Patryk Rygiel

VASCUL-AID

Novel geometric deep learning methods for patient-specific risk assessment and progression of cardiovascular diseases based on multimodal imaging techniques

Organization:

Funded by:

VASCUL-AID (Horizon Europe)

PhD:


Supervisors:

chair MIA:

Daily supervisor:



Collaboration:


Dr. Kak Khee Yeung (Amsterdam UMC)

Description:

The aim of VASCUL-AID is to predict the risk of cardiovascular events and progression of the vascular diseases abdominal aortic aneurysm (AAA) and peripheral arterial disease (PAD). This information will be used improve the patient’s quality of life and care and assisting clinicians to make better-informed decisions involving the patient.

Automatic analysis and outcome prediction of cardiovascular diseases based on medical images is a crucial step in personalized treatment. In recent years, geometric deep learning (GDL) has been shown to be a very efficient approach to modelling patient-specific hemodynamic and biomechanical processes. These techniques can work directly on the 3D data represented in the form of meshes, point clouds or 3D spatial graphs as well as exploiting the symmetries thereof for better efficiency.

In this project, we aim to develop novel geometric deep learning methods integrating various imaging techniques for risk and progression assessment of cardiovascular diseases, in particular AAA and PAD. We will look into deep learning models that utilize geometric and physics-based features to accurately model hemodynamics and biomechanics in (automatically extracted) 3D shapes of vasculatures. Moreover, we aim to study the temporal aspect of the disease progression by taking into account short-term (heart cycle) and long-term (longitudinal data) changes in vasculature shape and its biomechanics. Together with 15 international partner organizations, we aim to leverage geometric deep learning to improve personalized treatment of CVD patients.

Output:

Publications:

2025

Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior (2025)Computer methods and programs in biomedicine, 271. Article 108958. Suk, J., Nannini, G., Rygiel, P., Brune, C., Pontone, G., Redaelli, A. & Wolterink, J. M.https://doi.org/10.1016/j.cmpb.2025.108958Learning hemodynamic scalar fields on coronary artery meshes: A benchmark of geometric deep learning models (2025)Computers in biology and medicine, 195. Article 110477. Nannini, G., Suk, J., Rygiel, P., Saitta, S., Mariani, L., Maranga, R., Baggiano, A., Pontone, G., Wolterink, J. M. & Redaelli, A.https://doi.org/10.1016/j.compbiomed.2025.110477Wall Shear Stress Estimation in Abdominal Aortic Aneurysms: Towards Generalisable Neural Surrogate Models (2025)[Working paper › Preprint]. ArXiv.org. Rygiel, P., Suk, J., Brune, C., Yeung, K. K. & Wolterink, J. M.https://doi.org/10.48550/arXiv.2507.22817Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces (2025)[Working paper › Preprint]. ArXiv.org. Alblas, D., Rygiel, P., Suk, J., Kappe, K. O., Hofman, M., Brune, C., Yeung, K. K. & Wolterink, J. M.https://doi.org/10.48550/arXiv.2506.08729Active Learning for Deep Learning-Based Hemodynamic Parameter Estimation (2025)[Working paper › Preprint]. ArXiv.org. Rygiel, P., Suk, J., Yeung, K. K., Brune, C. & Wolterink, J. M.https://doi.org/10.48550/arXiv.2503.03453Learning Hemodynamic Scalar Fields on Coronary Artery Meshes: A Benchmark of Geometric Deep Learning Models (2025)[Working paper › Preprint]. ArXiv.org. Nannini, G., Suk, J., Rygiel, P., Saitta, S., Mariani, L., Maragna, R., Baggiano, A., Pontone, G., Wolterink, J. M. & Redaelli, A.https://doi.org/10.48550/arXiv.2501.09046

Pictures: