Organization:
Funded by: | NWO - OCENW.KLEIN.183 |
PhD: | |
Daily Supervisor: Supervisor: | |
Collaboration: | - |
Description:
The research aims at the construction of efficient and accurate numerical methods for solving the radiate transfer equation (RTE) with polarization. The high-dimensionality of the RTE and the low regularity of its solution make the numerical approximation challenging. We intend to construct an efficient numerical method by combining structure preserving approximations with sparse grid methods
Output:
publications:
2024
On the unique solvability of radiative transfer equations with polarization (2024)Journal of differential equations, 393, 174-203. Bosboom, V., Schlottbom, M. & Schwenninger, F. L.https://doi.org/10.1016/j.jde.2024.02.022
2023
A metriplectic formulation of polarized radiative transfer (2023)Journal of physics A: mathematical and theoretical, 56(34). Article 345206. Bosboom, V., Kraus, M. & Schlottbom, M.https://doi.org/10.1088/1751-8121/aceae2Analysis and systematic discretization of a Fokker-Planck equation with Lorentz force (2023)[Working paper › Preprint]. ArXiv.org. Bosboom, V., Egger, H. & Schlottbom, M.https://doi.org/10.48550/arXiv.2304.01937A metriplectic formulation of polarized radiative transfer (2023)[Working paper › Preprint]. ArXiv.org. Bosboom, V., Kraus, M. & Schlottbom, M.https://doi.org/10.48550/arXiv.2301.07576
2022
Structure-preserving discretizations for the radiative transfer equation (2022)[Contribution to conference › Poster] 46th Woudschoten conference 2022. Bosboom, V. & Schlottbom, M.On the unique solvability of radiative transfer equations with polarization (2022)[Working paper › Working paper]. ArXiv.org. Bosboom, V., Schlottbom, M. & Schwenninger, F. L.https://doi.org/10.48550/arXiv.2203.03233