The Membrane Surface Science group participates actively in the teaching of the Chemical Engineering curriculum, both in the BSc and the MSc phase. The following are the courses offered and their details:

BSc and MSc projects

Many different BSc and MSc project are possible within the MSuS group. Projects can involve making or coating membranes (Material Science), but can also be more focused on characterizing membranes and optimizing their performance for a specific application (Process Technology). For a most up-to-date overview of possible projects please contact

Some examples of possible projects are given below:

Polyelectrolyte based gas barrier coatings for flexible packaging

Jiaying Li (1), Wiebe M. de Vos (1)

 (1) Membrane Surface Science (MSuS)

Project background

Solvent-borne coatings with a relatively high content of Volatile Organic Compounds (VOCs) have traditionally dominated the coating industry, however, there are increasing health and safety concerns. A transition from solvent-borne coatings to more environmentally friendly coatings has been realized for consumer coatings in the late 1990s.1 Waterborne coating is one of the solutions and has gained enormous research attention in the modern coating industry. Key components of a waterborne coating are water, co-solvent, polymer binder, pigment, and various additives.2 Among all these ingredients, the primary properties of the coating film are determined by the binder.

To explore new possibilities, a new film formation system based on polyelectrolyte (PE) complexation is investigated. PEs are polymers with charged functional groups and usually have good water solubility. With a pH and salt control, the direct complexation is prevented and a homogenous solution mixture can be obtained. The mixture can then be cast onto a substrate with controlled thickness. Upon drying, complexation may occur due to a change in pH by an aqueous bath or evaporation. The possible routes are shown in Figure 1. A strong ionic network among PEs can be formed. Barrier properties and sufficient mechanical strength are expected to be achieved with cross-linking.

Figure 1: Two different routes of complexation

Project details and outcome

In this master project, the main goal is to study different ratios of polycation: polyanion as gas barrier materials. You will start to prepare high concentration of polycation: polyanion solutions in different ratios to understand how that influences the complexation. Different ratios lead to different degrees of ionic cross linking that define the final gas barrier performance. To better understand the microstructure, you will study the intrinsic complex properties by several techniques such as DSC and ellipsometry. During the film preparation, you will also get hands-on experience of different film characterization techniques, for example, SEM and AFM. Moreover you will learn how to perform gas permeation tests. Throughout the whole project, you will learn about water-based coating, polyelectrolyte complexation and gas permeation. Meanwhile, a link between academic research and industrial application is also made, as this project is in collaboration with BASF and AkzoNobel.

In this project,  your main tasks are:

1. Preparation of PE solutions

2. Preparation of PE films on substrates

3. Characterizations of the PE films

4. Gas permeation measurements of the PE films

For more details and questions, please contact J. (Lily )Li,

[1] K. D. Weiss, Paint and coatings: A mature industry in transition. Progress in Polymer Science 22, 203-245 (1997).

[2] E. Mehravar, J. Leswin, B. Reck, J. R. Leiza, J. M. Asua, Waterborne paints containing nano-sized crystalline domains formed by comb-like polymers. Progress in Organic Coatings 106, 11-19 (2017).

Future generation membranes by Aqueous Phase Separation

Elif Nur Durmaz (1), Wouter Nielen(1), Joshua Willott  (1), Wiebe de Vos(1)

(1)Membrane Surface Science (MSuS), Membrane Science and Technology Cluster

Project Outline

Membranes are used in a variety of processes including the production of clean drinking water, artificial kidneys, CO2 capture, and food processing. Due to their large application areas and many advantages of membranes over other separation technologies, the membrane market is continuously growing. However, a major concern regarding membrane production is the use of large quantities of aprotic organic solvents such as N-Methyl-2-pyrrolidone. Such solvents are harmful to humans and the environment. This project is focused on investigating a novel, environmentally friendly technique for the production of membranes without using organic solvents. Here, membrane formation relies on the phase separation of polyelectrolytes either through a pH switch or a complexation with an oppositely charged polyelectrolyte. The main aim is to understand which factors govern the morphology and separation performance of the membranes. Additionally, improving mechanical and chemical stability with cross-linking will be investigated.


Figure 1. A schematic representation aqueous phase separation using a weak polyacid.

Project Description

Polyelectrolytes are polymers that contain repeating charged groups. Due to these charges, they are soluble in polar solvents like water. Polyelectrolytes can be separated into two categories based on the charged groups. Weak: when their charge depends on the pH of the medium or strong: when the charge is independent of pH. Weak polyelectrolytes can be used to precipitate a hydrophobic polyelectrolyte from water by shifting to a pH where the polyelectrolyte is uncharged.  Alternatively, when two oppositely charged polyelectrolytes are mixed, they form a complex, which can be solid. In both cases, a phase separation occurs and under the right conditions, this can be used to form a porous, asymmetric membrane. By controlling the rate at which the polyelectrolyte is charged or uncharged the kinetics of the phase separation can be controlled which in turn gives control over the structure of the precipitate that is formed. This allows us to fabricate membranes with controllable properties. To fine-tune membrane performance (e.g. membrane flux or retention), additives can be used. Additionally, the mechanical and chemical stability can be significantly improved with cross-linking. To assess the membrane performance several filtration techniques are used. In addition, the morphology is imaged using scanning electron microscopy. The membrane can then be optimized towards specific applications, such as gas-separation, ion removal or the treatment of oily wastewater.

Project Outcome

This project is expected to lead to a new and sustainable approach to produce membranes. Moreover, the newly produced membranes are expected to have unique separation properties relevant to a number of applications.

Membranes by Aqueous Phase Separation (APS): Effect of polyelectrolyte molecular weights on the membrane properties

Muhammad Irshad Baig(1), Wiebe M. de Vos(1)

(1)Membrane Surface Science,  Membrane Science and Technology Cluster, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE, Enschede, The Netherlands. ;

Project Background

A membrane is  a barrier that regulates the flow of species in a selective way. The most commonly used membranes in water purification and gas separation applications are made from polymers that are only soluble in organic solvents. Ask anyone who works in the field of polymeric membranes about its fabrication procedure, and you will mostly hear one answer i.e. NIPS. It stands for Non-solvent Induced Phase Separation. Simply put, you take a polymer (Polysulfone, Polyimides for example) and dissolve it in an organic solvent such as N-methyl-2-pyrrolidone (NMP). When the solution is homogeneously mixed, it is then cast on a flat surface and put in a water bath. The solvent (NMP) is highly miscible in water and so it diffuses out of the polymer solution and mixes with water. The polymer, at this point becomes insoluble due to all the water that is around it, forming a solid porous membrane. The membranes prepared in this way are also known as ‘Loeb-Sourirajan Membranes (L-S membranes)’, named after the researchers who first made asymmetric cellulose acetate membranes for sea water desalination.

Figure 1. Schematic illustration of the polyelectrolyte complex membrane formation. 

This simple procedure of making commercial polymer membranes has remained the same since the 1970’s. NMP is by far the most widely used solvent to prepare membranes and the multi-billion dollars membrane industry uses this solvent in immense amounts.

However, NMP is not a friendly chemical by any means. It is partly flammable, and most importantly, it has been proven to be repro-toxic to humans and harmful for the environment.1 Therefore, it has to be recycled and/or removed from waste streams plus it has to be removed from the membranes before they can be utilized for water production. The EU has introduced a law that restricts the use of such chemicals throughout the Union.2 

aving discussed the nature of aprotic, polar organic solvents and their harmful effects, we have an alternative solution which uses only water as a solvent. It is extremely difficult and mostly impossible to dissolve conventional polymers in water. This leaves us with a special class of polymers called ‘Polyelectrolytes’ which can be easily dissolved in water. These polyelectrolytes are charged polymers with a unique property that their charge can be manipulated by a pH switch. Some polyelectrolytes are only charged below a particular pH. They are called weak polyelectrolytes. On the other hand, certain polyelectrolytes remain charged in almost all the pH range. These are called strong polyelectrolytes. When the two oppositely charged polyelectrolytes come across each other, they instantly form a ‘Polyelectrolyte Complex’. So if we make a homogeneous solution of these two polyelectrolytes such that they are uncharged in the solution and then cast it in a water bath with a pH where both become charged, we get a polyelectrolyte complex membrane (Figure 1). This novel approach to making membranes is termed ‘Aqueous Phase Separation’ (APS). 

Project Details and Outcome

Project Details and Outcome

In this project, Poly(sodium 4-styrenesulfonate) and Polyethyleneimine will be used the polyelectrolytes, respectively. The aim of this project is to  develop free-standing membranes using the two polyelectrolytes mentioned above. During the course of the project, Monomer mixing ratio, effect of coagulation bath pH, cross-linking conditions, and type of salt in coagulation bath would be investigated in detail.

The membranes prepared in this study will be used for water treatment and purification applications. The applications are as diverse as the new APS field itself. From oil/water separation (Microfiltration) to sea water desalination (nanofiltration and reverse osmosis), the outcomes of this study are diverse.  It is noteworthy that one of the inventors of L-S membranes, Loeb Sidney, was a MSc. student at UCLA when he got the breakthrough in membrane science and technology. Similarly, this project, part of a larger research goal, will play an important role in shaping the next generation of polyelectrolyte membranes.


  1. D. Prat, J. Hayler and A. Wells, Green Chem., 2014, 16, 4546–4551.
  2. The European Commission, Off. J. Eur. Union, 2018, 99, 3
Pressing PECs to Plastics: Exploring polyelectrolyte combinations for ion-exchange applications

Pressing PECs to Plastics: Exploring polyelectrolyte combinations for ion-exchange applications

Ameya Krishna Bysani1,2,*, Saskia Lindhoud2, Wiebe M. de Vos1

1 Membrane Surface Science, Membrane Science and Technology, Universiteit Twente

2 NanoBioPhysics, MESA+ Institute, Universiteit Twente


Keywords: Materials Science, Polyelectrolyte complex (PEC), Saloplastic, Membrane, Ion-exchange, Electrodialysis

Let me introduce you to the topic!

Polyelectrolytes (PEs) are water-soluble polymers containing fixed charges in their chains. They are particularly interesting in a scenario where oppositely charged PEs combine to form a polyelectrolyte complex (PEC). PE pairs combine in specific ratios which makes their properties extremely interesting.  Few combinations have been explored yet, and the possibilities are promising!

Films are made using these complexes, and a net charge on them allows us to explore their prospects as ion-exchange membranes (IEMs). IEMs are a class of dense semi-permeable membranes that are electrically conductive. Ideally, they allow the passage of counterions and reject co-ions.  This property is called permselectivity. Electrodialysis is used to determine the electrical resistance and other properties.

Why is this awesome?

Polyelectrolytes can be versatile, charge-controlled, complexed, and coated. Further, characteristics of PECs open many doors and their applications can be simple, inexpensive, and sustainable alternatives to several existing materials. Membranes are no exception. PEs have been used to successfully make micro-, nano-, and ultra-filtration membranes. Their use as IEMs can be extremely beneficial in desalination, water softening, and wastewater treatment to name a few!

Figure: Polyelectrolyte complexes to Ion-exchange membranes

Polyelectrolytes for an improved aquaporin embedded top layer for next generation forward osmosis membranes

Dennis Reurink(1), Wiebe M. de Vos (1)

(1)Membrane Surface Science (MSuS)


An emerging separation and desalination technology that shows great potential is forward osmosis (FO). FO uses osmotic pressure gradients to transport water across a semipermeable membrane. These membranes are usually based on reverse osmosis (RO) membranes, which lack, however, suitability for FO applications [1]. A way to create new membranes truly optimized for FO, is by incorporating aquaporin containing vesicles (AQPVs) in the separating layer [2]. These vesicles have the aquaporin protein incorporating in the vesicle wall as shown in Figure 1. This aquaporin protein acts as a water channel that allows solely water and block all other solutes [3]. In this way the permeation and rejection properties are enhanced.

Another versatile technique is the self-assembly of oppositely charged polyelectrolytes (PEs) on the surface of a porous support membrane. In this so-called Layer-by-Layer (LbL) assembly, the support membrane is alternatively exposed to polycations and polyanions [4]. Such a PEM coating is easily applied on all geometries. In this study, the focus will be on making a PEM coating with the incorporation of AQPVs. Since the interaction between the vesicles and the multilayer is important, the distribution of the AQPVs is first studied. Subsequently, a layer will be produced and tested on its FO and RO performance.


In order to create a more permeable and selective layer, aquaporin containing vesicles (AQPVs) can be used. These vesicles are incorporated in the separating layer of the membrane.

In order to control the distribution of the aquaporin vesicle, various polyelectrolytes can be used which have different interaction with the AQPVs. Also different coating environments, like salt concentration, pH, and solvent can be used to control the distribution of the vesicles.

In this MSc project, the distribution of the AQPVs will be studied on model surfaces. When the distribution is controlled and understood a separating layer will be made and incorporated on a membrane.


PEMs can be made by dip-coating silicon wafers or membranes in a solution containing a certain polyelectrolyte. AQPVs can be also be coated by means of dip-coating.

The distribution of AQPVs can be seen with a high resolution scanning electron microscope. Adsorption of both the PEs and AQPVs are measured with reflectometry and further characterization can be done with ellipsometry, zeta potential, and contact angle measurements. The knowledge obtained from model surfaces (silicon wafers) will be translated into hollow fiber membranes. The membranes will be coated under the same conditions as the model surfaces and will be tested on their performances in forward and reverse osmosis operating conditions.

Figure 1: The water-selective aquaporin protein incorporated in the vesicle wall.


1. Shaffer, D.L., et al., Forward osmosis: Where are we now?, Desalination, 2015. 356.

2. Tang, C., et al., Biomimetic aquaporin membranes coming of age, Desalination, 2015. 368.

3. Murata, K., et al., Structural determinants of water permeation through aquaporin-1, Nature, 2000. 407(6804).

4. Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 1997. 277(5330).

‘Investigating the influence of molecular weight on the stability and performance of Asymmetric Polyelectrolyte Multilayer Membranes for micro-pollutant removal’

Master assignment

‘Investigating the influence of molecular weight on the stability and performance of Asymmetric Polyelectrolyte Multilayer Membranes for micro-pollutant removal’

Jurjen Regenspurg (

Within the Membrane Surface Science Group (MSuS), part of the Membrane Science & Technology (MST) cluster of the University of Twente, The Netherlands ( we have a vacancy for a Master student.         

Project Description

New membrane materials are urgently needed to address the increasing concentrations of harmful organic micropollutants (e.g. pharmaceuticals, pesticides and plasticizers) in our surface and drinking water. These micropollutants have potential negative effects on human health and long-term health effects are still unknown for the majority of micropollutants. Conventional wastewater treatment plants (WWTPs) are not capable of fully removing micropollutants from wastewater. Using the densest available membranes micropollutants can be removed but this comes with many disadvantages, making it too costly to apply in WWTPs. 

A very promising method to tackle these micropollutants is by using polyelectrolyte multilayer membranes. Using the Layer-by-Layer (LbL) technique we are able to create polyelectrolyte multilayers (PEM). By dip coating alternatingly in polycation and polyanion solutions we build up polyelectrolyte multilayers on hollow fiber membranes. Even better membrane efficiencies are  obtained by turning to asymmetric coating of polyelectrolyte multilayers. First, a highly permeable polyelectrolyte multilayer is coated on a support membrane to close the pores. Secondly, a dense separation layer of only 4 nm in thickness is coated for selectivity. This way of coating results in asymmetric polyelectrolyte multilayer membranes that retain 98% of micropollutants while maintaining high permeabilities1.

During this project you will investigate the influence of polyelectrolyte molecular weight (Mw) on the performance of asymmetric PEM membranes. The performance of the asymmetric PEM membranes is tested by means of zeta potential, reflectometry, retention of salts and MPs, and pure water permeability measurements.

(1)          Brinke, E.; Reurink, D. M.; Achterhuis, I.; Grooth, J. De; Vos, W. M. De. Layers for Highly Efficient Micropollutant Removal. Appl. Mater. Today 2019, No. xxxx, 100471.

Influence of Ion Concentration on Polyelectrolyte Multilayer based Nanofiltration Membrane Performance

Influence of Ion Concentration on Polyelectrolyte Multilayer based Nanofiltration Membrane Performance (MSc assignment)


In recent years a variety of micropollutants have been detected in ground- and surface water [1]. Micropollutants are small organic molecules with variable chemical properties that originate among others from industrial, medical and agricultural waste. Many of these molecules are highly toxic, carcinogenic or endocrine-disrupting compounds [2]. Even though the observed concentrations are still below drinking water guidelines, these micropollutants are potentially harmful to humans, organisms and the environment, as there is very little knowledge on longtime exposure and possible synergetic effects [3]. Traditional water treatment methods are not able to sufficiently remove these, therefore advanced separation technologies need to be developed to prevent them from accumulating in our water cycle [4].

Dense membranes used in pressure-driven filtration processes such as reverse osmosis (RO) or nanofiltration (NF) are promising techniques that have been shown to retain most micropollutants [5]. The advantage of nanofiltration membranes over reverse osmosis membranes is the reduced energy cost due to lower pressures at very comparable separation performances. A relatively young and promising method to make nanofiltration membranes is to coat a very thin and selective separation layer on top of an open porous support structure using the Layer-by-Layer (LBL) method, developed by Decher in 1997 [6]. In this method polyelectrolytes of different charged are alternately coated on top of a charged substrate. The layer formation is driven by electrostatic interactions between the polyelectrolyte chains and the entropic gain of counterion release.

Project details and outcome

In the cluster of Membrane Science and Technology these so-called Polyelectrolyte Multilayer (PEM) membranes are developed and investigated. Depending on the membrane coating conditions the structure and with that the membrane performance, solute selectivity and solvent permeability can be changed. At the same time, it is hypothesized, that the membrane performance directly depends on the type and concentration of ions present during filtration. In addition to ion adsorption and charge screening effects, commonly observed phenomena for nanofiltration, the PEM structure might change significantly for different ions and ion concentrations, which has been recently observed in QCM-D studies of PEM swelling behavior [7].

The aim of this research is to investigate the influence of ion concentration on PEM performance related to structural changes. The focus will be on macroscopic transport measurements conducted with coated ultrafiltration membranes. Simultaneously structural characteristics of the multilayer, coated on a model surface, will be investigated. Following these detailed experimental studies, the applicability of a nanofiltration model based on the extended Nernst-Planck equation for the prediction of membrane retention accounting for ion adsorption, charge screening and structural changes shall be investigated.

Your tasks:

·         prepare and characterize PEM hollow fiber membranes

·         conduct macroscopic transport measurements

·         investigate swelling properties for different salts and salt concentrations

·         apply a transport model to describe membrane performance

For more information please contact Moritz Junker (

1.Aa, N. G. F. M. v. d.; Dijkman, E.; Bijlsma, L.; Emke, E.; Ven, B. M. v. d.; Nuijs, A. L. N. v.; Voogt, P. d., Drugs of Abuse and Tranquilizers in Dutch Surface Waters, Drinking Water and Wastewater - Results of Screening Monitoring 2009. National Institute for Public Health and the Environment 2010.

2.Trapido, M.; Epold, I.; Bolobajev, J.; Dulova, N., Emerging micropollutants in water/wastewater: growing demand on removal technologies. Environmental science and pollution research international 2014, 21 (21), 12217–12222.

3.Verliefde, A.; Cornelissen, E.; Amy, G.; van der Bruggen, B.; van Dijk, H., Priority organic micropollutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration. Environmental pollution (Barking, Essex : 1987) 2007, 146 (1), 281–289.

4.Tröger, R.; Klöckner, P.; Ahrens, L.; Wiberg, K., Micropollutants in drinking water from source to tap - Method development and application of a multiresidue screening method. Science of The Total Environment 2018, 627, 1404–1432.

5.Yangali-Quintanilla, V.; Maeng, S. K.; Fujioka, T.; Kennedy, M.; Amy, G., Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. Journal of Membrane Science 2010, 362 (1), 334-345.

6.Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277 (5330), 1232–1237.

7.O’Neal, J. T.; Dai, E. Y.; Zhang, Y.; Clark, K. B.; Wilcox, K. G.; George, I. M.; Ramasamy, N. E.; Enriquez, D.; Batys, P.; Sammalkorpi, M.; Lutkenhaus, J. L., QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure to Monovalent Ions. Langmuir 2018, 34 (3), 999-1009.

Polyelectrolytes for new generation reverse osmosis hollow fiber membranes

Dennis Reurink (1), Wiebe M. de Vos (1)

(1)Membrane Surface Science (MSuS)


Nowadays most membranes for nanofiltration (NF) and reverse osmosis (RO) are based on thin film composite (TFC) membranes. On a TFC membrane, a thin film is coated on a porous support with interfacial polymerization. A major disadvantage is that defect free hollow fiber membranes based on the TFC principle is merely impossible [1]. A new versatile technique for membrane the self-assembly of oppositely charged polyelectrolytes (PEs) on the surface of a porous ultrafiltration support membrane. In this so-called Layer-by-Layer (LbL) assembly, the support membrane is alternatively exposed to polycations and polyanions [2]. Such a polyelectrolyte multilayer (PEM) coating is easily applied on all geometries. In this study, the focus will be to create a PEM based membrane suitable for RO applications. In order to achieve RO performance, PEMs should be made as dense as possible by means of crosslinking and the use of different kinds of PEs. Subsequently, the layer will be characterized and tested on its RO performance.


Creating more intrinsic bonds will increase the rejection properties of an active membrane layer. Crosslinking is a manner to create more intrinsic bonds and can easily be done by heat or a catalyst. Many moieties of PEs are amines or carboxylic acids which can easily be crosslinked, as shown in Figure 1.

Crosslinking of PEMs has already shown to be a promising way to create an active layer capable of retaining salts [3]. For FO purposes, the layer has to be as dense as possible in order to cope with highly concentrated saline streams. In order to control the layer density, different materials can be used that influence the intermolecular distance.

In this MSc project, different types of crosslinking techniques and materials will be evaluated. Materials will vary from aliphatic, branched, to aromatic structures while controlling and monitoring the performance of the membrane. 


PEMs can be made by dip-coating silicon wafers or membranes in a solution containing a certain polyelectrolyte. The growth and properties of these multilayers can be monitored by using techniques like reflectometry, ellipsometry, contact angle, and zeta potential measurements. 

Crosslinking can be done catalyzed or non-catalyzed. Non-catalyzed reactions take place under the influence of heat. To see if crosslinking has taken place, the layer will be characterized by, e.g., FTIR measurements.

The knowledge obtained from model surfaces (silicon wafers) will be translated into hollow fiber membranes. The membranes will be coated and crosslinked under the same conditions as the model surfaces and will be tested on their performances in forward osmosis operating conditions.

Figure 1: Crosslinking of polyelectrolyte multilayers [4].


1. Lau, W.J., et al., A recent progress in thin film composite membrane: A review, Desalination, 2012. 287.

2. Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 1997. 277(5330).

3.  Park, J., et al., Desalination membranes from pH-controlled and thermally-crosslinked layer-by-layer assembled multilayers, Journal of Materials Chemistry, 2010. 20(11).

4.  Sullivan, D.M. and M.L. Bruening, Ultrathin, cross-linked polyimide pervaporation membranes prepared from polyelectrolyte multilayers, Journal of Membrane Science, 2005. 248(1-2).

Studying the nanoscale properties of polymer brush coatings with different architectures

Joshua Willott (1), Wiebe M. de Vos (1)

 (1) Membrane Surface Science (MSuS)

Project Outline

Solid surfaces coated with water-soluble stimuli-responsive polymers (specifically end-tethered brushes) exhibit many diverse macroscopic behaviors such as tuneable wettability and lubrication. For these promising coatings to be applied in ‘real world’ scenarios their nanoscale properties (solvation, charge state, thickness) and how they response to stimuli (pH, temperature, salt) and stresses (confinement, added foulants like surfactants, particles) must be very well understood.

The scope of this project encompasses designing specific polymer architectures to control the responsive nature of end-tethered polymer layers. Recently, it has been shown that polydispersity within such layers can be used to control its thickness response. However, this is difficult to achieve synthetically, and something that can be easier to control is polymer architecture. The polymeric layers will be designed and then studied using numerical self-consistent field theory (Willott et al. 2018, Macromolecules 51, 1198-1206 and Langmuir, 2019, 35, 2709-2718) with comparisons made to experimental observations.


Project Description

In this project, you will work to investigate how the architecture (molecular structure) of end-tethered polymer chains (e.g. linear, star, comb, dendrimer) changes their solution behaviour. The polymer response to stimuli including temperature, pH, salt concentration and salt type will also be studied by changing the type of monomers (or segments) and the solvent. Preliminary work shows that architecture is a control parameter for brush behaviour as shown in Figure 1 where linear and comb polymers are compared. Figure 1 also shows that behaviour depends on which sections within the brush contain the responsive monomers.

Figure 1. Thickness response of the polymer layer as a function of chi parameter (proportional to temperature) for linear vs. comb polymer architectures.