Technical Optics

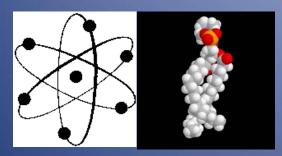
Femi Ojambati

Pepijn Pinkse

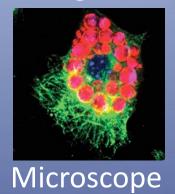
Applied NanoPhotonics

Light: central source of information

Human communication



Optical retrieval of ancient data

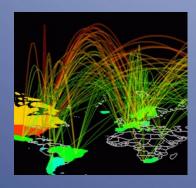

Optical Instruments: gain knowledge about the "invisible"

Atoms & Molecules

Spectrometer

Living Cells

Universe


What is this?

Relevance of Technical Optics

Health

Communications

Economy

Environment

Social

Technical Optics

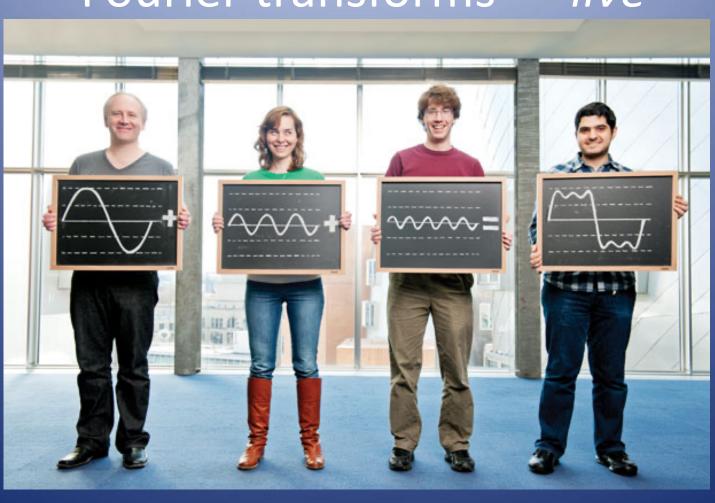
- I Lectures on the themes:
 Fourier transformations for EM waves
 e.g. holography,
 mode-locked lasers,
 advanced microscopy,
 no-go theorems
- II **TO road trip** to academic / industrial research places
- III Student lectures with coaching and feedback

Technical Optics

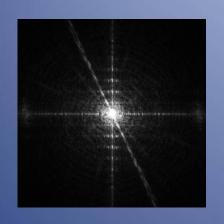
- Lectures on the themes:Fourier transformations for EM wavese.g. holography, mode-locked lasers, images, no-go theorems
- II TO road trip to academic / industrial research places
- III Student lectures with coaching and feedback

Lecturers: Femi Ojamba

Pepijn Pinkse


Book: Optics, 5th ed. by Eugene Hecht

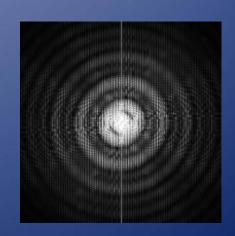
Grades: 60% written exam (covering topics from part I)

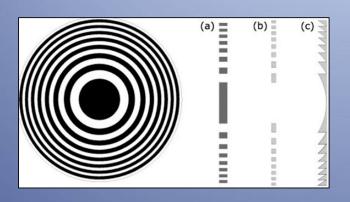

20% homework

20% presentation including annotations

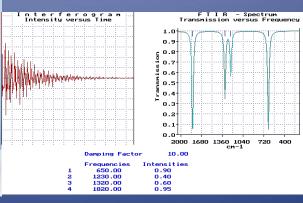
The bridging item: Fourier transforms — live

The bridging item: Fourier transforms — live

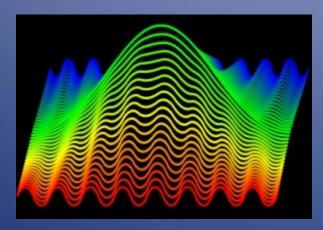


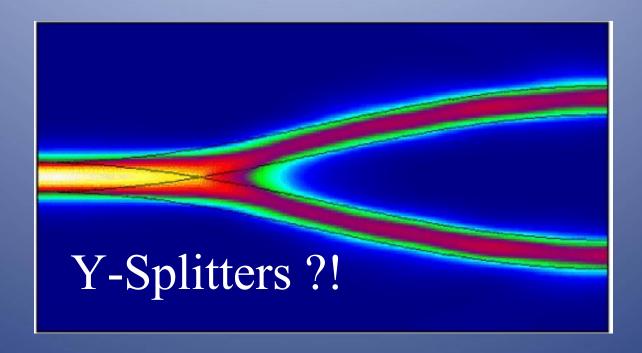


The bridging item: Fourier transforms — *live*

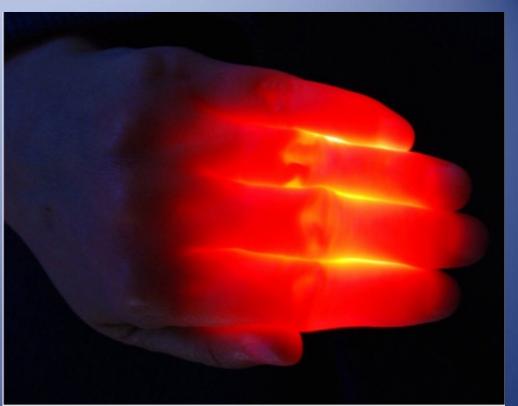

Hi, Dr Pinkse? Yeah, Uh... I accidentally took the Fourier transform of my cat... Meow!

Applications of FT in optics

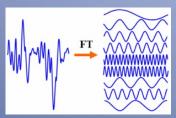


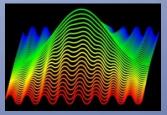

Can this be true?

Shape light in time


No-go Theorems

Time-reversal, Etendue, Phase-Space arguments


Shape wavefronts through "stuff"!



To be achieved

1. Understand more of the beauty of light

2. Follow up great Dutch scientists

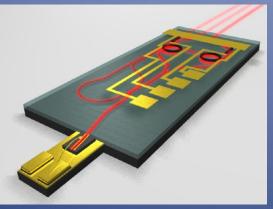
3. Prepare for your next adventures and jobs

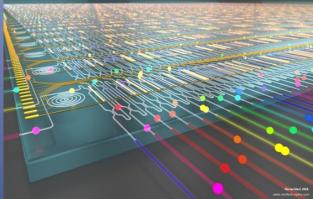
Beyond Technical Optics:

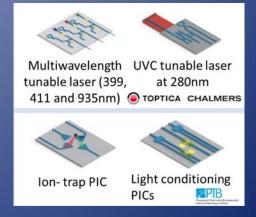
- Internship
- MSc project
- PhD ?

Applied Nanophotonics		
General Appl	ied Nanopotonics	
Specialisation	course	
202200044	Fundamentals of Photonics	5
Biomedical O	ptics	
Specialisation	courses	
202200295	Laser Physics and Nonlinear Optics	5
202000663	Molecular Structure and Spectroscopy (part of AT module 9)	2.5
193500000	Biomedical Optics	5
Integrated Op	otics	
Specialisation	courses	
202200295	Laser Physics and Nonlinear Optics	5
191210880	Integrated Optics	5
202200045	Integrated Photonic Systems and Experiments	5
Light and Ma	tter Interaction	
Specialisation	courses	
202200046	Light and Matter	5
202200047	NanoPlasmonics	5
202200048	Quantum and Classical Emitters	5
Quantum Opt	tics	
Specialisation		
202100083	Quantum Optics	5
191210880	Integrated Optics	5
202100078	Quantum Information	5
Recommende	d elective courses ANP cluster	
	All courses from the other specialisations within the ANP cluster	
201700034	Introduction to Partial Differential Equations	5
201500405	Complex Function Theory	3
202200103	Image Processing and Computer Vision	5

Begin with serious fun in optics & photonics


Examples of recent ANP collaborative highlights


see-through


Lowest linewidth

Quantum photonic processor

Quantum PICs

COPS & NBP

LPNO & OS

LPNO & AQO

iOS & AQO

Hope to see you soon!

