Remote Control of Experiments (RCE)(202001416)

Jeroen W.J. Verschuur

University of Twente

December 16th; 2020

Jeroen W.J. Verschuur (UT)

Remote Control of Experiments (RCE)(202001416)

December 16th; 2020 1/19

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

2 Content of the course

- Introductory problems
- Computer Interfacing with DAQmx
- Remote system: cRIO
- Remote system: myRIO
- Sensors & Actuators

3 Example

- 4 Final Assignment
- 5 Learning outcomes, Grading and Scheduling

6 end

- 24

4 3 6 4 3 6

Motivation

- Modern techniques for an engineer: Control via computer.
- Inspired by the Covid-19 virus: Work remote!
- Implemented in own experiments in the SLT-laboratories.
- Experimental counterpart of Computational Physics.

-

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

The context

- Hardware:
 - Your laptop.
 - An embedded system, with interface to the real world.
 - A set of sensors and actuators
- Software:
 - NI LabVIEW: a graphical programming language.
 - A large library of functional objects.
 - A measurement explorer application.
 - optional FPGA-programming.
- Communication:
 - Network
 - Bus: i2C or SPI
 - USB

-

Introductory problems

- Introduction to Graphical Programming
- Realize basic functions in VI's
- programming structure:
 - Front panel: controls and indicators
 - Wire panel: graphical programming
 - Connections
 - Loops
 - Cases
 - Data structures
- Interfacing with the real world

- 34

・ 同 ト ・ ヨ ト ・ ヨ ト

DAQmx

- Introduction DAC, ADC and DIO
- Concept of local limited intelligence and control from program
- Explore structure of interface
- Explore and test limits of the interface hardware software
 - timing
 - resolution
 - control

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

The cRIO system

Figuur: The cRIO system.

Jeroen W.J. Verschuur (UT)

Remote Control of Experiments (RCE)(202001416)

December 16^{th} ; 2020 8 / 19

- 34

A D > A P > A B > A B >

The cRIO system

- Introduction to cRIO system: embedded computer + FPGA
- Bus-rack with dedicated interface modules
- Real-time programming
- Communication between computer and embedded CPU
- Principles of distributed computing and control
- FPGA programming (limited)

4 E 6 4 E 6

Remote system: myRIO

Remote system: myRIO

- Introduction to the myRIO system
- Explore myRIO and parallels with the cRIO
- Real-time programming
- Communication between computer and myRIO
- FPGA programming (limited)
- myRIO smart-sensor/actuator communication (I2C-protocol)

-

・ 同 ト ・ ヨ ト ・ ヨ ト

Sensors & Actuators

Pmod Modules with I2C protocol

11/19

Use of sensors in real-time programming

- Explore smart-sensor modules: Pmod
- Explore communication protocols between myRIO and Pmod's
- Realize a simple Pmod project
- Explore the limits of the system
 - Timing and speed issues
 - Resolution
 - Controllability

E ∽QQ

(4 同) (4 日) (4 日)

Example

Jeroen W.J. Verschuur (UT)

Remote Control of Experiments (RCE)(202001416)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ● **December** 16th; 2020

14/19

Example

Jeroen W.J. Verschuur (UT)

Remote Control of Experiments (RCE)(202001416)

December 16^{th} ; 2020 15/

15 / 19

æ

Final Assignment

The final assignment:

- Short assignment (2.5 EC variant) or Extended assignment (5 EC variant)
- You can propose your own final assignment
- Combinations with work for your Bachelor assignment are possible
- We have a collection of possibilities for a final assignment (mainly short ones)

= 990

・ロッ ・雪ッ ・ヨッ

Learning outcomes

Computer as tool:

- Control of laboratory equipment.
- Computer interfacing with experiments for measurements (automation).
- Analysis and presentation of measurement data.
- Set up measurement-control-steer loops.

Programming environment LabVIEW:

- Graphical programming diffusing the hardware-software interface.
- Design and realise a functional user interface to control an experiment.
- Communication & synchronisation of processes.
- Set-up distributed control & measurement structures.

Engineering:

- Design a (remote) measurement-control system.
- Realise the system using the appropriate hardware and software.
- Test the system, make a performance report and compare with the design criteria.

Scheduling & Grading

Scheduling:

- Choose between 2.5 EC $(8 \times 4h)$ and 5 EC $(16 \times 4h)$ variant
- Sessions scheduled in cooperation with coordinator and availability of lab
- The two versions differ in the extend of the final assignment

Grading:

- Compact journal of the introductory problems
- Report on the final assignment
- Discussion of the work and results

= ~~~~

・ロッ ・雪ッ ・ヨッ

end

end

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの