Mathemagics

Nelly Litvak
Department of Applied Mathematics
Internet
Internet
Internet

Will the Internet stay connected?
Internet as a graph

• Servers/computers = vertices
• Connections = edges
• How will this graph look like?
• **Connected graph:**
 There is a path along edges from any vertex to any other vertex.

• Will the Internet stay connected under failures, overloads, attacks?
Mini-Internet

- A channel is available with probability p, $0 < p < 1$
- A channel is unavailable with probability $1 - p$
Probability to disconnect the network

\[3p(1-p)^2 + (1-p)^3 \]

- When \((1-p)\) is small, \((1-p) > 3p(1-p)^2 + (1-p)^3\)
- The network is more robust than one channel!
- **What about large networks?**
Erdös-Rényi random graph (1959)

- n vertices
- An edge between two vertices exists with probability p
- Independently of other edges
- Take $p = p(n)$

Theorem (Erdös-Rényi).
- If $p > \ln(n)/n$, then with high probability the network is **connected**
- If $p < \ln(n)/n$, then with high probability the network is **disconnected**
- If $p = \ln(n)/n$, then the network is **disconnected with probability, which converges to e^{-1}**
Phase transition

Ice turning to water at 0°C
Phase transition

- **Theorem (Erdös-Rényi).**
 - If $p > \ln(n)/n$, then with high probability the network is connected.
 - If $p < \ln(n)/n$, then with high probability the network is disconnected.
 - If $p = \ln(n)/n$, then the network is disconnected with probability, which converges to e^{-1}.

- Critical probability $p = \ln(n)/n$.
- Decreases with n.
- Again, larger networks are more robust.
Example

- $n=100$, $\frac{\ln(n)}{n} \approx 0.046$

$p=0.04$ $p=0.05$
Magic revealed

• Most likely way to get the network disconnected: completely disconnect at least one of the vertices
 • It is more difficult to disconnect a group of vertices
• $P(\text{one vertex is disconnected}) = (1 - p(n))^{n-1}$
• Average number of disconnected vertices $= n \ (1 - p(n))^{n-1}$
• Substitute $p(n) = c \ ln(n)/n$
\[
\lim_{n \to \infty} n \left(1 - \frac{c \ln(n)}{n}\right)^{n-1} = \lim_{n \to \infty} ne^{-c\ln(n)} = \lim_{n \to \infty} n^{1-c}.
\]

- If \(c<1\) then the average number of disconnected vertices goes to infinity
- If \(c>1\) then the average number of disconnected vertices goes to zero
- The actual number of disconnected vertices is close to its average
- If \(c=1\), the number of disconnected vertices converges to a Poisson(1) distribution, and \(P(\text{no disconnected vertices})=e^{-1}\)
Back to the Internet

• Erdös-Rényi random graph is not a realistic model for the Internet

• Hubs, backbone, bandwidth

• A lot of research on robustness of the Internet

• However, even the simplest model given important insights:
 • Robustness of large network
 • Phase transition
Mathemagics forever!

Release date: **02-03-2017**