See Home of Nano Electronics

Student Info

Our group offers:

Bachelor and Master thesis assignments

Open for students from Applied Physics, Nanotechnology, as well as Electrical Engineering. No subjects are compulsory, but the course NanoElectronics (Course code 193400141) is strongly recommended. Further below are the cours lists for MSc-EE and MSc-APh students. If you are interested in doing your BSc or MSc project in NE, please read these:

What kind of lab work can I do during my BSc or MSc project?
Which topics can I work on?
BSc and MSc project examples

Courses and projects

We provide several courses in the BSc and MSc education of the faculties Electrical Engineering, Mathematics and Computer Science (EEMCS / EWI), and Science and Technology (TNW).

MSc courses lists
Courses list MSc - APh

The Chair NanoElectronics (NE) performs research and provides education in the field of nanoelectronics. Nanoelectronics comprises the study of the electronic and magnetic properties of systems with critical dimensions in the nanoregime, i.e. sub ~100 nm. Hybrid inorganic-organic electronics, spin electronics and quantum electronics form important subfields of nanoelectronics. The research goes above and beyond the boundaries of traditional disciplines, synergetically combining aspects of Electrical Engineering, Physics, Chemistry, Materials Science, and Nanotechnology.

Below the specialization courses:

Compulsory for NE:

193400141    NanoElectronics                                  5

193510040    Theoretical Solid State Physics           5

-Courses in consultation with chair                         10

 

Recommended elective courses:

201600041    Nano-lab: Fabrication & Characterization                 5

200900066    Introduction to the Physics of Correlated Electrons  5

193530000    Introduction to Superconductivity                             5

193570050    Advanced Quantum Mechanics                                5

193400111    Bionanotechnology                                                    5

201600070    Basic Machine Learning                                            5

201600071    Advanced Machine Learning                                     5

201700394    Capita Selecta NE        


Website: http://www.utwente.nl/eemcs/ne/

Courses list MSc - EE

The Chair NanoElectronics (NE) performs research and provides education in the field of nanoelectronics. Nanoelectronics comprises the study of the electronic and magnetic properties of systems with critical dimensions in the nanoregime, i.e. sub ~100 nm. Hybrid inorganic-organic electronics, spin electronics and quantum electronics form important subfields of nanoelectronics. The research goes above and beyond the boundaries of traditional disciplines, synergetically combining aspects of Electrical Engineering, Physics, Chemistry, Materials Science, and Nanotechnology.

Programme mentor: PROF.DR.IR. F.A. Zwanenburg (Floris)

Compulsory courses

Code

Course

Study load (EC)

Quarter

191210740

Materials Science

5

1A

193400141

NanoElectronics

5

1B

191616043

Philosophy of Engineering: Science

2,5

1B

201100137

Philosophy of Engineering: Ethics

2,5

1B

Two additional compulsory courses from the following list:

Code

Course

Study load (EC)

Quarter

201600070

Basic Machine Learning

5

1A

191411291

Applied Quantum Mechanics

5

1A

201600071

Advanced Machine Learning

5

1B

191210730

Technology

5

1B

191211440

Integrated Circuit Technology

5

2A

191211000

Advanced Semiconductor Devices

5

Year


Website: http://www.utwente.nl/eemcs/ne/

BSc and MSc projects

As a student in NE you are a full group member and you will be involved in specific aspects of the research, such as device fabrication, measurements and analysis. Besides you are also encouraged to participate in the regular social activities.

The projects listed below give a generic impression of ongoing research. The current situation varies over time, depending on the progress. Please use this list for your initial orientation and selection. After an intake with associate professor Floris Zwanenburg you can talk to the PhD students or post-docs to hear more about the status of the projects which have your interest.

NanoElectronics Group
www.nano-electronics.nl

KPFM MEASUREMENTS OF PHOTO EXCITED 2D MATERIALS

Supervisor: 

Pavel Markeev

Goal:

Research the dependence between energy of exciting light and photo response of 2D Transition Metal Dichalcogenide crystals

Project work:

AFM topography measurements; Kelvin Probe Force Microscopy measurements to determine the surface potential.

ROOM TEMPERATURE HOPPING CONDUCTION AND ARTIFICIAL INTELLIGENCE

Supervisor:

Tao Chen, or Bram van de Ven or Floris Zwanenburg

Goal:

Realizing hopping conduction at room temperature in silicon or silicon carbide. Repeating established machine learning tasks and exploring more.

Project work:

Micro/nano-fabrication, electrical characterization. 

OPTIMIZATION OF BORON-DOPED SILICON DEVICES FOR NEUROMORPHIC COMPUTATION

Supervisors:

TBD: Bram v. d. Ven, U. Alegre Ibarra, HC Ruiz Euler

Goal:

Optimize the entire life cycle of our Boron-doped silicon devices

Project work:

Optimize the development of our devices at different stages of the device's life cycle, from the fabrication to training via data acquisition, neural network modeling and analysis of the device's physical and computational capabilities. In this project there is a variety of aspects suitable for the student's interest. For instance, you can analyze and optimize training of neural networks, improve the data acquisition by analyzing the devices' response characteristics or study the computational capabilities of our devices to develop procedures that improve the design of the device.

Note:

Projects will not be available until September 2020

DETECTING MAJORANA BOUND STATES IN HYBRID NANOWIRE DEVICES

Supervisors:

Zhen Wu

Goal:

The subject of Majorana bound state (MBS), is of great interest for topological quantum computing. Our goal is to detect such state in superconductor-semiconductor hybrid nanowire systems, for instance, a Al-Ge/Si core-shell nanowire-Al Josephson junction

Project work:

  • Nanowire deposition with micromanipulator.
  • Device fabrication involving a series of advanced techniques (e.g. Electron-beam lithography, Sputtering, Evaporation, etc.)
  • Cryogenic transport measurements in dilution refrigerator with a base temperature of 15mK.
  • Collaboration with QTM/ICE group.
SINGLE-CHARGE TUNNELING IN SILICON

Supervisors:

António J. Sousa de Almeida, Guus Huitenga

Project work:

Device design and fabrication; electrical characterization and qubit operation at cryogenic temperatures. Time-resolved and microwave measurements for spin read out and manipulation of individual spins bound to a single heavy-atom in silicon via spin resonance experiments.

SILICON 1: HEAVY-ATOM SPIN QUBITS IN SILICON

A single atom is a very fundamental quantum system that provides a very logical candidate for a qubit. In this project we aim at fabricating single heavy-atom transistors in silicon. By using heavy elements in silicon, we aim at single-atom spin qubits with exceptional control of spin states via the spin-orbit interaction, and with exceptionally long coherence times. We aim to identify individual dopant atoms via transport spectroscopy and via charge sensing and ultimately perform readout and coherent control of single spins bound to a heavy atom in silicon via time-resolved and microwave experiments.

SILICON 2: DEPLETION-MODE QUANTUM DOTS IN SILICON

The depletion-mode design avoids complex multilayer architectures requiring precision alignment and allows directly adopting best practices already developed for depletion dots in other material systems, such as GaAs/AlGaAs and SiGe. We define Si QDs in an electron or hole gas at the Si/SiO2 interface through electrostatic gating. The nature of the charge gas can be tuned via the gate stack composition and growth conditions. For this project, we have on-going collaborations with the group of Prof. Erwin Kessels at University of Eindhoven, and with the group of Prof. Dominik Zumbühl at University of Basel, Switzerland.

SILICON 3: AMBIPOLAR CHARGE SENSING IN SILICON QUANTUM DOTS

We have developed a ambipolar charge sensing technique by using an electron and a hole quantum dot to sense charge displacement in the other. This electrical transport technique Is highly sensitive and enables us to detect single-electron and single-hole occupation in silicon quantum dots. Thus, we expect ambipolar charge sensing to provide a means to further study ambipolar devices, which have so far been studied in the many-charge regime via direct transport measurements.

SILICON 4: CMOS COMPATIBLE LOW-DISORDER QUANTUM DEVICES

The realization of a quantum computer based on spin qubits realized in silicon depends on the capability to fabricate qubits that are robust, reproducible, and scalable. To this end, we perform systematic low-temperature electrical characterization of silicon quantum dot devices. The devices are fabricated at imec in Leuven, Belgium, in a CMOS foundry environment and using 300mm processing technology.

Internships

We have many international contacts to whom we can introduce you, a.o. in Japan, Australia, Switzerland and the USA. If you have done your MSc thesis work in our group then we will happily serve as a reference.

For more information on these topics please make an appointment with Prof.dr.ir. Floris Zwanenburg via our secretary via NEsecretary[AT]utwente.nl.