MESA+ University of Twente
Inorganic Materials Science Group



Ceramic materials, one kind of the most important materials in human society are widely used in the medicine, electrical and electronics industries nowadays. Those materials are made from compounds of metals and nonmetals and the covalent bonds play a key role in those materials so that ceramics normally tend to be strong, stiff, brittle, chemically inert, and non-conductors of heat and electricity. Being brittle is a fatal drawback for ceramics and largely hinders their applications in many field, so how to make ceramics less-brittle have been always attracting a large amount of attentions from materials researchers[1-4].

Recently, 2D materials(nanosheets) as representative of graphene show very attractive properties apart from traditional 3D materials[5-12]. Nanosize effect of 2D materials are expected to offer nanosheet of the materials high flexibility, which could provide an alternate way to realize ceramics less-brittle, even soft or flexible by designing proper architectures of nanosheets. One of viable ways is to design organic-inorganic hybrid materials based on nanosheets.

Hybrid materials are composites consisting of two constituents at the nanometer or molecular level. Commonly one of these compounds is inorganic and the other one organic in nature. Thus, they differ from traditional composites where the constituents are at the macroscopic (micrometer to millimeter level). Mixing at the microscopic scale leads to a more homogeneous material that either shows characteristics in between the two original phases or even new properties.

To explore soft or flexible ceramics, our interests are mainly focused on investigation of accommodation capacity of interlayer space of layered materials by two approaches (see figure 1) and the mechanical property of nanosheets.

Figure 1 the schematic of approaches to study soft ceramics

1. Waku, Y.; Nakagawa, N.; Wakamoto, T.; Ohtsubo, H.; Shimizu, K.; Kohtoku, Y. Nature 389, (6646), 49.

2. Panneerselvam, M.; Aggarwal, N.; Subanna, G. N.; Rao, K. J. Advanced Engineering Materials 2003, 5, (4), 243-246.

3. Yeomans, J. A. Journal of the European Ceramic Society 2008, 28, (7), 1543-1550.

4. Sun, Y.-l.; Zuo, D.-w.; Wang, H.-y.; Zhu, Y.-w.; Li, J. Int J Miner Metall Mater 2011, 18, (2), 229-233.

5. Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, (3), 183-191.

6. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, (5887), 385-388.

7. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, (7065), 197-200.

8. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, (7100), 282-286.

9. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, (1), 109-162.

10. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2012, 6, (2), 1322-1331.

11. Tang, Q.; Zhou, Z.; Shen, P. W. J. Am. Chem. Soc. 2012, 134, (40), 16909-16916.

12. Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J. Mater. Chem. 2010, 20, (14), 2801-2806.