Research in the SFI group is related to transport phenomena near boundaries. We are currently working along the following lines:

  • Interfacial flow phenomena

    Interfacial flow phenomena

    We explore the fluid flow characteristics at interfaces. These interfaces can be reactive, charged, or present heterogeneities. The interplay between the interface characteristics and resulting flow phenomena is explored.


    recent publications on this topic:

    Davidson, S. M., Lammertink, R. G. H., & Mani, A. (2018). Phys. Rev. Fluids.3.053701, 1–16.

    Haase, A. S., Wood, J. A., Lammertink, R. G. H., & Snoeijer, J. H. (2016). Why bumpy is better: The role of the dissipation distribution in slip flow over a bubble mattress. Physical Review Fluids, 1(5), 054101.

  • Ion transport at interfaces

    Ion transport at interfaces

    The transport of ions at ion selective interfaces is crucial for many existing and upcoming separation processes. We explore the transport of ions through perforated graphene membranes, as well as fundamentals of ion transport in confined geometries.


    recent publications on this topic:

    Ghosh, M., Jorissen, K. F. A., ORCID: 0000-0002-9438-1048, J. A. W., & ORCID: 0000-0002-0827-2946, R. G. H. L. (2018). Ion Transport through Perforated Graphene. The Journal of Physical Chemistry Letters, 9, 6339–6344.

    de Valença, J. C., Kurniawan, A., Wagterveld, R. M., Wood, J. A., & Lammertink, R. G. H. (2017). Influence of Rayleigh-Bénard convection on electrokinetic instability in overlimiting current conditions. Physical Review Fluids, 2(3), 033701.

    Gumuscu, B., Haase, A. S., Benneker, A. M., Hempenius, M. A., Van Den Berg, A., Lammertink, R. G. H., & Eijkel, J. C. T. (2016). Desalination by Electrodialysis Using a Stack of Patterned Ion-Selective Hydrogels on a Microfluidic Device. Advanced Functional Materials, 26(47), 8685–8693.

  • Advanced separations

    Advanced separations

    We investigate and develop (catalytic) membrane processes for water treatment. Regarding the removal of organic contaminants, we explore (photo)catalytic active membranes as well as liquid infused membranes.


    recent publications on this topic:

    Bazyar, H., Lv, P., Wood, J. A., Porada, S., Lohse, D., & Lammertink, R. G. H. (2018). Liquid–liquid displacement in slippery liquid-infused membranes (SLIMs). Soft Matter, 14, 1780–1788.

    Bazyar, H., Javadpour, S., & Lammertink, R. G. H. (2016). On the Gating Mechanism of Slippery Liquid Infused Porous Membranes. Advanced Materials Interfaces.

    Rafieian, D., Driessen, R. T., Ogieglo, W., & Lammertink, R. G. H. (2015). Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO 2Films. ACS Applied Materials & Interfaces, 7(16), 8727–8732.