Soft Matter Physics in 2025

Rao Vutukuri Active Soft Matter group <u>H.R.Vutukuri@utwente.nl</u> Zuidhorst 156

Michel Duits Physics of Complex Fluids group <u>M.H.G.Duits@utwente.nl</u> Meander 158

Soft Matter in daily life

Passive Materials

Living systems

Blood Gut Bacteria

What defines Soft Matter?

Soft matter

From Wikipedia, the free encyclopedia

For the journal, see Soft Matter (journal).

Soft matter or **soft condensed matter** is a subfield of condensed matter comprising a variety of physical systems that are deformed or structurally altered by thermal or mechanical stress of the magnitude of thermal fluctuations. They include liquids, colloids, polymers, foams, gels, granular materials, liquid crystals, pillows, flesh, and a number of biological materials. These materials share an important common feature in that predominant physical behaviors occur at an energy scale comparable with room temperature thermal energy. At these temperatures, quantum aspects are generally unimportant.

Macroscopically:

- Easy to deform
- Relaxation time(s)
- (Quasi) equilibrium

physics

Microscopic Origins

- Length scales: small + 'large'
- Thermal collisions, energy $\sim k_B T$
- Reversible self-assembly

Polymers in solution + charge and salt

Elastic and visco-elastic behavior

$$\sigma(t) = \sum_{i} G(t - t_i) \Delta \gamma_i = \sum_{i} G(t - t_i) \dot{\gamma}(t_i) \Delta t$$

Colloids driven by $k_BT' + active motion$

$$m\frac{dv}{dt} = -\zeta v + F_r(t)$$
$$v(t) = \frac{1}{m} \int_{-\infty}^t dt_1 e^{-(t-t_1)/\tau_v} F_r(t_1)$$
$$\tau_v = m/\zeta$$

$$\begin{split} \langle \Delta r^2 \rangle &= \langle [r(t + \Delta t) - r(t)]^2 \rangle = v^2 t^2 + 4D_t t \\ \langle \Delta \theta^2 \rangle &= \langle [\theta(t) - \theta(0)]^2 \rangle = \omega^2 t^2 + 2D_r t \end{split}$$

Diffusiophoresis

$$V_{dp} = \mu_m \nabla C$$

$$\mu_m = \varepsilon \psi_{zeta} / \eta$$

Spontaneous motion of colloidal particles or molecules in a fluid, induced by a concentration gradient of a different substance

Learning Objectives

After passing this course you will be able to:

- Explain the link between *microscopic* descriptions of Brownian motion and *macroscopic* diffusion laws
- Describe and solve common physical models of soft matter systems such as (viscoelastic) polymers, surfactants and ionic solutions
- Describe the key physical characteristics of active soft matter
- Interpret basic experimental data for techniques such as rheology

Topics, Material and Organization

Session	Date	Instructor	Topic	Material
1	Thu 6 Febr	Michel	Soft Matter solutions	Doi Ch 2
2	Fri 7 Febr	Michel	Elastic Soft Matter	Doi Ch 3
3	Tue 11 Febr	Michel	Tutorial Ch 2+3	Excercises
4	Fri 14 Febr	Rao	Brownian Motion	Doi Ch 6 + slides
5	Tue 25 Febr	Rao	Brownian Motion	Doi Ch 6 + slides
6	Fri 28 Febr	Rao	Brownian Motion	Doi Ch 6 + slides
7	Mon 3 March	Rao	Tutorial Ch6	Exercises
8	Fri 7 March	Rao	Soft Matter Dynamics	Doi Ch 7 [*]
9	Tue 11 March	Rao	Life at Low <i>Re</i>	Slides+ Exercises
10	Fri 14 March	Rao	Active Soft Matter	Slides+ Exercises
11	Tue 18 March	Michel	Rheology	Doi Ch 9* + slide:
12	Fri 21 March	Michel	Tutorial Ch 9	Excercises
13	Tue 25 March	Michel	Ionic Soft Matter	Doi Ch 10*
14	Fri 28 March	Michel	Tutorial Ch 10	Excercises
15	Tue 1 April	none	Literature study	Assigned paper
16	Fri 4 April	Both	Lit. presentation	
	Tue 15 April	Both	Exam (morning)	