See Research Topics

Scanning SQUID microscopy

     SSM image of LaMnO3 contacts.  SSM image of an array of pi-loops.

A SQUID (Superconducting Quantum Interference Device) is an extremely sensitive sensor for magnetic flux. Using micro-fabricated SQUID sensors, the Scanning SQUID Microscope presents a powerful scanning probe technique to locally image magnetic fields. We use scanning SQUID microscopy for various studies, such as on the occurrence of ferro-magnetism in novel thin film materials and heterostructures and for the study of fractional vortices occurring in p-phase shift structures employing the d-wave symmetry of the high-Tc superconducting state.

Selected recent & key publications

M.I. Faley, P. Reith, V.S. Stolyarov, I.A. Golovchanskiy, A.A. Golubov, H. Hilgenkamp and R.E. Dunin-Borkowski, pi-loops with ds Josephon Junctions, IEEE Transactions on Applied Superconductivity (2018).

H. Boschker, T. Harada, T. Asaba, R. Ashoori, A.V. Boris, H. Hilgenkamp, C.R. Hughes, M.E. Holtz, L. Li, D.A. Muller, H. Nair, P. Reith, X. Renshaw Wang, D.G. Schlom, A. Soukiassian, J. Mannhart, Ferromagnetism and conductivity in atomically thin SrRuO3, Physical Review X (2019).

L.V. de Groot, K. Fabian, A. Béguin, P. Reith, A. Barnhoorn, H. Hilgenkamp, Determining individual particle magnetizations in assemblages of micro‐grains, Geophysical Research Letters (2018).

P. Reith, X. Renshaw Wang, H. Hilgenkamp, Analysing magnetism using scanning SQUID microscopy, Review of Scientific Instruments, vol. 88, 123706 (2017).

X. Renshaw Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, H. Hilgenkamp, Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures, Science, vol. 349, 716-719 (2015). 

For more publications, see: List of publications