Floris Zwanenburg

Publication record


40 peer-reviewed publications
>3300 citations
h-index: 23
Source: Web of Science 

Curriculum vitae Floris Zwanenburg

2024

40. Magnetic field enhanced critical current in Ge–Si nanowire Josephson junctions
Z. Wu, J. Ridderbos, A. Li, A. A. Golubov, F. A. Zwanenburg, E. P. A. M. Bakkers, A. Brinkman, & C. Li.
Applied Physics Letters, 125, 012603 (2024).

2023

39. FPGA-accelerated Quantum Transport Measurements
T. Haarman, A. J. Sousa de Almeida, A. J. A. Heskes, F. A. Zwanenburg & N. Alachiotis,
International Conference on Field Programmable Technology (ICFPT), pp. 44-52 (2023).

2021

38. Strong spin-orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots
F. N. M. Froning, M. J. Rančić, B. Hetényi, S. Bosco, M. K. Rehmann, A. Li, E. P. A. M. Bakkers, F. A. Zwanenburg, D. Loss, D. M. Zumbühl, @ F. R. Braakman. 
Phys.Rev. Research 3, 013081 (2021), or https://arxiv.org/abs/2007.04308.

37. The germanium quantum information route
G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M. Myronov, J-J. Zhang, S. De Franceschi, G. Katsaros, & M. Veldhorst. 
Nature Reviews Materials (2021) or https://arxiv.org/abs/2004.08133.

2020

36. Ambipolar charge sensing of few-charge quantum dots
A. J. Sousa de Almeida, A. Márquez Seco, T. van den Berg, B. van de Ven, F. Bruijnes, S. V. Amitonov, & F. A. Zwanenburg. 
Phys. Rev. B 101, 201301(R) (2020) or https://arxiv.org/abs/2001.05045.

35. Classification with a disordered dopantatom network in silicon
T. Chen, J. van Gelder, B. van de Ven, S. V. Amitonov, B. de Wilde, H-C. Ruiz Euler, H. Broersma, P. A. Bobbert, F. A. Zwanenburg & W. G. van der Wiel.
Nature 577, pp. 341–345 (2020)

34. Hard superconducting gap and diffusion-induced superconductors in Ge-Si nanowires
J. Ridderbos, M. Brauns, J. Shen, F. K. de Vries, A. Li, S. Kölling, M. A. Verheijen, A. Brinkman, W. G. van der Wiel, E. P. A. M. Bakkers, F. A. Zwanenburg. 
Nano Letters 20, 1 p. 122 (2020), and https://arxiv.org/abs/1907.05510

2019

33. Multiple Andreev reflections and Shapiro steps in a Ge-Si nanowire Josephson junction 
J. Ridderbos, M. Brauns, A. Li, A. Brinkman, W. G. van der Wiel, E. P. A. M. Bakkers, F. A. Zwanenburg.
Phys. Rev. Materials 3, 084803 (2019).

32. Zeeman-effect-induced 0-π transitions in ballistic Dirac semimetal Josephson junctions
C. Li, B. de Ronde, J. de Boer, J. Ridderbos, F. A. Zwanenburg, Y. Huang, A. A. Golubov, A. Brinkman.
Phys. Rev. Lett. 123, 026802 (2019)

Supergeleiding in een quantum dot met een paar gaten
J. Ridderbos & F.A. Zwanenburg
Nederlands Tijdschrift voor Natuurkunde 85, 3, (2019).

2018

31. Spin-orbit interaction and induced superconductivity in a one-dimensional hole gas
F. K. de Vries, J. Shen, R.J. Skolasinski, M. P. Nowak, D. Varjas, L. Wang, M. Wimmer, J. Ridderbos, F. A. Zwanenburg, A. Li, S. Koelling, M. A. Verheijen, E. P. A. M. Bakkers & L. P. Kouwenhoven
Nano Letters 18, 10 p. 6483 (2018).

30.  Josephson effect in a few-hole quantum dot
J. Ridderbos, M. Brauns, J. Shen, F. K. de Vries, A. Li, E. P. A. M. Bakkers, A. Brinkman & F. A. Zwanenburg 
Advanced Materials 30, 44 1802257 (2018)

29. Single, double, and triple quantum dots in Ge/Si nanowires
F. N. M. Froning, M. K. Rehmann, J. Ridderbos, M. Brauns, F. A. Zwanenburg, A. Li, E. P. A. M. Bakkers, D. M. Zumbühl & F. R. Braakman
Applied Physics Letters 113, 073102 (2018)

28. Palladium gates for reproducible quantum dots in silicon
M. Brauns, S. V. Amitonov, P. C. Spruijtenburg & F. A. Zwanenburg
Scientific Reports 8, 5690, (2018). 

27. A fabrication guide for planar silicon quantum dot heterostructures 
P. C. Spruijtenburg, S. V. Amitonov, W. G. van der Wiel & F. A. Zwanenburg
Nanotechnology 29, 143001 (2018).
  
26. Depletion-mode Quantum Dots in Intrinsic Silicon 
S. V. Amitonov, P. C. Spruijtenburg, M. W. S. Vervoort, W. G. van der Wiel & F. A. Zwanenburg
Applied Physics Letters 112, p. 023102 (2018).

2017

25. Bottom-Up Single-Electron Transistors
K. S. Makarenko, Z. Liu, M. P. de Jong, F. A. Zwanenburg, J. Huskens & W. G. van der Wiel
Advanced Materials, 29, 1702920 (2017).

24. Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge–Si Core–Shell Nanowires
S. Conesa-Boj, A. Li, S. Koelling, M. Brauns, J. Ridderbos, T. T. Nguyen, M. A. Verheijen, P. M. Koenraad, F. A. Zwanenburg & E. P. A. M. Bakkers
Nano Letters 17, p. 2259-2264 (2017).

2016

23. Passivation and characterization of charge defects in ambipolar silicon quantum dots
P.C. Spruijtenburg, S. V. Amitonov, F. Mueller, W. G. van der Wiel & F. A. Zwanenburg
Scientific Reports 6, 38127, (2016).

22. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires
M. Brauns, J. Ridderbos, A. Li, E. P. A. M. Bakkers, W. G. van der Wiel & F. A. Zwanenburg
Applied Physics Letters 109, p. 143113 (2016).

21. Anisotropic Pauli spin blockade in hole quantum dots
M. Brauns, J. Ridderbos, A. Li, E. P. A. M. Bakkers, W. G. van der Wiel & F. A. Zwanenburg
Phys. Rev. B 94, 041441(R) (2016).

20. Electric-field dependent g-factor anisotropy in Ge-Si core-shell nanowire quantum dots
M. Brauns, J. Ridderbos, A. Li, E. P. A. M. Bakkers & F. A. Zwanenburg
Phys. Rev. B 93, 121408(R) (2016).

2015

19. Electron–Hole Confinement Symmetry in Silicon Quantum Dots
F. Mueller, G. Konstantaras, P.C. Spruijtenburg, W. G. van der Wiel & F. A. Zwanenburg
Nano Letters 15, pp. 5336-5341 (2015).

18. Single-charge transport in ambipolar silicon nanoscale field-effect transistors
F. Mueller, G. Konstantaras, W. G. van der Wiel & F. A. Zwanenburg
Applied Physics Letters 106, p. 172101 (2015).

2014

Quantumcomputers: hoe en wanneer? (Dutch)
R. Hanson & F.A. Zwanenburg
Nederlands Tijdschrift voor Natuurkunde 80, 6, (2014).

2013

17. Silicon Quantum Electronics
F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith & M. A. Eriksson
Reviews of Modern Physics 85, 961 (2013).

16. Single-hole tunneling through a two-dimensional hole gas in intrinsic silicon
P.C. Spruijtenburg, J. Ridderbos, F. Mueller, A. W. Leenstra, M. Brauns, A. A. I. Aarnink, W. G. van der Wiel & F. A. Zwanenburg
Applied Physics Letters 102, 192105 (2013).

15. Printed Circuit Board Metal Powder Filters for Low Electron Temperatures
F. Mueller, R. N. Schouten, M. Brauns, T. Gang, W. H. Lim, N. S. Lai, A. S. Dzurak, W. G. van der Wiel & F. A. Zwanenburg
Review of Scientific Instruments 84, 044706 (2013

14. High-fidelity readout and control of a nuclear spin qubit in silicon
J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, F. A. Zwanenburg, D. N. Jamieson A. S. Dzurak & A. Morello
Nature, 496, p. 334 (2013).

2011

13. Independent Control of Dot Occupancy and Reservoir Electron Density in a One‐electron Quantum Dot
W. H. Lim, F. A. Zwanenburg, C. H. Yang, H. Huebl, M. Möttönen, K. W. Chan, C. C. Escott, A. Morello & A.S. Dzurak
AIP Conf. Proc. 1399, 349 (2011).

12. Dynamically controlled charge sensing of a few-electron silicon quantum dot
C.H. Yang, W.H. Lim, F.A. Zwanenburg & A.S. Dzurak
AIP Advances 1, 042111 (2011).

11. Pauli spin blockade in a highly tunable silicon double quantum dot
N.S. Lai, W.H. Lim, C.H. Yang, F.A. Zwanenburg, W. A. Coish, F. Qassemi, A. Morello & A.S. Dzurak
Scientific Reports 1, 110, (2011).

10. Spin filling of valley-orbit states in a few-electron silicon quantum dot
W.H. Lim, C.H. Yang, F.A. Zwanenburg & A.S. Dzurak
Nanotechnology 22, p. 335704 (2011).

2010

Uitlezen van een enkele elektronspin in silicium (Dutch)
F.A. Zwanenburg & A. Morello
Nederlands Tijdschrift voor Natuurkunde 76, 11, (2010).

9. Single-shot readout of an electron spin in silicon
A. Morello, J.J. Pla, F.A. Zwanenburg, K.W. Chan, H. Huebl, M. Möttönen, C.D. Nugroho, C. Yang, J.A. van Donkelaar, A.D.C.Alves, D.N. Jamieson, C.C. Escott, L.C.L. Hollenberg, R.G. Clark & A.S. Dzurak
Nature 467, p. 687 (2010).

8. Spectroscopy of few-electron single-crystal silicon quantum dots
M. Fuechsle, S. Mahapatra, F.A. Zwanenburg, M. Friesen, M.A. Eriksson & M.Y. Simmons
Nature Nanotechnology 5, p. 502 (2010).

7. Resonant tunnelling features in quantum dots
C.C. Escott, F.A. Zwanenburg & A. Morello
Nanotechnology 21, p. 274018 (2010).

6. Probe and control of the reservoir density of states in single-electron devices
M. Möttönen, K.Y. Tan, K.W. Chan, F.A. Zwanenburg, W.H. Lim, C.C. Escott, J.-M. Pirkkalainen, A. Morello, C. Yang, J.A. van Donkelaar, A.D.C. Alves, D.N. Jamieson, L.C.L. Hollenberg & A.S. Dzurak
Physical Review B 81, p. 161304(R) (2010).

2009 

5. Observation of the single-electron regime in a highly tunable silicon quantum dot
W.H. Lim, F.A. Zwanenburg, H. Huebl, M. Möttönen, K.W. Chan, A. Morello & A.S. Dzurak
Applied Physics Letters 95, p. 242102 (2009).

4. Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts
F.A. Zwanenburg, H.B. Heersche, D.M. van der Mast, E.P.A.M. Bakkers & L.P. Kouwenhoven
Nano Letters 9, pp. 2704–2709 (2009).

3. Ultrasmall silicon quantum dots
F.A. Zwanenburg, A.A. van Loon, G.A. Steele, C.E.W.M. van Rijmenam, T. Balder, Y. Fang, C.M. Lieber & L.P. Kouwenhoven
Journal of Applied Physics 105, p. 124314 (2009).

2. Spin states of the first four holes in a silicon nanowire quantum dot
F.A. Zwanenburg, C.E.W.M. van Rijmenam, Y. Fang, C.M. Lieber & L.P. Kouwenhoven
Nano Letters 9, pp. 1071–1079 (2009).

2007

1. Scanned probe imaging of quantum dots inside InAs nanowires
A.C. Bleszynski, F.A. Zwanenburg, R.M. Westervelt, A.L. Roest, E.P.A.M. Bakkers & L.P. Kouwenhoven
Nano Letters 7, pp. 2559–2562 (2007).

PhD theses

Zhen Wu, University of Twente (2024) 
Down the rabbit hole: Andreev bound states in Ge-Si core-shell nanowires

Joost Ridderbos, University of Twente (2018) 
Quantum Dots and Superconductivity in Ge-Si Nanowires

Paul-Christiaan Spruijtenburg, University of Twente (2017)
Imperfection: holes and defects in silicon quantum dots

Matthias Brauns, University of Twente (2016)
Hole spins in Ge-Si nanowires  

Filipp Müller, University of Twente (2015)
Single-charge tunneling in ambipolar silicon quantum dots  

Floris Zwanenburg, Delft University of Technology (2008)
Spin and charge in semiconductor nanowires