education

MSc/BSc assignments

Below are the MSc and BSc assignments currently available in the group Semiconductor Components. All assignments can be done in the BSc and the MSc setting, unless otherwise stated.

Literature survey LED/LED drivers

As mentioned before, the novelty in the approach proposed by NRGLed implies that there will be hardly any scientific publications about this concept. However it would be advisory to verify this by performing an elaborate literature survey, including patents (before February 2008).

The literature survey should focus on the following aspects:

·

Alternative principles of transforming (voltage/current) electric power in addition to SMPS

·

LED driving with power values that are at least a factor of 5 higher than the specified power values

·

Various applications of PWM in combination with LEDs

·

Optical efficiency of LEDs: what are the important parameters and where are the limits

·

Resistive behavior of LEDs and heat generation inside the LEDs

·

Transport of thermal energy for various LED production techniques

·

Crucial factors which determine the lifetime of the LED

NRGLed research – BSc (internal)

Contact person: Ray Hueting

Power Transistors

The ideal power transistor is cheap to produce, can switch enormous currents, and withstands high voltages in the off-state.

Real power transistors are not that good yet… we have some ideas how to improve the power transistor of today, and students can help us test those ideas, improve them, and verify them using computer models, semiconductor physics theory, and (in some cases) measurements on real transistors we collected from industry.

MSC-BSC-power (internal)

Contact person: Ray Hueting

Wild transistor ideas for ultra-low power chips

In digital logic chips, such as microprocessors, the leakage power consumption is getting out of hand when we keep making transistors smaller. The problem is simple: an old-fashioned mechanical switch does not leak any current when it is “off”, but a transistor does.

In the past few years, we’ve been brainstorming with colleagues in our field how to make a very small switch that turns off much better than a classical transistor. Proposals include the use of extremely thin silicon layers (silicon-on-insulator), quantummechanical tunneling, or the piezoelectric effect.

MSC-BSC-lowpower (internal)

Contact person: Ray Hueting

CMOS post-processing

When the CMOS chip is complete, we can build additional structures on top of it. For instance, we can make micromechanical structures, infrared detectors, or solar cells on top of a chip, and connect them electrically to this chip. This produces extremely compact microsystems.

MSC-BSC-post (internal)

Contact person: Jurriaan Schmitz

Nanolab assignments

Here is a collection of MSc and BSc assignments that include microfabrication in the MESA+ Nanolab. You will be trained to work in this lab and manufacture and test new prototypes. Most assignments will make use of Atomic Layer Deposition to make (sub)nanometer thin layers.

MSC-BSC-nanolab (internal)

Contact person: Alexey Kovalgin

Light-emitting Devices

The light-emitting diode or LED is basically a p-n junction with a lowly doped (“intrinsic”) region in between that forms the active region for light emission. It would be interesting to have LEDs integrated with CMOS. There are several possible methods to do so such as employing alternative materials e.g. Gallium-Nitride (GaN) integrated in silicon or improved silicon LEDs in the near-visible wavelength.

MSC-BSC-led (internal)

Contact person: Ray Hueting

RF devices

For high-frequency signal processing, specialized integrated circuit technologies are developed, for instance MMIC’s. In our group we study RF devices that can be integrated in the standard CMOS platform technology, such as varactors, varicaps and resonant-gate field-effect transistors.

MSC-BSC-rf (internal)

Contact person: Ray Hueting

Micro-fused Silicon Strain Gauge Pressure Sensor

State-of-the-art silicon strain gauge pressure sensors are widely used throughout the automotive industry for applications ranging from brake-, transmission- and fuel pressure sensors, to occupant weight force sensing. Such pressure sensors typically consist of silicon strain gauge elements which are glass–bonded to a stainless steel diaphragm. The design of the sensor is such that it provides a linear voltage output which is directly proportional to the applied pressure on the steel diaphragm by calibration.

MSc assignment Sensata (internal)

Contact person: Sander Smits