UNIVERSITY OF TWENTE.

CHOIR SEMINAR

APRIL 19, 2013

RECENT UT PROJECTS AT MST

- Verminderen van wachttijden in de polikliniek urologie (Stijn Roersch)
- Zorgpaden op de polikliniek gynaecologie (Henrike Beltman en Roos Klever)
- Tackling the bed blocking problem at MST (Nienke van Dijk)
- Model for scheduling multi-skilled personnel at the Department of Clinical Neurophysiology (Bibianne Geerts)
- Matching capacity and demand An analysis of the planning issues at the gynecology clinic at MST (Lieske Kobes)
- Tactical planning for the gastrointestinal and hepatology department of Medisch Spectrum Twente: designing a tactical conceptual planning model for the outpatient clinic and the endoscopic clinic (Chantal Olde Keizer)

UNIVERSITY OF TWENTE.

REUSABLE ITEMS: HOW MUCH TO STOCK WHERE?

Ingrid Vliegen - University of Twente

Simme Douwe Flapper - Eindhoven University of Technology Pieter Wolbers - Logiqol Logistic Methods

Rogier Van Vliet - Medisch Spectrum Twente

REUSABLE ITEMS IN HOSPITALS

GENERAL SITUATION

- Demand for *items* (e.g., infusion pumps, beds)
- Demand occurs at *demand locations* (e.g., building, floors, departments)
- Items are stocked in a stock point
- An *employee* (nurse or logistics employee) has to collect the item
- In this presentation:
 - Focus on Syringe Infusion Pumps, departments and nurses.
- However, models are more general!

SITUATION DEPARTMENTS IN HOSPITAL HAVE OWN STOCK OF PUMPS

SITUATION IF PATIENT NEEDS A PUMP, A NURSE WILL GET IT

SITUATION BUT WHAT IF MORE PATIENTS NEED A PUMP?

SITUATION AFTER USAGE PUMPS ARE NOT ALWAYS RETURNED

SOME ISSUES

- A lot of walking and searching
 - Frustration
 - Feeling of shortage
 - Hoarding
- Longer waiting times for patients
 - Lower quality of care
- Not knowing where pumps are
 - Problematic for maintenance

UNIVERSITY OF TWENTE.

GOAL

- Whenever a demand for a pump occurs:
 - The right pump
 - Needs to be available
 - At the right location
 - Within the allowed time frame

CONTENTS

- Situation
- Literature
- Models
- Results
- Experiences MST

LITERATURE HEALTHCARE

- Reusable items have been studied, for instance:
 - Beds (Green, 2002, Nguyen et al., 2005, de Bruin et al., 2009)
 - Infusion pumps (Kemper et al., 2009)
 - ...

 But main focus on how many items are needed, not on where they should be stocked.

LITERATURE SERVICE LOGISTICS

- Multi-location models including:
 - Lateral transshipments (Kranenburg and van Houtum, 2009, Reijnen et al, 2010, van Wijk et al., 2011)
 - Back-up warehouse (Axsater et al., 2010, van Wijk et al., 2011)

- Assumption:
 - After usage items are replenished to the stock point they were delivered from

- Transportation items
- Packaging materials
- Tools
- See Carrasco-Gallego et al. (2009) for a review
- Ongoing research; not in this presentation

CONTENTS

- Situation
- Literature
- Models
- Results
- Experiences MST

MODELS ASSUMPTIONS

- Demand at each department occurs following a Poisson process
- If no of the stock locations has stock, an alternative needs to be found:
 - Renting from outside company or using a different treatment
 - Demand is lost for stock point under consideration
- Whenever the treatment of a patient is finished, the item goes back to the stock point where it was collected.

MODELS PERFORMANCE MEASURES

- Item costs:
 - Acquisition cost of the pumps
- Patient service level:
 - Percentage of time that an item is available within 30 minutes after demand
- Employee satisfaction:
 - Walking distance
 - Probability that multiple stock points need to be visited

UNIVERSITY OF TWENTE.

MODELS EACH DEPARTMENT HAS OWN STOCK

MODELS EACH DEPARTMENT HAS OWN STOCK

- Due to Poisson assumption and lost sales
 - Can be analyzed by Erlang loss system

• For each department *j*:
$$\frac{(\lambda_j)^{S_j}}{\sum_{i=0}^{S_j}}$$

• Min S_j S.t. $P_j^{lost} = \frac{\frac{(\lambda_j)^{S_j}}{S_j!}}{\sum_{i=0}^{S_j} \frac{(\lambda_j)^i}{i!}} < y$

Walking distance = 0

UNIVERSITY OF TWENTE.

MODELS ONE CENTRAL STOCK POINT

MODELS ONE CENTRAL STOCK POINT

- Due to Poisson assumption and lost sales
 - Can be analyzed by Erlang loss system

• For all departments together:
• Min S S.t.
$$P^{lost} = \frac{\frac{\lambda}{S!}S}{\sum_{i=0}^{S}\frac{\lambda_i}{i!}} < y$$

• Where $\lambda = \sum \lambda_j$

• Walking distance = $\Sigma_j \lambda_j$ * Distance to stock point from department *j*

UNIVERSITY OF TWENTE.

MODELS STOCKS ARE SHARED

MODELS STOCKS ARE SHARED

 Assuming all stock points can be reached within the maximum allowed time, the needed stock is the same as for one stock point, so:

For all departments together:
• Min S S.t.
$$P^{lost} = \frac{\frac{\lambda}{\mu}s}{\sum_{i=0}^{S}\frac{\lambda}{i!}} < y$$

 The stock is divided over the different stock points using a marginal analysis

MODELS STOCKS ARE SHARED

- Using the overflow algorithm of van Wijk et al. (2011), we can determine:
 - β_j: fraction of the demand for department *j* that is fulfilled directly from stock
 - α_{jk}: fraction of the demand for department *j* that is fulfilled from the stock point of department *k*
 - θ_i : fraction of the demand for department *j* that is lost
- Walking distance and average number of stock points visited can be determined from the above fractions, the order of which departments are visited and the distances.

MODELS ONE BACK-UP LOCATION

MODELS ONE BACK-UP LOCATION

- Using a greedy algorithm combined with the overflow algorithm of van Wijk et al. (2011), we can determine:
 - S
 - β_j: fraction of the demand for department *j* that is fulfilled directly from stock
 - α_{jk}: fraction of the demand for department *j* that is fulfilled from the back-up stock
 - θ_i : fraction of the demand for department *j* that is lost
 - Walking distance
 - Average number of stock points visited

MODELS ADVANTAGES AND DISADVANTAGES

	Item costs	Patient service level	Employee satisfaction
Own stock		++	++
One stock point	++		+/-
Shared stock	++	+/-	
Back-up stock point	+/-	+/-	+/-

MODELS NOT TAKEN INTO ACCOUNT

- Feeling of shortage
 - Hoarding
- Not knowing where pumps are
 - Problematic for maintenance

CONTENTS

- Situation
- Literature
- Models
- Results
- Experiences MST

RESULTS DEPARTMENTS AT EACH FLOOR

- Distances are small
- So, disadvantages one stock point disappear

	Item costs	Patient service level	Employee satisfaction
Own stock		++	++
One stock point	++	+	+
Shared stock	++	+/-	+/-
Back-up stock point	+/-	+	+

RESULTS FLOORS

- 3 floors
- 4 options studied:
 - A. One stock point
 - B. Two stock points, no sharing
 - C. Three stock points (each floor), no sharing
 - D. Three stock points (sharing)

RESULTS

UNIVERSITY OF TWENTE.

RESULTS

CONTENTS

- Situation
- Literature
- Models
- Results
- Experiences MST