparison of the three seasonality indices based on observed inputs

and simulated inputs reveals small differences in SR for all sub-basins except

for the Moselle sub-basin. Large differences are found for the WMOD and

WP indices showing that these indices are very sensitive to uncertainties

from the climate models.

• Based on the results of the comparison of the three seasonality indices using

simulated inputs for the current climate and simulated inputs for the future

climate, the largest range of change is found for WP, whereas the smallest

range of change is found for SR. The SRs by 2063-2098 significantly decrease

in all sub-basins, showing that a substantial change in the low flow regime

in all sub-basins of the River Rhine is expected, whereas a regime shift from

winter low flows to summer low flows is likely to occur in the two Alpine

sub-basins. Further, the WMODs of low flows tend to be earlier than for

the current climate in all sub-basins except for the Middle Rhine and Lower
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Rhine sub-basins. The WPs by 2063-2098 slightly increase, showing that

the predictability of low flow events increases as the variability in timing

decreases.

• From comparison of the uncertainty sources evaluated in this study, it is

found that different RCMs and GCMs have a larger influence on the tim-

ing of low flows than different emission scenarios. The influence of different

GCMs and RCMs on SR is slightly larger than the influence of different emis-

sion scenarios on SR, whereas the influence of different GCMs and RCMs on

WMOD is similar to the influence of different emission scenarios on WMOD.

This study has evaluated the impacts of climate change on the seasonality of

low flows in the River Rhine basin. A next step would be to assess the impacts

of land use change on the seasonality of low flows and the relationship between

groundwater seasonality and low flow seasonality. Furthermore, a detailed anal-

ysis of the climate change impacts on the return periods of extreme low flows is

recommended.
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Chapter 6

Discussion

6.1 Reflection on dominant low flow indicators and cor-

relation analysis

In chapter 2, a framework was presented to assess the relative importance of pre-

selected low flow indicators for the Rhine basin and to identify their appropriate

lags and temporal resolutions. In this framework, the Rhine basin was divided

into seven subbasins and correlations between observed low flows at the outlet

of these subbasins and basin averaged low flow indicators were estimated. The

low flow indicators were not arbitrarily selected, but based on previous studies

(e.g. Belz and Frauenfelber-Kääb, 2007; Hurkmans et al., 2010; Hurkmans et al.,

2008). I used the term ’indicator’ rather than ’process’ throughout the thesis,

since not all the pre-selected indicators correspond to a hydrological process (e.g.

lake level).

The lags and temporal resolutions of low flow indicators resulting in the best

correlations were assumed to be appropriate temporal scales. This raises the

question of validity of the presented evaluation results based on linear correla-

tions between each indicator and the outlet discharge. The interactions between

indicators are not considered in this thesis as these relations are difficult to assess.

In practice, only slowly responding processes such as groundwater levels and lake

and snow storages show linear behaviour (Wedgbrow et al., 2002). Therefore, in

chapter 2, not only linear correlations but three correlation coefficients measuring

linear and non-linear relations between indicators and low flows were estimated.

Since all three coefficients revealed similar results, only the Pearson correlation

coefficients were presented. Finally, the schematization into seven sub-basins was

assumed to be sufficient to understand the relationship between the pre-selected

indicators and low flows at the basin outlets. Identification of low flow indica-

tors at a higher spatial resolution than seven sub-basins would possibly be very
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complicated due to interacting processes at small scales. Moreover, low flows are

mostly sustained by base flows originating from groundwater aquifers having a

much larger spatial scale than the typical scale of the 134 catchments.

6.2 Justification of selected models and model develop-

ment

The model selection from available hydrological models was based on the identi-

fied dominant low flow indicators in chapter 2 and previous studies on the Rhine

(Eberle, 2005; Te Linde et al., 2008). The first conceptual model was GR4J with

only four parameters, which was used since it has a parsimonious structure in-

cluding a groundwater storage (routing store). This model has been tested over

hundreds of catchments worldwide, for a broad range of climatic conditions from

tropical to temperate and semi-arid catchments (Perrin et al., 2003). Moreover,

the model has been tested in numerous low flow studies in Europe (Pushpalatha

et al., 2012; Velázquez et al., 2010; Velázquez et al., 2011)

The second conceptual model was HBV, which has been used in the field of opera-

tional forecasting and climate impact modelling in more than 50 countries around

the world (Şorman et al., 2009), in North-Western Europe in particular (Görgen

et al., 2010; Driessen et al., 2010; Engeland et al., 2010; Te Linde et al., 2008;

Wöhling et al., 2006; Booij, 2005). The good performance of the HBV model

with a low number of parameters was the main advantage for application to large

basins. In a previous study, this model was compared with a physically based

model and showed better performance compared to the physically based model

in the River Rhine (Te Linde et al., 2008). The HBV model has been applied for

the River Rhine since 1997 by the Dutch Water authorities, i.e. Rijkwaterstaat

Waterdienst (previously RIZA) and Deltares, and the German Federal Institute

of Hydrology (BfG).

The two conceptual models performed best in the Moselle subbasin. Therefore,

this sub-basin was selected as a case study to apply a systematic uncertainty

analysis. The uncertainty analysis required running the models 10.000 times for

each forecast issue day within a Monte Carlo framework. A more detailed model

structure, i.e. distributed and/ or physically-based, would make the uncertainty

analysis infeasible. Therefore, a lumped model set-up was preferred in this thesis.

The lags and temporal resolutions were identified not only for model selection but

also for developing medium-range and seasonal forecasting models. In chapter 3,

only the two selected conceptual models were used although data-driven models

could also be developed. However, in chapter 4 two data-driven models, i.e. the
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Artificial Neural Networks-Ensemble (ANN-Ensemble) and ANN-Indicator mod-

els, were developed. The ANN-Ensemble requires daily precipitation, potential

evapotranspiration and historical discharge data as input. Historical discharge

information from the previous day was used to update the model states. This is a

one-day memory, which also exists in the conceptual models, i.e. GR4J and HBV.

The ANN-Ensemble model is assumed to be comparable with conceptual models

as it has a similar model structure. The ANN-Indicator model is a data-driven

model incorporating only the three dominant low flow indicators for the Moselle

subbasin, i.e. precipitation, potential evapotranspiration and groundwater. The

model uses historical data and does not require forecasted meteorological data

as input. The appropriate lags and temporal resolutions of these indicators have

been taken from the results of chapter 2. The ANN-Ensemble and ANN-Indicator

models with one hidden neuron were calibrated for seasonal low flow forecasts.

The encouraging performance results of these models were presented in chapter

4.

6.3 Justification of model calibration and validation

All hydrological models require rigorous calibration for the specific purpose for

which they are used, like for forecasting high flows or low flows. In this thesis,

forecasting low flows was the main purpose of chapter 3 and 4. Therefore, a clear

definition of low flows and related definitions of objective functions to calibrate

the models were used. For that, I used Q75 as low flow threshold based on

the exceedence probability of 75%, using the relevant reports by the principal

authority for low flows in the Netherlands i.e. the Dutch National Coordinating

Committee on Water Distribution (LCW). Low flows at this threshold are still

affecting river navigation and the energy sector. Moreover, the number of days

with low flows is sufficient to calibrate a forecast model.

The calibration period, i.e. 1971-2001, was selected as the first forecast issue date

was 01/01/2002 and the number of low flow events (i.e. 567 days with low flows)

in the calibration period was long enough for hydrological models (Perrin et al.,

2007). The validation period spans from 01/01/1951 to 31/12/1970.

In this thesis, I used two hybrid objective functions, each consisting of two single

objective functions: 1) hybrid Nash Sutcliffe coefficient (NS), and 2) hybrid Mean

Absolute Error (MAE). The first objective function was used in chapter 3 for 10

day low flow forecasts, whereas the second objective function was used in chapter

4 for 90 day low flow forecasts.

In both objective functions the common approach was that they focus on low

flows by evaluating only low flows or inverse discharges. While the first objective
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function estimates the Nash Sutcliffe coefficient, the second objective function

uses the mean absolute difference between observed and simulated discharges. I

could use only the NS of inverse discharges as objective function. However, it did

not strongly influence the performance for low flow predictions. Similarly, I used

a hybrid MAE to improve the ANN simulations. The two conceptual models,

GR4J and HBV, were not influenced by a strict MAE based on only low flows

as they have a sound physical description of the processes. However, the data-

driven models, ANN-Ensemble and ANN-Indicator, meaningfully responded to

input precipitation and potential evapotranspiration in non-low flow days only

after incorporating a hybrid MAE function.

6.4 Assumptions and limitations in the uncertainty anal-

ysis framework

In chapter 3, I applied a systematic uncertainty analysis to low flow models to

identify where uncertainties come from and to provide quantified model output

uncertainty information for a robust model comparison. Therefore, I focused on

three sources of uncertainty, i.e. model input, parameters and initial conditions,

for further analysis. Quantification of the uncertainty sources is probably the

most difficult step of an uncertainty analysis. Uncertainty in forecasted input

data, e.g. precipitation and temperature, is mainly from the assumptions and

simplifications made when describing atmospheric processes in weather forecast

models. In particular, future precipitation amounts are assumed to be very un-

certain (Roulin, 2007; Cunha et al., 2012). To quantify the uncertainty in the

weather forecasts, an ensemble of low resolution forecasts (ENS) has been genera-

ted by the European Medium Range Weather Forecasting Centre (ECMWF) and

other national meteorological services (ECMWF, 2012).

To calibrate the two conceptual models and assess uncertainty originating from

model parameters in chapter 3, we used the Generalised Likelihood Uncertainty

Estimation (GLUE) method. For assessing uncertainty originating from model

parameters and initial conditions, I used a Monte Carlo framework. For that,

we generated 120,000 parameter sets for each conceptual model using Latin Hy-

percube Sampling (LHS). To my knowledge, this is the largest LHS sample size

tested in low flow hydrology. Due to the lack of prior knowledge about the true

distributions, independent uniform distributions were chosen for each parameter.

Compared to a standard GLUE random sampling, LHS substantially reduces the

computational burden for sampling and provide a 10-fold greater efficiency in

parameter space coverage (Shen et al., 2012). The sampling size used in my the-
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sis was found to be large enough to ensure a sufficient calibration of the model

as the highest NShybrid values did not change using another global optimisation

technique, i.e. a Genetic Algorithm (Velázquez et al., 2010).

The GR4J and HBV models are run for each of the 120,000 sets in the calibration.

The output is evaluated against the observed daily discharge at Cochem station,

which is located at the outlet of the Moselle sub-basin, using the NShybrid likeli-

hood function to distinguish between behavioural parameter sets (accepted) and

non-behavioural parameter sets (rejected). The parameter sets meeting the pre-

defined threshold criterion (NShybrid>0.40) are accepted. Although the threshold

value is a subjective decision (Jin et al., 2010), I rigorously tested several thresh-

olds based on low flow simulations and the size of the behavioural parameter sets

for each model. The selected threshold resulted in two large behavioural parame-

ter sets for parameter uncertainty analysis, namely 9770 × 4 (GR4J) correspond-

ing to ∼ 8% of the sample parameter set and 10909 × 8 (HBV) corresponding to

∼ 9% of the sample parameter set.

The dynamic storage update was used in my thesis after having been tested on

observed data. Compared to complex state updating procedures, the proposed

new dynamic update procedure worked efficiently for assessing initial condition

uncertainties using 10.000 runs each day in the test period 2002–2005.

As reported in chapter 3, the drawbacks and advantages of the GLUE method

have been discussed in the hydrological literature. Concerning the choice of the

likelihood measure, Beven and Binley (1992) pointed out that many different like-

lihood measures in GLUE can be appropriate for a given application. Jin et al.

(2010) compared different likelihood measures and the model uncertainty. They

found that a less strict likelihood function, obviously leads to a wider confidence

interval of the output uncertainty. Therefore, neither a too strict nor a too re-

laxed likelihood is appropriate for the GLUE assessment. Stedinger et al. (2008)

showed that GLUE can produce reasonable uncertainty and prediction intervals

using a correct likelihood function. My thesis utilized an elaborated low flow

likelihood function and a large parameter space within the GLUE method which

resulted in meaningful uncertainty ranges for the GR4J and HBV models.

6.5 Applicability of methods

The framework presented in chapter 2 is applicable to all river basin types and

all regime types (not only low flows) for identification of dominant indicators and

their appropriate lags and temporal resolutions. For small river basins, subdi-

vision of the river basin into sub-basins is not necessary. Therefore, the spatial

scale of the assessment should be carefully selected to capture the signal of the
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indicators. I used 3-day and 7-day window sizes for moving averaging of the low

flows. This pre-selection of the window size should be determined based on the

lead time and appropriate temporal scale accepted for the discharge forecast ac-

curacy. In my case, the correlations were calculated for a lead time of 14 days

and 3-day temporally-averaged low flows and for a lead time of 90 days and 7-day

temporally averaged low flows.

The methodology presented in chapter 3 helped to quantify uncertainty origi-

nating from model inputs, parameters and initial conditions for two conceptual

models. In principal, the steps followed in this methodology can be applied to

other geographic locations as well. However, the two dynamic storage update

procedures and subsequently developed empirical models for dividing observed

discharges into fast and slow runoff components are model specific approaches

and, therefore, they are limited to the GR4J and HBV models.

The methodology presented in chapter 4 helped in assessing the effect of ensemble

seasonal forecasts on low flow forecasts. The selected five cases consisting of

different input combinations were tested. A similar approach can be applied to

other geographical areas and other regime types for evaluating the effect of model

inputs on the forecasts. The objective function based on the mean absolute error

(chapter 4) can be applied to all other low flow calibration problems, data-driven

models in particular.

In this thesis, two data-driven models were developed in chapter 4. While one

of these models, ANN-Ensemble, uses daily forecasted weather data, the ANN-

Indicator model requires only historical data for 90 day ahead low flow forecasts.

The results of ANN-Ensemble are comparable with those of GR4J and HBV.

Despite the successful results of ANN-Indicator, there are still limitations to the

applicability of this model:

1) The model is area dependent as its input and temporal scales were chosen for

the Moselle sub-basin.

2) The model is limited to low flow forecasts as the model is calibrated and vali-

dated for observed low flows.

The methodology to develop ANN models for seasonal forecasts as described in

chapter 4, can be generalized to any other river basin in the world. Particularly

the ANN-Indicator type of model can be very useful for regions where seasonal

climate forecast data are not available. The two low flow seasonality indices -

weighted mean occurrence day and weighted persistence - are two indices similar

to the seasonality indices of Laaha and Blöschl (2006). The new aspect added to

these indices is the weighting factor based on inverse discharges. In other words,

the day number of each low flow event was weighted by the inverse low flow value
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at the same day to address the severity of a low flow event as well as its occurrence

day. These weighted indices are applicable to all hydrological events.

6.6 Applicability of results

The identified lags and temporal resolutions in chapter 2 are useful in creating

operational medium-range and seasonal low flow forecast models for the River

Rhine. The results can be useful for other rain dominated catchments in the

world. Further, understanding the low flow mechanisms and subsequent storage

responses should aid the selection of appropriate models and the choice of proper

temporal scales. Critical catchment characteristics (e.g. the extent of aquifers)

determine the applicability of the results for appropriate model selection.

Most important uncertainty sources for low flow forecasts and future changes

in low flows were quantified in my thesis. The assessment of low flow forecasts

for lead times of 10 day and 90 day was limited to the Moselle River, whereas

the impacts of climate change on the seasonality of low flows were assessed for

the sub-catchments of the River Rhine. Anticipating low flows would facilitate

strategic decisions regarding the various river functions affected by low flows (e.g.

navigation, cooling water supply) since more frequent low flows as well as extreme

flood peaks are expected in the future (Hurkmans et al., 2010). The results of

chapter 3 showed that parameter uncertainty had the largest effect whereas input

uncertainty had the smallest effect on the medium range low flow forecasts. The

order of uncertainty and the type of models can be applicable for other rainfed

basins in the world. In chapter 4, we found that the uncertainty arising from

ensemble precipitation had a larger effect on seasonal low flow forecasts than

that from ensemble potential evapotranspiration and model initial conditions.

A comparison of the uncertainty sources evaluated in chapter 5 showed that the

uncertainty in RCM and GCM outputs has the largest influence on the seasonality

of low flows in a future climate. These uncertainty sources should be treated

carefully in low flow modelling practices and in the chain of decision making

processes.
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Conclusions

The objective of this thesis was:

To explore low flow mechanisms, develop forecast methods and assess climate

change impacts on low flows by identifying low flow indicators and their domi-

nant temporal scales, analysing the effects of different uncertainty sources on low

flow forecasts for different lead times, and comparing low flows for current and

future climate conditions.

Four research questions were formulated to fulfil this objective. This concluding

chapter starts with reflecting on the objective of this thesis and answering the

research questions (Section 7.1). Subsequently, I provide recommendations for

future work (Section 7.2).

7.1 Reflection on research objective and questions

I have identified important low flow mechanisms in the Rhine basin. Based on

these mechanisms I have selected two conceptual models for 10 day and 90 day

forecasts. Besides I have developed two data-driven models in which these mech-

anisms with appropriate lag and temporal resolutions were incorporated for 90

day ahead low flow forecasts. The effects of major uncertainty sources on low

flow forecasts are assessed using Monte Carlo methods. Parameter uncertainty

is found to have the largest effect on 10 day low flow forecasts, whereas ensem-

ble seasonal precipitation forecasts have the largest effect on 90 day low flow

forecasts. In the final step, I assessed the possible changes in seasonal low flow

characteristics for the period 2063-2098 using important indices representing the

low flow regime, timing and persistence.
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Overall, the results of my thesis are assumed to be useful for hydrological model-

ers in general and decision makers in the River Rhine basin focusing on low flow

events in particular.

Q1: What are the dominant low flow indicators and temporal scales in the Rhine

Basin?

The analysis of pre-selected low flow indicators in chapter 2 has shown that pre-

cipitation, potential evapotranspiration, groundwater, lake levels and snow depth

in the Alps are important indicators for low flow forecasting for lead times of 10

and 90 days. In the other sub-basins, groundwater and potential evapotranspi-

ration correlate best to low flows. The correlation analysis also revealed the

relative importance of these indicators for varying lags and temporal resolutions.

Three correlation coefficients, focusing on both linear and non-linear relations,

showed similar results. For seven different subbasins, correlations were assessed

between low flow indicators and observed low flows at the outlet of the subbasins.

The seven sub-basins were defined by spatially aggregating 134 catchments in the

River Rhine basin according to similar hydrological characteristics and based on

previous studies (e.g. Belz and Frauenfelber-Kääb, 2007; Hurkmans et al., 2008).

After selecting seven sub-basins and five low flow indicators, a classical standard-

isation method was applied to avoid effects of spatial heterogeneity in the data.

The standardised low flow indicator data have a zero mean and a standard devia-

tion of one. The correlations were estimated by varying the temporal resolutions

of the indicators from one day to 336 days and the lag between the indicator and

low flows from zero to 210 days.

The most important indicators in the Alpine sub-basins for 10 day low flow

forecasts are potential evapotranspiration and lake levels. In the other sub-

basins, groundwater and potential evapotranspiration are most relevant for low

flows. The most important indicators for 90 day low flow forecasts are poten-

tial evapotranspiration, lake levels and snow depths for the Alpine sub-basins,

whereas in the other sub-basins the most important indicators are potential

evapotranspiration and precipitation or groundwater. Overall, small lags and

temporal resolutions are effective for lake levels and groundwater in sub-basins

for medium-range and seasonal low flow forecasts, whereas large lags and tempo-

ral resolutions are important for precipitation, potential evapotranspiration and

snow depth. The uncertainty in the appropriate lags and temporal resolutions

was found to be large for most low flow indicators. In all sub-basins the largest

uncertainties were found in potential evapotranspiration, whereas lake levels and
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groundwater show small uncertainties. The indicators were used for model selec-

tion and model development in chapter 3 and 4.

Q2: What is the effect of uncertainty originating from model inputs, parameters

and initial conditions on 10 day ensemble low flow forecasts?

To answer this question, I applied a systematic uncertainty analysis to 10 day

ahead low flow forecasts in chapter 3, to provide quantified model output uncer-

tainty information for a robust model comparison. A hybrid performance metric

was used for evaluating low flow simulations whereas the quality of the prob-

abilistic low flow forecasts was assessed based on relative confidence intervals,

reliability and hit/false alarm rates.

The 10 day ensemble forecast results show that the daily observed low flows

are captured by the 90% confidence interval for both models most of the time,

whereas the GR4J model usually overestimates low flows and HBV is prone to

underestimate low flows. This is particularly the case if the parameter uncertainty

is included into the forecasts. The total uncertainty in the GR4J model outputs

is higher than in the HBV model. Moreover, the parameter uncertainty has the

largest effect and the input uncertainty has the smallest effect on the low flow

forecasts. The parameter uncertainty for 10 day low flow forecasts issued by the

HBV model with eight parameters was smaller than the parameter uncertainty

coming from the GR4J with four parameters. This was because the rainfall-runoff

process resulting in low flows in the study area is better described by the HBV

model. The forecast distribution based on 10 day low flow forecasts (i.e. Q75)

issued by the HBV model was the most reliable forecast distribution if only input

uncertainty is considered. The number of hits is about equal for the two models

only if the input uncertainty is considered. The parameter uncertainty was the

main reason reducing the number of hits. The number of false alarms using the

GR4J model was almost doubled, with respect to the HBV model, considering

all uncertainty sources. The importance of parameter uncertainty on the quality

of forecasts was emphasized by all forecast quality measures used in this study.

Overall, the systematic uncertainty analysis of different sources in chapter 3 has

shown that the output from two conceptual hydrological models is characterised

by substantial uncertainty from model parameters. The parameter uncertainty

mainly affects the reliability and the sharpness of the forecasts. This finding is

new for low flow forecasts; as the significance of the rainfall prediction error is

well known and documented already for high flows (Pappenberger et al., 2005).
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Q3: What is the effect of ensemble seasonal meteorological forecasts on the skill

of seasonal ensemble low flow forecasts?

The effect of ensemble seasonal climate forecasts, consisting of 40-members, on

the skill of low flow forecasts has been assessed for varying lead times in chapter

4. For that purpose, four hydrological models - GR4J, HBV, ANN-Ensemble and

ANN-Indicator - have been run using different seasonal meteorological forcings:

(1) ensemble precipitation (P) and potential evapotranspiration (PET) forecasts,

(2) ensemble P and climate mean PET (3) climate mean P and ensemble PET,

(4) climate mean P and PET, and (5) zero P and ensemble PET. The ensembles

provided the forecast uncertainty range for the model inputs. The ranges were

compared for a lead time of 90 days, whereas the skill of low flow forecasts was

evaluated for varying lead times up to 90 days. Based on the results of chapter 4

comparing the five cases above, all models were prone to over-predict low flows

using ensemble forcing and the largest range for 90 day low flow forecasts was

found for GR4J using ensemble seasonal climate forecasts as input. The results

of the comparison of forecast skills with varying lead times showed that the low

flow forecasts using GR4J were less skilful than using the other three models.

Further, the hit rate of ANN-Ensemble was higher than that of the other models

for all lead times except for a 90 day lead time. The 90 day ahead low flow days

in a very dry year, i.e. 2003, are correctly forecasted by ANN-Indicator which

illustrates the skill of data-driven models for seasonal forecasting. Overall, the

uncertainty arising from ensemble P had a larger effect on seasonal low flow fore-

casts than uncertainties from ensemble PET and model initial conditions.

Q4: What is the impact of climate change on the seasonality of low flows in the

Rhine basin?

The impacts of climate change on the seasonality of low flows were assessed in

chapter 5 based on a simulation approach using the outputs of an ensemble of

climate models to drive a hydrological model. Three seasonality indices, namely

seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted

persistence (WP) were used to reflect the discharge regime, timing and variabil-

ity in timing of low flow events respectively. The impact analysis focused on

the effects of the hydrological model and its inputs, the use of different GCMs

and RCMs and the use of different emission scenarios. Sixteen experiments were

considered. They were based on two periods, i.e. 1964-2007 and 2063-2098,

four different GCMs, four different RCMs and three emission scenarios (A1B, A2
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and B1). The 134 sub-catchments studied cover the entire River Rhine basin

upstream of the Lobith gauging station at the Dutch-German border. These

sub-catchments are representative of the different hydro-climatic regions and two

distinct low flow regimes, winter and summer low flows, due to the Swiss Alps

in the upstream part and rain-dominated catchments in the middle and down-

stream part of the basin respectively. In chapter 5, I found significant differences

between seasonality indices based on observed low flows and simulated low flows

with observed climate as input due to the uncertainty arising from hydrological

model inputs and structure. Further, the weighted mean occurrence day and the

weighted persistence in the two Alpine sub-basins showed larger differences com-

pared to the rain-dominated sub-basins. The comparison of the three seasonality

indices based on observed inputs and simulated inputs revealed small differences

in SR for all sub-basins except for the Moselle sub-basin. Large differences were

found for the WMOD and WP indices, showing that these indices were very

sensitive to uncertainties from the climate models. The comparison of the three

seasonality indices using simulated inputs for the current climate and simulated

inputs for the future climate resulted in the largest range for WP, whereas the

smallest range was found for SR. The SRs by 2063-2098 significantly decrease in

all sub-basins, showing that a substantial change in the low flow regime in all

sub-basins of the River Rhine is expected, whereas a regime shift from winter low

flows to summer low flows is likely to occur in the two Alpine sub-basins. More-

over, the WMODs of low flows tend to be earlier than for the current climate

in all sub-basins except for the Middle and Lower Rhine sub-basins. The WPs

by 2063-2098 slightly increase when compared to the current climate, showing

that the predictability of low flow events increases as the variability in timing

decreases. Overall, the comparison of the uncertainty sources evaluated in this

chapter showed that differences in RCMs and GCMs have more influence on the

timing of low flows (WMOD) than differences in emission scenarios. The influ-

ence of different GCMs and RCMs on SR was slightly larger than the influence of

different emission scenarios on SR, whereas the influence of different GCMs and

RCMs on WMOD was similar to the influence of different emission scenarios on

WMOD.
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7.2 Recommendations for further research

For further research on low flows, I recommend:

• to investigate the skill of different comprehensive techniques such as wavelet

coherence analysis, chaotic correlation dimension analysis, canonical corre-

lation analysis and principal component analysis for identifying the number

of dominant processes and spatiotemporal scales in the river basin. In this

thesis, correlation analysis was carried out to determine the relationship be-

tween observed low flows and pre-selected indicators with varying lag times

and temporal resolutions. However, the recommended techniques can reveal

new insights from the hydrological time series like the number of dominant

processes.

• to assess the effect of parameter uncertainty on seasonal low flow forecasts.

In this thesis, only the effect of ensemble seasonal climate forecasts (input

uncertainty) on low flow forecasts was assessed.

• to assess uncertainty in forecasts for longer lead times such as 14 days and

up to 6 months as the data are already available from the ECMWF Mars

system,

• to use new climate data sets based on the new forthcoming IPCC Assessment

Reports (e.g. AR5 working group I),

• to correct biases in meterological forcing data using climate statistics rele-

vant for low flows.
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Wöhling, T., F. Lennartz, and M. Zappa (2006), Technical Note: Updating
procedure for flood forecasting with conceptual HBV-type models, Hydrol.
Earth Syst. Sci., 10 (6), 783-788.

Wood, A. W., and D. P. Lettenmaier (2006), A Test Bed for New Seasonal
Hydrologic Forecasting Approaches in the Western United States, Bulletin of
the American Meteorological Society, 87 (12), 1699-1712.

Wood, A. W., and D. P. Lettenmaier (2008), An ensemble approach for at-
tribution of hydrologic prediction uncertainty, Geophys. Res. Lett., 35 (14),
L14401, doi: 10.1029/2008gl034648.

Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier (2002), Long-
range experimental hydrologic forecasting for the eastern United States, J.
Geophys. Res, 107 (D20), 4429, doi: 10.1029/2001JD000659.

Yimer, E. G., and J. Andreja (2013), Downscaling technique uncertainty in as-
sessing hydrological impact of climate change in the Upper Beles River Basin,
Ethiopia, Hydrology Research, 44 (2), 377-398.

Yossef, N. C., L. P. H. van Beek, J. C. J. Kwadijk, and M. F. P. Bierkens
(2012), Assessment of the potential forecasting skill of a global hydrological
model in reproducing the occurrence of monthly flow extremes, Hydrol. Earth
Syst. Sci., 16 (11), 4233-4246.



176 Bibliography

Yossef, N. C., H. Winsemius, A. Weerts, R. van Beek, and M. F. P. Bierkens
(2013), Skill of a global seasonal streamflow forecasting system, relative roles
of initial conditions and meteorological forcing, Water Resour. Res., 49 (8),
4687-4699.

Yue, S., and C. Y. Wang (2004), Scaling of Canadian low flows, Stoch. Environ.
Res. Risk Assess., 18 (5), 291-305.

Zaidman, M. D., H. G. Rees, and A. R. Young (2001), Spatio-temporal develop-
ment of streamflow droughts in north-west Europe, Hydrol. Earth Syst. Sci.,
6 (4), 733-751.

Zappa, M., and C. Kan (2007), Extreme heat and runoff extremes in the Swiss
Alps, Natural Hazards and Earth System Sciences, 7 (3), 375-389.

Zappa, M., S. Jaun, U. Germann, A. Walser, and F. Fundel (2011), Superposi-
tion of three sources of uncertainties in operational flood forecasting chains,
Atmospheric Research, 100 (2-3), 246-262.

Zheng, Y., and A. A. Keller (2007), Uncertainty assessment in watershed-scale
water quality modeling and management: 1. Framework and application of
generalized likelihood uncertainty estimation (GLUE) approach, Water Re-
sour. Res., 43 (8), W08407, doi: 10.1029/2006wr005345.



List of symbols

Roman

a transformation coefficient for precipitation [1]
Ai area of each of the 134 catchments [L2]
Aj total area of each of the seven major sub-basins [L2]
b bias [-]
b transformation coefficient for precipitation [-]
B1, B2 bias value in hidden layer [-]
BS Brier Score [-]
BSS Brier Skill Score [-]
CFLUX maximum capillary flow from upper response box to

soil moisture zone
[LT−1]

Di day number of each low flow event [T]
Fj forecast probability for the j -th observed low flow day [1]
Ft forecast probability [1]
FC maximum soil moisture capacity [L]
G groundwater index [L]
gi standardised daily groundwater level [L]
GW groundwater storage in HBV model [L]
k number of Monte Carlo run [T]
kGR4J fraction of fast and slow runoff for GR4J model [1]
kHBV fraction of fast and slow runoff for HBV model [1]
KF recession coefficient for quick flow reservoir [T−1]
KS recession coefficient for base flow reservoir [T−1]
L lake index [L]
li standardised daily lake level series observed in the WA
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[L]

LP soil moisture threshold for reduction of evapotranspi-
ration
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MAE Mean Absolute Error [1]
MFS Mean Forecast Score [-]
N number of observation [-]
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P precipitation index [-]
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PRCM precipitation from RCMs [L]
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Q discharge [L3T−1]
Q75s summer low flow [LT−1]
Q75w winter low flow [LT−1]
Qd fast runoff component in GR4J model [LT−1]
Qf fast runoff component in HBV model [LT−1]
Qi runoff [LT−1]
Qobs(i) observed discharge [LT−1]
Qobs(j) observed discharge for the j -th observed low flow day [LT−1]
Qr slow runoff component in GR4J model [LT−1]
Qs slow runoff component in HBV model [LT−1]
Qsim(i) simulated discharge [LT−1]
Qsim(j) simulated discharge for the j -th observed low flow day [LT−1]
Q5 5% discharge percentile [LT−1]
Q50 forecast median [LT−1]
Q75 75% discharge percentile as low flow threshold [LT−1]
Q95 95% discharge percentile [LT−1]
R2 efficiency criterion based on Nash and Sutcliffe coeffi-

cient
[-]

Rlog similar to R2 but using the logarithmic discharge val-
ues giving more weight to low flows

[-]

RCI Relative Confidence Interval [L3T−1]
relaccdiff accumulated relative difference between the simulated

and observed discharge
[L3T−1]

S snow index [-]
si the standardised daily fresh snow height series ob-

served in these sub-basins
[-]

SM soil moisture in HBV model [L]
SMopt calibrated soil moisture in HBV model [L]
SR seasonality ratio [1]
SW surface water in HBV model [L]
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T temperature [θ]
Tcor bias-corrected temperature [θ]
Tm long term mean of the RCM temperature [θ]
To long term mean of the observed temperature [θ]
TRCM RCM temperature [θ]
wi weight of connection between input nodes and hidden

neuron
[-]

WMOD weighted mean occurrence day [T]
WP weighted persistence [-]
W1 . . .W3 weight of connection between input nodes and hidden

neuron
[-]

X the mean of the original time series [-]
xθ weighted mean of Cartesian coordinates [-]
x1 . . . xn input vectors to neural networks model [-]
X1 capacity of the production store in GR4J model [L]
X2 groundwater exchange coefficient in GR4J model [L]
X3 one day ahead capacity of the routing store in GR4J

model
[L]

X4 time base of the unit hydrograph in GR4J model [T]
yθ weighted mean of Cartesian coordinates [-]
Z standardised time series [-]

Greek

α measure for non-linearity of low flow in quick runoff
reservoir in HBV model

[1]

β shape coefficient [1]
µx average [-]
σm standard deviation of the daily RCM temperature [-]
σo standard deviation of the observed daily temperature [-]
σx standard deviation of the original time series [-]
θ directional angle [θ]
ε 1% of the mean observed discharge [LT−1]
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ANN-E Artificial Neural Networks - Ensemble
ANN-I Artificial Neural Networks - Indicator
BAFU Federal Office for the Environment (Switzerland)
BFG Federal Institute of Hydrology (Germany)
BSS Brier Skill Score
CHR International Rhine Commission
CLS Dr.ir. Cornelis Lelystichting
COSMO-LEPS Limited Area Ensemble Prediction System developed

within COSMO consortium
DWD German Weather Service
EA East Alpine subbasin
ECHAM ECMWF HAMburg AGCM (Germany)
ECMWF European Centre for Medium-Range Weather Forecasts
ENS Ensemble weather forecast
GCM Global Climate Model
GIS Geographic Information System
GLUE Generalized Likelihood Uncertainty Estimation
GR4J Génie Rural à 4 parametres Journalier
GRDC Global Runoff Data Centre
HadCM3 Hadley Centre Coupled Model, version 3 (United King-

dom)
HadRM3 Hadley Centre Regional Model, version 3 (United King-

dom)
HBV Hydrologiska Byr̊ans Vattenbalansavdelning
IPCC Intergovernmental Panel on Climate Change
KNMI Royal Netherlands Meteorological Institute
LCW Dutch National Coordinating Committee on Water Dis-

tribution
logsig logarithmic sigmoid activation function
LR Lower Rhine subbasin
MR Middle Rhine subbasin
NS Nash-Sutcliffe efficiency coefficient
PCR-GLOBWB PCRaster Global Water Balance
PET Potential Evapotranspiration
PREVAH PREecipitation-Runoff-EVApotranspiration Hydrologi-

cal Response Unit Model
RACMO KNMI Regional Atmospheric Climate Model
RCM Regional Climate Model
REMO The Regional Model (Germany)
RIZA Dutch Water Service (currently Rijkswaterstaat)
SMHI Swedish Meteorological and Hydrological Institute
SRES Emissions Scenarios
WA West Alpine subbasin
WMO World Meteorological Organization
WSL Institute for Snow and Avalanche Research
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