Basic Course

De Basic Course overstijgt het bachelor niveau van de hogescholen en biedt een solide theoretische basis procestechnologie. Deze basiscursus behandelt alle onderwerpen die nodig zijn om de gevorderde opleidingen in scheidings- en reactortechniek, procesontwerp en -controle te volgen. 

De totale studiebelasting voor de Basic Course bedraagt 25 EC. Nadat je alle tentamens en opdrachten met succes hebt afgelegd ontvang je het certificaat Procestechnologie Basic Course.

De Basic Course bestaat uit de volgende zes modules:

  • M1. Chemical equilibria and phase diagrams for PT-course

    Equilibrium thermodynamics is a toolbox of equations to describe and quantify the changes in the state of a substance as a function of composition, temperature or pressure. The (chemical) thermodynamics determine whether a process will run spontaneously or not. Phase equilibria, commonly expressed in phase diagrams, can be seen as an application of equilibrium thermodynamics. They are used in the design of separation processes like distillation, crystallization and extraction, as well as the manufacture of materials with a complex composition.

  • M2. Catalysis & Reaction kinetics

    Most of the chemical and biochemical reactions at an industrial scale use a catalyst to accelerate the reaction kinetics increasing process throughput. In this module basic knowledge of chemistry is a pre-requisite. Over the course of the module a number of subjects will be covered, including:

    1. Reaction kinetics: order, reaction rate limiting step, and Arrhenius equation.
    2. Homogeneous catalysis and bio-catalysis (catalyst and reactants are in the same phase): complex formation, models for homogeneous catalysis cycles and Michaelis-Menten kinetics in bio-catalysis.
    3. Heterogeneous catalysis (catalyst and reactants are in different phases): absorption models, Langmuir-Hinshelwood and Eley-Rideal mechanisms, transport limitations and characterization of catalytic materials.
  • M3. Fluid Dynamics

    The transport phenomena include fluid dynamics (momentum transfer), energy transfer (heat transfer) and component transfer (mass transfer). This module focuses on momentum transfer, where the fundamental equations that dictate fluid flow are derived from conservation of mass and momentum, in combination with a constitutive equation relating the flux to the gradient (which introduces the viscosity). The elementary subjects concern: micro and macro-balances for mass and momentum, velocity profiles in gas and liquid flows, concept of laminar and turbulent flow (Reynolds number), application of the Bernoulli’s theorem which describes the conservation of energy along a streamline, determination of flow resistances and the description of an equation of motion for a particle in a fluid influenced by gravity or upward force.

  • M4. Heat & Mass Transfer

    This module presents the fundamental aspects and basic equations to describe heat and molecular mass transfer from conservation laws. These balances can have a differential or an integral character, describing stationary or instationary behavior. Heat transfer mechanisms are (forced and free) convection, conduction and radiation. Mass transfer mechanisms are forced or free convection and diffusion. From these equations, together with the Nusselt-Sherwood relationships, the temperature distribution or component profiles can be derived. Special attention will be paid to describing heat and component transfer between different phases and on coupled heat and component transfer.

  • M5. Industrial Separation Technology

    To purify raw materials or reaction components all kinds of mechanical, chemical or physical separation techniques are applied to produce (intermediate) products with a certain required purity. The following separation techniques will be discussed: distillation, absorption/desorption, extraction, drying, crystallisation, sedimentation, filtration and membrane separation.

  • M6. Introduction to Chemical reactor engineering

    The chemical reactor is usually the core unit of the plant in which new components are formed according a specific conversion and selectivity. The ideal model reactor types are discussed: continuous ideally stirred tank reactor, plug flow reactor (composition is f(x)) and a batch reactor (composition is f(t)). Two model operation conditions are considered: isothermal as well as adiabatic operation for exothermal and endothermal reactions. Subjects which describe deviations of the idealistic systems are: micro-mixing and implications of a changing density due to the reaction. 



In 2019 is de gehele Basic Course vernieuwd en wordt sindsdien flexibel met een blended learning aanpak aangeboden. Dit betekent dat er face-to-face contactmomenten op de universiteit georganiseerd worden. Tijdens deze contactmomenten is er de mogelijkheid om vragen te stellen aan de docenten en samen met medecursisten opgaven te maken of aan opdrachten te werken. We verwachten van cursisten dat zij aanwezig zijn tijdens deze contactmomenten. In de weken dat er geen face-to-face contactmoment gepland staat, wordt er een online contactmoment gepland. Dit kan bijvoorbeeld een virtueel classroom zijn, maar ook een online vragenmoment. Hoeveel face-to-face en online contactmomenten gepland staan kan verschillen per module. 


Het meeste studiemateriaal wordt aangeboden via onze online leeromgeving Canvas. Daarnaast moeten cursisten voor de verschillende modules boeken aanschaffen. 

Inschrijven & kosten

Wil je je aanmelden voor de basiscursus procestechnologie van de UT? Lees meer over de kosten en wat erbij inbegrepen zit en hoe je je kunt aanmelden voor de cursus. Heb je nog vragen? Neem dan gerust contact met ons op!

Meld je aan voor de basiscursus procestechnologie!
Lees meer over de inschrijving
Om in april te kunnen starten, schrijf je je voor 15 maart in!