UTMax Planck CenterResearchMicro/Nanoparticle Synthesis

Micro/Nanoparticle Synthesis

Colloids can be nowadays synthesized with increasingly specific and complex properties for new materials and bio-medical applications. Particles suspended in a liquid, known as a colloid, are versatile and flexible in their uses. They are found everywhere in our daily lives, from mother's milk to adhesives and automobile paint to the most modern technologies. The special properties of colloids can therefore be adapted in each case to the intended purpose. That facilitates the enormous versatility of the miniemulsion process. From the encapsulation of dedicated molecules, like drugs, self-healing agents etc. through to generation of extremely small nanostructures, these simple spheres can be utilised with a highly uniform size and a defined functionality of the surface. The significance of the miniemulsion technique is that it is possible to use a wide variety of polymerization techniques with a wide range of monomers. Hereby important factors like size, shape, degradation, release kinetics, surface functionalization can be precisely tuned as requested. The continual progress in knowledge about the properties of nanoscale objects and their interactions with living tissue like cells or with electromagnetic radiation opens diverse opportunities. 

The following research groups in the Max Planck Center work in this topic: