Scientific Staff

André Poot


Email: a.a.poot@utwente.nl
Tel: +31 53 4893671
Room: Zuidhorst 243

SCIENTIFIC EDUCATION AND PROFESSIONAL EXPERIENCE

2001 – present

Assistant Professor, Department of Polymer Chemistry and Biomaterials, as from 01-01-2010 Biomaterials Science and Technology, University of Twente.

1992-2001

Senior Researcher, Department of Polymer Chemistry and Biomaterials, UT.

1989-1992

Post-doc, Endothelialization of artificial surfaces, Department of Biomedical Materials Technology, UT.

1984-1989

PhD Thesis, Protein adsorption and platelet deposition on biomaterials: in vitro studies concerning biocompatibility. Department of Materials Technology, UT.

RESEARCH INTERESTS

Effects of fluid shear on endothelial cell signal transduction. Tissue engineering of small-diameter blood vessels and nerve guides. Angiogenesis of tissue-engineered constructs. Effects of fluid shear on (mesenchymal) stem cell differentiation. Induced pluripotent stem cells for tissue engineering. Microfluidics and organs-on-chip.

CELL-MATERIAL INTERACTIONS AND TISSUE ENGINEERING

The vision of the cluster is to perform excellent research and education in the field of cell-material interactions and tissue engineering. The current research activities are focused on three main areas:

CELL-MATERIAL INTERACTIONS

The main focus of this area is to understand and improve the adhesion and proliferation of endothelial cells on natural and artificial surfaces.

TISSUE ENGINEERING

Efforts are directed at the preparation of small-diameter vascular grafts and nerve guides.

ORGAN-ON-A-CHIP

The aim of this area is to prepare a lung-on-a-chip for the development of novel strategies to regenerate damaged lung tissue.




TISSUE ENGINEERING OF SMALL-DIAMETER ARTERIAL GRAFTS AND NERVE GUIDES
(PhD student: Zhengchao Guo)

In view of its biocompatibility, mechanical properties and degradation behavior, poly(trimethylene carbonate) (PTMC) is a very suitable polymer for the preparation of tissue engineering scaffolds. The aim of this project is to prepare PTMC scaffolds for vascular tissue engineering and nerve regeneration by photopolymerization (e.g. stereolithography).


DEVELOPMENT OF A LUNG-ON-A-CHIP
(PhD student: Thijs Pasman)

In this project, lung alveolar epithelial cells and microvascular endothelial cells will be cultured on curved, flexible and elastic PTMC membranes in a chip. This lung-on-a-chip will subsequently be used to develop novel strategies for lung regeneration as well as the engineering of bioartificial lung tissue.


hMSCs on PEO:Gelatin (1:1) hydrogel

HYBRID NETWORKS FOR REGENERATIVE MEDICINE
(PhD student: Jia Liang)

Although synthetic polymers may have suitable physicochemical properties for biomedical applications, biological properties are generally lacking. In this project we are developing hybrid networks consisting of natural and synthetic polymers with optimal properties for applications in regenerative medicine.


Bachelor and Master assignments are possible in all three areas.

For more information contact:
Dr. André Poot
a.a.poot@utwente.nl
Tel: +31 (0)53 4893671 or +31 (0)53 4892968

PUBLICATIONS

https://research.utwente.nl/en/persons/aa-poot/publications/ 

OTHER ACTIVITIES

  • Reviewer for scientific journals: a.o. Biomaterials, Journal of Biomedical Materials Research, Acta Biomaterialia, Frontiers in Neuroengineering, Tissue Engineering, Macromolecular Bioscience, and Biofabrication.
  • Safety officer.
  • Project leader genetically modified organisms (GMO).