
Searching for Objects in Graphs

Gabi Maduro Joris van der Meulen Matthijs Tijink

June 14, 2014

X

Y
Z

W

V

U

T

Searching for Objects in Graphs 0 Contents

Contents

1 Introduction 2

2 Research on Literature 3

3 Problem Statement 5

4 The Travelling Repairman Problem 7

5 A Dynamic Programming Algorithm 9

6 Visiting Leaf Nodes 14

7 Numerical Solutions 18
7.1 Optimal solution . 18
7.2 Heuristics . 18

8 Generating Trees 21
8.1 Branching Processes . 21
8.2 Preferential Attachment . 22

9 Predicting the Performance of Heuristics 24

10 Numerical Results 27

11 Conclusion & Discussion 30

12 References 32

1

Searching for Objects in Graphs 1 Introduction

1 Introduction

Our bachelor project is about finding hidden objects in graphs as fast as possi-
ble. Almost everyone frequently searches in graphs, consider for example large
networks as google or twitter. These networks can be described as graph and
the node you search for is a website or a person on twitter. The everyday use
is what makes our research relevant. The next example from another bachelor
thesis ([8]) inspired and motivated us to work on our problem. Consider a build-
ing with a lot of rooms and hallways in which a bomb is hidden. The bomb is
hidden in a certain room or hallway with a certain probability. If the building
is now looked at as a graph, with its rooms and hallways being the vertices and
the doors between rooms or hallways being the edges of the graph, finding the
fastest way to the bomb is an example of our problem.

To make the problem easier to handle, we made some assumptions. Firstly,
we limit the graph to be a tree. We do this because only a single path exists
between every pair of nodes, which makes analyzing the problem easier. Fur-
thermore, we will assume that the probability that the object is hidden in a
certain node is proportional to the degree of that node. This probability pro-
portional to the degree of nodes is used troughout the report except for section
5.In this section we use general probabilities.

In this report we first describe in section 2 the literature we found and what
we searched for. Next you will find our problem statement with mathematical
notation in section 3.

In our research on this problem we worked on three different aspects. The
first aspect, described in section 4 and 5, describes a way to convert the problem
to the travelling repairman problem and dynamic programming algorithm to
find the optimal walk which needs to be taken in order to find the hidden object
the quickest. We convert our original problem while the travelling repairman
problem is a known and studied problem and this may help us finding good
solutions.

After that a mathematical proof is given in section 6, which is the second
aspect. The property we prove in this section helps us to find our hidden object
faster by implementing this property in our computer program. The propery is
about visiting leaf nodes.

The last aspect is described in sections 7, 8, 9 and 10. In section 7 we came
up with algorithms to tackle the problem and in section 10 the results from this
are shown. We want to test these algorithms on different kind of trees. In section
8 we describe how we generate trees. We generate branching process trees and
preferential attachment trees which both have a power law distribution for the
degrees of the nodes. This is a property often seen in real graphs. Furthermore
we analyze the graphs in section 9. This is to compare our numerical results
with analytical predictions.

We will finish our report with a conclusion and a discussion.

2

Searching for Objects in Graphs 2 Research on Literature

2 Research on Literature

This bachelor project is about searching in graphs, finding an object hidden in
the graph as fast as possible. Since the assignment was defined in a general
and broad sense, the first step in the project was then setting a better defined
problem, which is more specific. This also allows us to get more useful results.

For our first literature research we got a few sources from our supervisor to
inspire us for our problem statement. One of the sources was a bachelor thesis
([8]) where the problem of finding a bomb, which is described in our introduc-
tion, was given as an example. The methods in this thesis are unapplicable to
our problem though. This is because the probability that a object is hidden at
a certain node is equal and that is not the case we study.

We also received a presentation about quick detection of nodes with large
degrees ([1]). This presentation describes how a node with largest degree could
be found when not all information in the graph was known. Interesting for us is
the power law distribution used in this paper. In our problem we generate trees
using Preferential Attachment ([2]) and a Branching Process, such that we get
graphs with node degrees following a power law distribution.

These two sources - the bachelor thesis ([8]) and the presentation about
finding the node with the largest degree in a unknown graph - inspired us to do
research on trees which have power law distribution and find hidden objects in
such trees.

Now knowing on what problem we want to do research on we could search
for scientific articles. For this we used programs as google scholar and scopus.
First we came up with a search question. This is a question which hopefully
gives us the sources we need. Then we filtered the most important words in
this question and used google scholar or scopus to search for the articles. When
we got too many hits we would also try other restrictions such as the date of
publishing or a writer. In this way we looked up our literature.

Our problem is closely related to the Travelling Repairman Problem ([9]).
The Travelling Repairman Problem (TRP) is the problem to find a walk which
visits all nodes in a graph with minimum average arrival time. Our problem
is similar, because it also finds a walk in the graph which visits all nodes and
minimizes the time. In our problem we also want to minimize the time, the
difference is that our problem maximizes the probability of finding an object.
The source ([9]) is therefore relevant in understanding the Travelling Repairman
Problem and converting our problem to it.

First we use the source [4]. It is about the TRP on a line, which makes
the problem easier. It is relevant for understanding the more simple case of the
TRP. When later on we can try to extend to trees or other graphs.

[9] also gives an algorithm for solving a special case of the TRP, which might
be adaptable to our problem. In [3] is written about latency tours. In the article
is stated that they find some improvements for the TRP, because latency tours
also have similiarities to TRP. However we could not use these similiarities,
while they speak about multiple paths in the TRP which we did not use.

The trees in this research are randomly generated using two methods: Pref-
erential Attachment (as described in [2]) and a Branching Process ([6]). We

3

Searching for Objects in Graphs 2 Research on Literature

needed these sources to know how to generate these trees and to get some
knowledge on the trees to make conclusions on the results we get from these
trees. We chose for these types of trees while they have a different structure,
we want that our solutions work for not just one type of tree. After construct-
ing trees, several heuristics are used to find a walk which solved our problem.
We did not find any resources on heuristics applicable to this problem, but in
chapter six of ([7]) several heuristics are described which inspired our work on
finding an optimal solution to our problem. The reason again why there were no
heuristics applicable to our problem is that we use the fact that the probability
of an object in a node is proportional to the degree of this node. The source
([7]) is however relevant, because it showed many algorithms which we could
try to change to let them work for our problem. One of our heuristics looks a
lot like Katz’ centrality measure, so that is why we needed the source [5].

4

Searching for Objects in Graphs 3 Problem Statement

3 Problem Statement

An object is hidden in G = (V,E), a known unweighted tree (see the definition
below). The node where the object is hidden is X ∈ V . The goal is to find this
object as fast as possible by starting at some node and following edges.

Definition. The set of nodes V contains all nodes in the graph.

Definition. The set of edges E contains all edges in the graph. An edge uv ∈ E
represents an undirected edge from node u ∈ V to node v ∈ V . Edge uv ∈ E
implies that vu ∈ E too.

Definition. The tree G = (V,E) is the tree with nodes V and edges E. Since
G is a tree, there are no cycles in G, which implies that there is an unique path
between every pair of nodes u, v ∈ V .

All we know about the object is that it stays at the same node. We assume
that the probability that the object is hidden at node v ∈ V is follows formula
(1). If we reach node X, we assume that we immediately find the object. Let
δv be the degree of node v ∈ V .

P (X = v) = pv = c · δv with v ∈ V (1)

To find the object, we choose a walk Γ through G which reaches all nodes.
This walk, with J steps, is defined as (2):

π(j) node visited at step j,

π(j) ∈ V j = 1, 2, . . . , J,

(π(j), π(j + 1)) ∈ E j = 1, 2, . . . , J − 1,

Γ = (π(1), π(2), . . . , π(J)). (2)

We define the first arrival time in a node v ∈ V as:

Tv(Γ) = min {n ≥ 1 : π(n) = v} .

Since the goal is to minimize the expected time to find the object, the ob-
jective function is (3):

T (Γ) = TX(Γ),

E[T (Γ)] =
∑
v∈V

P (X = v)Tv(Γ) =
∑
v∈V

pvTv(Γ) = c
∑
v∈V

δvTv(Γ). (3)

The problem considered in this paper is as follows:

minimize
Γ

E[T (Γ)]

subject to (2).
(4)

An optimal walk Γ∗ is a walk which is a solution to this problem. In the
analysis of this problem we use several definitions:

5

Searching for Objects in Graphs 3 Problem Statement

Definition. L0 = {v ∈ V : δv = 1}. L0 is the set of leaf nodes (nodes with
only one neighbour).

Definition. L1 = {v ∈ V : uv ∈ E, u ∈ L0}. L1 is the set of near-leaf nodes
(nodes with a leaf node as neighbour)

Definition. N(v) = {u ∈ L0 : uv ∈ E}. N(v) is the set of leaf node neighbours
of v ∈ V .

Definition. Rt(Γ) = {v ∈ V : Tv(Γ) ≤ t}. Rt(Γ) is the set of already visited
nodes at time t for walk Γ.

Definition. d(u, v) is the distance between nodes u, v ∈ V .

6

Searching for Objects in Graphs 4 The Travelling Repairman Problem

4 The Travelling Repairman Problem

In section 2 we already mention the analogy between our problem the Travelling
Repairman Problem. Now our goal is to exploit this analogy to find an optimal
solution for 4 on a tree. The motivation for this approach is that the Travelling
Repairman Problem is well studied, so every breakthrough in the Travelling
Repairman Problem can be applied to our problem this way.

The Travelling Repairman Problem can be described as follows: We have
one repairman who needs to repair a number of machines located at different
points. Each edge has a time required to walk over the edge. The TRP is about
finding the walk which minimizes the mean waiting time of the machines. Since
our problem has weights on nodes instead of weights on edges, our problem is
not a subset of the TRP.

To convert our problem to the Travelling Repairman Problem, use the fol-
lowing algorithm (see figure 1):

1. Copy graph G(V,E) to G′(V ′, E′), renaming vi ∈ V to vi,1.

2. Give all edges e ∈ E(G′) weight 1.

3. For every vi ∈ V with δvi ≥ 2:

Add a node vi,j and an edge (vi,1, vi,j) to G′ with weight 0 for every
j = 2, . . . , δ(vi).

v1

v2

v3

v4 v5

v1,1

v2,1

v2,2 v2,3

v3,1

v4,1

v4,2

v5,1

1 1

1 1

0 0 0

Figure 1: Converting a graph G to a Travelling Repairman Problem graph G′

To convert an optimal solution Γ′ of the Travelling Repairman Problem
graph G′ back to the original problem, use the following steps:

1. Remove all nodes vi,j with j 6= 1 from walk Γ′. Also remove multiple
sequential nodes vi,1. This is still a valid walk (will be proved later on)

2. Rename all nodes vi,1 back to vi to get walk Γ in G.

3. Γ is an optimal solution to the original problem.

Example for figure 1:

Γ′ = (v2,2, v2,1, v4,1, v4,2, v4,1, v5,1, v4,1, v2,1, v1,1, v2,1, v3,1),

Γ = (v2, v4, v5, v4, v2, v1, v2, v3).

7

Searching for Objects in Graphs 4 The Travelling Repairman Problem

Theorem. The walk Γ, as constructed using the algorithm above, is an optimal
solution to (4).

Proof. We start by proving that Tvi,j = Tvi,k , for j, k = 1, . . . , δ(vi).
Suppose that this statement is not true. Then there are i, j and k such

that Tvi,j < Tvi,k . Let P be a shortest path from vi,j to vi,k. It is trivial to

see that the length of this path is 0. Let Γ̃ be the walk with PP−1 added
after the first occurence of vi,j . In this new walk the only change is Tvi,k :

Tvi,k = Tvi,j . So Γ̃ is a better solution than Γ′, so Γ′ is not optimal. Now we
have a contradiction, so our assumption that Tvi,j < Tvi,k is not true. Therefore
the statement Tvi,j = Tvi,k , for j, k = 1, . . . , δ(vi) is correct.

The walk Γ′ without all nodes vi,j with j 6= 1, and removing multiple se-
quential occurrences of vi,1 is a valid walk, because all vi,j with j 6= 1 are all leaf
nodes. All nodes vi,1 are visited in walk Γ′, so Γ is a solution for the original
problem.

Every valid solution Γ in G has a corresponding solution Γ′ in G′, because all
nodes vi,j with j 6= 1 can be reached without going through vλ,1 nodes (i 6= λ).
This means that any solution for G can be found using this method.

Now we prove that the walk Γ is optimal. The objective function for the
TRP is (5):

E[T ′(Γ′)] =c

n∑
i=1

δvi∑
j=1

Tvi,j (Γ′),

=c

n∑
i=1

δviTvi,1(Γ′). (5)

This is the same objective function as the original problem, so the walk Γ is
optimal in G.

8

Searching for Objects in Graphs 5 A Dynamic Programming Algorithm

5 A Dynamic Programming Algorithm

In this section we will describe a dynamic programming algorithm that finds
the optimal walk. In [2] an algorithm is described that solves the travelling
repairman problem on a graph if this graph is a line. We noticed that if we
make some alterations to this algorithm, we can make it feasible for our prob-
lem as well. Provided at least that we let our graph be a special case of the
tree, namely a line. To make this algorithm a little less trivial, it considers
arbitrary probabilities instead of probabilities proportional to the degree of a
node. After that we extend the algorithm so it works on all trees. Finally, we
consider the runtime of the algorithm, in this case assuming that probabilities
are proportional to the degree, in contrast to the rest of this section.

First of all, note that if the object is hidden in a certain node with a proba-
bility proportional to the degree of this node, the solution is trivial. It is then
optimal to start in one end of the line and visit all the nodes one by one until
we are at the other end of the line. The problem gets more interesting if the
probability that the object is hidden in a certain node is indepent of the degree
of this node. Let us give a more formal definition of this problem.

In the line there are n vertices. Every vertex v is given a certain value f(v)
(proportional to the probability that the object we are looking for is hidden in
that vertex) and every line has weight 1. That is, the distance between every
two vertices that are connected via an edge is 1. The line consists of vertices
v1, v2, . . . , vn and we choose an optimal starting node vs with s ∈ {1, ..., n}. Let
us represent by [vi, vj]l, i < j the fact that the leftmost location visited is vi, the
rightmost location visited is vj and that we are currently in the leftmost location
visited, i.e. vi. Similarly, [vi, vj]r denotes the fact that the leftmost location
visited is vi, the rightmost location visited is vj and that we are currently in the
rightmost location visited, i.e. vj . The initial state will be [vs, vs]l or [vs, vs]r,
these states are identical. If the current state is one of {[vi, vj]l,[vi, vj]r}, the
nodes vx, i ≤ x ≤ j have all been visited already. The final state will be one of
{[v1, vn]l, [v1, vn]r}.

We let Sl(vi) =
∑i−1
k=0 f(vk) and Sr(vj) =

∑n
k=j+1 f(vk). This is the sum of

weights of unvisited nodes to the left and right of the visited nodes, respectively.
Furthermore, we denote with DP [vi, vj]l the cost of getting from the initial state
into state [vi, vj]l in the optimal walk. Observe that [vi, vj]l can only be reached
from the states [vi+1, vj]l and [vi+1, vj]r. Similar reasoning works on the right
side, for [vi, vj]r. That is [vi, vj]r can only be reached from the states [vi, vj−1]r
and [vi, vj−1]l. These observations lead to the following equations for computing
the cost DP :

9

Searching for Objects in Graphs 5 A Dynamic Programming Algorithm

DP [vi, vj]l = min

{
Sl(vi+1) + Sr(vj) +DP [vi+1, vj]l

(j − i)(Sl(vi+1) + Sr(vj)) +DP [vi+1, vj]r
,

DP [vi, vj]r = min

{
Sl(vi) + Sr(vj−1) +DP [vi, vj−1]r

(j − i)(Sl(vi) + Sr(vj−1)) +DP [vi, vj−1]l
,

DP [vs, vs]l = 0,

DP [vs, vs]r = 0,

DP [vs+k, vs]l =∞, k > 0,

DP [vs+k, vs]r =∞, k > 0,

DPoptimal = min{DP [v1, vn]l, DP [v1, vn]r}.

The walk that will be found to obtain DPoptimal using the above equation
is the optimal walk, i.e. the walk that needs to be taken for finding the hidden
object as soon as possible. Let us clarify the above algorithm by working out a
simple example. For this we will use the line in figure 2.

v1 v2 v3 v4

1 9 9 1

Figure 2: A line tree with values f(vx) on the nodes

We will choose one of the possible final states and look at the different ways to
get to that state. If we choose final state [v1, v4]l, we will receive figure 3.

[v1, v4]l

[v2, v4]l

[v3, v4]l

[v4, v4]l

[v3, v4]r

[v3, v3]r

[v2, v4]r

[v2, v3]r

[v2, v2]r

[v2, v3]l

[v3, v3]l

Figure 3: The different ways to get to final state [v1, v4]l

The costs of the states in the last generation in figure 3 are all equal to zero.
For the other costs in the figure, the equations are as follows:

10

Searching for Objects in Graphs 5 A Dynamic Programming Algorithm

DP [v1, v4]l = min

{
Sl(v2) + Sr(v4) +DP [v2, v4]l = 1 +DP [v2, v4]l

(4− 1)(Sl(v2) + Sr(v4)) +DP [v2, v4]r = 3 +DP [v2, v4]r
,

DP [v2, v4]l = min

{
Sl(v3) + Sr(v4) +DP [v3, v4]l = 10 +DP [v3, v4]l

(4− 2)(Sl(v3) + Sr(v4)) +DP [v3, v4]r = 20 +DP [v3, v4]r
,

DP [v2, v4]r = min

{
Sl(v2) + Sr(v3) +DP [v2, v3]l = 2 +DP [v2, v3]r

(2− 4)(Sl(v2) + Sr(v3)) +DP [v2, v3]r = 4 +DP [v2, v3]l
,

DP [v3, v4]l = min

{
Sl(v4) + Sr(v4) +DP [v4, v4]l = 19 +DP [v4, v4]l = 19

(3− 4)(Sl(v4) + Sr(v4)) +DP [v4, v4]r = 19 +DP [v4, v4]r = 19
,

DP [v3, v4]r = min

{
Sl(v3) + Sr(v3) +DP [v3, v3]l = 11 +DP [v4, v4]l = 11

(3− 4)(Sl(v4) + Sr(v4)) +DP [v4, v4]r = 11 +DP [v4, v4]r = 11
,

DP [v2, v3]r = min

{
Sl(v2) + Sr(v2) +DP [v2, v2]l = 11 +DP [v2, v2]r = 11

(2− 3)(Sl(v2) + Sr(v2)) +DP [v2, v2]r = 11 +DP [v2, v2]l = 11
,

DP [v2, v3]l = min

{
Sl(v3) + Sr(v3) +DP [v3, v3]l = 2 +DP [v3, v3]l = 2

(2− 3)(Sl(v3) + Sr(v3)) +DP [v3, v3]r = 2 +DP [v3, v3]r = 2
.

Now we can fill in the costs beloning to the states in figure 3, starting with the
initial states and working our way up. This yields us figure 4:

min{30, 16} = 16

min{29, 31} = 29

19

0

11

0

min{13, 15} = 13

11

0

11

0

Figure 4: Calculating the cost of the optimal walk

Looking at figure 4, we see that the optimal walk in the line has value 16.
Comparing figure 4 with figure 3 we see that the optimal walk uses v2 as starting
node, then visits node v3 and v4 and ends in node v1.

Normally it would now have been necessary to look at the other possible
final state, [v1, v4]r, and do something similar. However, since the line in this
example is symmetrical, this is not necessary. Because of the symmetry we know
that there is one other optimal walk; the walk that uses v3 as starting node,
then visits node v2 and v1 and ends in node v4.

The algorithm used for the line has complexity O(n2). It can be transformed
to make it feasible for trees as well, for this we will let R be the set of all visited
nodes and introduce the following definitions:

Definition. WR =
{
w ∈ R : ∃v∈V \R d(v, w) = 1

}
. WR is the set of all visited

nodes that are neighbouring a not yet visited node.

11

Searching for Objects in Graphs 5 A Dynamic Programming Algorithm

Definition. ΘS =
∑
v∈S pv, X ∈ V . ΘS is the total value of all nodes in any

subset S of V .

Now we are ready to formulate the equations for the algorithm feasible for trees:

DP [R]v =

 minw∈WR
{d(v, w)ΘV \R +DP [R \ {v}]w} if |R| > 1

0 if |R| = 1
∞ if |R| < 1

(6)

DPoptimal = min
l∈L0
{DP [V \ {l}]l} (7)

As was the case with the line algorithm, the walk that will be found to obtain
the minimal value DPoptimal is the optimal walk. In order to find the order
of complexity of this algorithm, we will look at |WR|, the size of the set of all
visited nodes that are neigbouring a not yet visited node, at all time steps. We
will inspect the worst-case scenario for this algorithm, which is a star tree. This
is the worst-case scenario because the number of possible sets R and the amount
of choices WR as large as possible at all times. An example of such a tree can
be seen in figure 5. By inspecting this worst-case scenario we will find that the
dynamic programming algorithm has complexity O

(
(n − 1)!

)
. This is because

in a star tree at the first time step, |WR| will be 1, but at the second time step
it will be n− 2, followed by n− 3 at the third time step, n− 4 at the third time
step and so on.

v1

v2

v3

v4v5

v6

v7

Figure 5: Example of a star tree

O
(
(n− 1)!)

)
is the same order of complexity as any non-dynamic programming

algorithm for finding the optimal walk will have. However, although they have
the same order of complexity, we expect that the dynamic programming algo-
rithm will be faster but on the other hand will use more memory, since all values
DP [R]v have to be remembered.

In contrast what we previously assumed in this section, we will assume that
the probabilities are distributed proportionally to the degree of the nodes from
now on. If the theory of combining leaf nodes, as will be explained and proved
in section 6, is applied (which requires proportional probablities), the star is
trivial in the algorithm. So we will consider the now worst-case scenario, which
is an extended star tree. This will result in a much smaller complexity. An
example of an extended star tree can be seen in figure 6,

12

Searching for Objects in Graphs 5 A Dynamic Programming Algorithm

v1

v2

v3

v4v5

v6

v7

v8

v9

v10v11

v12

v13

Figure 6: Example of an extanded star tree

At both the first and second time step, |WR| will be 1, assuming we start at a
leaf node, and at both the third and fourth time step it will be

⌊
n
2

⌋
− 1. At the

fifth and sixth time step |WR| will be
⌊
n
2

⌋
− 2, at the seventh and eigth time

step |WR| will be
⌊
n
2

⌋
− 3 and so on. This will result in a complexity of order

O
((

n−1
2 !
)2)

.

13

Searching for Objects in Graphs 6 Visiting Leaf Nodes

6 Visiting Leaf Nodes

In this section we want to prove a theorem to improve the searching time for a
hidden object in a tree.

Theorem. If an optimal walk visits a leaf node at a certain time, except as
initial node, then it is optimal to proceed by visiting all unvisited leaf nodes with
the same ancestor before visiting any other nodes.

Proof. We will prove this theorem using mathematical induction. The first step
is proving that after visiting a leaf node, it is (also) optimal to visit another leaf
node with the same ancestor directly.

Let Γ be an optimal solution of 4. Now take any time t such that π(t) ∈ L1,
|N(π(t)) \Rt(Γ)| ≥ 2 and π(t + 1) ∈ N(π(t)). This means that we visit a
leaf node at time t + 1 with at least one leaf node with the same ancestor still
unvisited. Since π(t+ 1) is a leaf node, we have π(t) = π(t+ 2).

Suppose π(t + 3) /∈ N(π(t)). Since Γ has to contain v ∈ N(π(t)) after time
t+1, at a certain time t+s we must visit π(t) and its unvisited leaf node. Let P
be the walk of s− 3 timesteps after π(t+ 2), with P not empty. We choose the
smallest s such that π(t+ s) = π(t) and π(t+ s+ 1) is a leaf node v ∈ N(π(t)).
It is trivial to show that v is unvisited, because the walk is optimal. Let Q be
the walk which starts 3 timesteps after P . Q either is empty or begins with
π(t), since the last node visited before Q is a leaf node neighbouring π(t). This
gives Γ the following structure:

Γ = (π(1), π(2), . . . , π(t), π(t+ 1), π(t), P, π(t), π(t+ s+ 1), Q).

To prove the theorem, we need to be able to know something about E[T (Γ)]:

E[T (Γ)] =
∑

v∈V
pvTv(Γ)

=
∑

v∈Rt(Γ)
pvTv(Γ)

+pπ(t+1)Tπ(t+1)(Γ)

+
∑

v∈(P\Rt(Γ))
pvTv(Γ)

+pπ(t+s+1)Tπ(t+s+1)(Γ)

+
∑

v∈(Q\Rt+s+2(Γ))
pvTv(Γ)

(8)

Now we construct Γ̃ as follows:

Γ̃ = (π(1), π(2), . . . , π(t), P, π(t), π(t+ 1), π(t), π(t+ s+ 1), Q)

The only changes between Γ and Γ̃ is the position of P . P has been moved
two timesteps earlier, and the two nodes visited before P in Γ have been moved
s − 3 timesteps later. All nodes in Γ̃ have been denoted using the π(i)’s of Γ.
This allows E[T (Γ̃)] to be calculated in terms of Γ.

14

Searching for Objects in Graphs 6 Visiting Leaf Nodes

E[T (Γ̃)] =
∑

v∈V
pvTv(Γ̃)

=
∑

v∈Rt(Γ)
pvTv(Γ)

+pπ(t+1)(Tπ(t+1)(Γ) + s− 3)

+
∑

v∈(P\Rt(Γ))
pv(Tv(Γ)− 2)

+pπ(t+s+1)Tπ(t+s+1)(Γ)

+
∑

v∈(Q\Rt+s+2(Γ))
pvTv(Γ)

(9)

Since Γ is optimal, E[T (Γ)] ≤ E[T (Γ̃)] should hold:

E[T (Γ)] ≤ E[T (Γ̃)].

Substituting (8) and (9) we get

∑
v∈Rt(Γ)

pvTv(Γ)

+pπ(t+1)Tπ(t+1)(Γ)

+
∑

v∈(P\Rt(Γ))
pvTv(Γ)

+pπ(t+s+1)Tπ(t+s+1)(Γ)

+
∑

v∈(Q\Rt+s+2(Γ))
pvTv(Γ)


≤



∑
v∈Rt(Γ)

pvTv(Γ)

+pπ(t+1)(Tπ(t+1)(Γ) + s− 3)

+
∑

v∈(P\Rt(Γ))
pv(Tv(Γ)− 2)

+pπ(t+s+1)Tπ(t+s+1)(Γ)

+
∑

v∈(Q\Rt+s+2(Γ))
pvTv(Γ)


.

It follows that pπ(t+1)Tπ(t+1)(Γ)

+
∑

v∈(P\Rt(Γ))
pvTv(Γ)

 ≤
 pπ(t+1)(Tπ(t+1)(Γ) + s− 3)

+
∑

v∈(P\Rt(Γ))
pv(Tv(Γ)− 2)

 ,

which reduces to

2
∑

v∈(P\Rt(Γ))
pv ≤ (s− 3)pπ(t+1). (10)

Now we construct walk W:

W = (π(1), π(2), . . . , π(t), π(t+ 1), π(t), π(t+ s+ 1), π(t), P,Q).

Note that we still use the names for the nodes given in Γ. Note that W is a
valid walk, even though the last node before Q is not a leaf node of π(t). This
is because Q is either empty or starts with π(t). As can be seen in the structure
of Γ, P ends with a node adjacent to π(t). We calculate E[T (W)] in terms of Γ:

15

Searching for Objects in Graphs 6 Visiting Leaf Nodes

E[T (W)] =
∑

v∈V
pvTv(W)

=
∑

v∈Rt(Γ)
pvTv(Γ)

+pπ(t+1)Tπ(t+1)(Γ)

+
∑

v∈(P\Rt(Γ))
pv(Tv(Γ) + 2)

+pπ(t+s+1)(Tπ(t+s+1)(Γ)− s+ 3)

+
∑

v∈(Q\Rt+s+2(Γ))
pvTv(Γ)

.

Comparing E[T (W)] and E[T (Γ)], we obtain:

E[T (W)]− E[T (Γ)] =

∑
v∈Rt(Γ)

pvTv(Γ)

+pπ(t+1)Tπ(t+1)(Γ)

+
∑

v∈(P\Rt(Γ))
pv(Tv(Γ) + 2)

+pπ(t+s+1)(Tπ(t+s+1)(Γ)− s+ 3)

+
∑

v∈(Q\Rt+s+2(Γ))
pvTv(Γ)


−



∑
v∈Rt(Γ)

pvTv(Γ)

+pπ(t+1)Tπ(t+1)(Γ)

+
∑

v∈(P\Rt(Γ))
pvTv(Γ)

+pπ(t+s+1)Tπ(t+s+1)(Γ)

+
∑

v∈(Q\Rt+s+2(Γ))
pvTv(Γ)


=

 ∑
v∈(P\Rt(Γ))

pv(Tv(Γ) + 2)

+pπ(t+s+1)(Tπ(t+s+1)(Γ)− s+ 3)

−
 ∑

v∈(P\Rt(Γ))
pvTv(Γ)

+pπ(t+s+1)Tπ(t+s+1)(Γ)

 =

2
∑

v∈(P\Rt(Γ))
pv − (s− 3)pπ(t+s+1).

Since π(t + 1) and π(t + s + 1) both are nodes with degree one, we have
pπ(t+1) = pπ(t+s+1) and we can use inequality (10) to simplify this equation:

E[T (W)]− E[T (Γ)] =

2
∑

v∈(P\Rt(Γ))
pv − (s− 3)pπ(t+s+1) ≤

0.

Hence:

E[T (W)] ≤ E[T (Γ)].

The assumption that π(t+ 3) /∈ N(π(t)) can be true or false:

• If it is true, E[T (W)] = E[T (Γ)] which means the walk W is optimal too.

• If it is false, the optimal walk has π(t+ 3) ∈ N(π(t)).

In both cases there is an optimal walk such that π(t+ 3) ∈ N(π(t)) for that
walk. This concludes this first part of the proof, the initial condition part of

16

Searching for Objects in Graphs 6 Visiting Leaf Nodes

mathematical induction. The rest of the proof assumes optimal walks with this
property.

For the induction step of the proof, take an optimal walk Γ such that
|N(π(t))| = n ≥ 3. Now assume that the optimal walk looks like this:

Γ = (π(1), . . . , π(t), π(t+ 1), . . . , π(t+ 2k − 3), π(t), . . .).

with π(t + 1), π(t + 3), . . . , π(t + 2k − 3) ∈ N(π(t)) and π(x) /∈ N(π(t)) for
x ≤ t. That means k− 1 leaf nodes have been visited. Now take t̃ = t+ 2k− 4.
Notice that π(t̃) = π(t) so π(t̃) ∈ L1.

∣∣N(π(t̃)) \Rt̃(Γ)
∣∣ = 2 ≥ 2. All conditions

for the first part of the proof are fulfilled, so π(t + 2k − 1) ∈ N(π(t)). Then Γ
is expressed as follows:

Γ = (π(1), . . . , π(t), π(t+ 1), . . . , π(t+ 2k − 3), π(t), π(t+ 2k − 1), π(t), . . .).

Using mathematical induction, Γ has this form for any n, meaning that all
leaf nodes with the same ancestor are visited at the same time.

17

Searching for Objects in Graphs 7 Numerical Solutions

7 Numerical Solutions

7.1 Optimal solution

The optimal solution for our problem is hard to find. Here we outline the
algorithm we used to find the optimal solution. The basis for the algorithm is
a brute force search for the best walk.

7.1.1 Brute force search

The algorithm tries every possible walk, by iterating over all walks recursively.
The E[T (Γ)] of this walk can be found using formula 3. Since every walk is
tried, the optimal solution will be found.

To make this algorithm faster, a several strategies have been used. First of
all we estimate the E[T (Γ)] of the complete walk with the current walk prefix,
using a so-called admissible heuristic. This admissible heuristic (explained in
section 7.1.2) makes an underestimation of the value of all walks with the current
walk prefix. If this value is more than the value of the currently best known
walk, all walks with the current walk prefix are worse than that walk. This
allows the algorithm to skip evaluation of a number of walks

Secondly, the algorithm exploits isomorphism in the graph by skipping any
node of degree one if another node of degree one with the same ancestor node
has already been tried. This would give the same optimal solution, so they can
safely be skipped.

Finally, the initial best value of a walk can be chosen by using a heuristic
to find a solution to the problem (as described in section 7.2). This gives a
reasonably good value, but might not be optimal. This allows even more non-
optimal walks to be skipped.

7.1.2 Admissible heuristic

Admissible heuristics are useful for stopping a search early on if it is not going to
be better than the current best solution. This is possible because an admissible
heuristic is an underestimate of the value, so if the admissible heuristic is worse
than the current best solution, any solution that can be reached from the current
point is also worse.

In the algorithm for calculating the walk, we used two different lower bounds:
A1 and A2.

A1 The sum ∆ =
∑
v∈V \Rt(Γ) δv is used for calculating the value of the re-

maining nodes. All nodes still left to visit cannot be reached any sooner
than the next time step. That means that A1 = ∆(t+ 1).

A2 The number of remaining nodes k cannot all be reached in one time step,
it takes k more steps to visit them all. Assuming they all have degree one,
this yields the following heuristic:
A2 = (t+ 1) + (t+ 2) + . . .+ (t+ k) = k(t+ k+1

2) = 1
2k

2 + 1
2k + kt.

7.2 Heuristics

We have tried several heuristics, which are explained in the following sections.
The first four heuristics (7.2.1 until and including 7.2.4) choose a node to visit,

18

Searching for Objects in Graphs 7 7.2 Heuristics

walk the path towards that node (also visiting all nodes in between while walking
the path) and then choose the node to visit next.

7.2.1 Largest degree

This heuristic begins at a node with the largest value pv. The next node to
visit is a node in the set H7.2.1(v), where v is the node at time t and π(t+ 1) is
chosen such that π(t+ 1) ∈ H7.2.1(v) (see (11)).

C = arg max
w∈V \Rt(Γ)

pw

H7.2.1(v) = arg min
w∈C

d(v, w) (11)

In words this heuristic means that we visit the node with the largest degree then
the node which has second largest degree and all nodes which are on the path
between these two nodes etcetera. If two nodes have the same degree we choose
to go to the node that has the smallest distance from the node we are in now.
We chose this heuristic because the object has a larger chance of being hidden
at a node with a large degree, so if we visit those nodes early on, we might be
finding it quite fast.

7.2.2 Degree divided by distance

This heuristic also begins at a node with the largest value pv. The next node
to visit is a node in the set H7.2.2(v), where v is the node at time t and π(t+ 1)
is chosen such that π(t+ 1) ∈ H7.2.2(v) (see (12)).

H7.2.2(v) = arg max
w∈V \Rt(Γ)

pw
dα(v, w)

(12)

The idea behind this heuristic is that although it has advantages to go to nodes
with a large degree early on, it also has disadvantages. The previous heuristic did
not take the distance between nodes into account (except for the tie-breaking),
this heuristic prefers close nodes with a relatively large degree over far away
nodes with a larger degree. We have used several powers of α: 0.5, 1, 2 and 3.

7.2.3 Summed degree divided by distance

This heuristic also begins at a node with the largest value pv. The next node
to visit is a node in the set H7.2.3(v), where v is the node at time t and π(t+ 1)
is chosen such that π(t+ 1) ∈ H7.2.3(v) (see (13)).

H7.2.3(v) = arg max
w∈V \Rt(Γ)

S(w)

dα(v, w)
(13)

In this formula, S(w) denotes the sum of the degrees of the nodes that get
visited while walking from node v to node w. If the set of nodes that get visited
while walking from node v to node w is denoted by P , then S(w) =

∑
s∈P ps.

This heuristic takes into account, as opposed to the two heuristics above, also
at the nodes visited along the way when choosing a new node to visit. We have
used several powers of α: 0.5, 1, 2 and 3.

19

Searching for Objects in Graphs 7 7.2 Heuristics

7.2.4 Importance of nearby nodes

This heuristic also begins at a node with the largest value pv. The next node
to visit is a node in the set H7.2.4(v), where v is the node at time t and π(t+ 1)
is chosen such that π(t+ 1) ∈ H7.2.4(v) (see (14)).

f(w) =
∑

u∈V \Rt(Γ)

δu · βd(u,w)

H7.2.4(v) = arg max
w∈V \Rt(Γ)

βd(v,w) · f(w) (14)

This heuristic assigns a value to every node. A higher value indicates a node
with more nodes with large degree nearby. The factor β ∈ (0, 1) makes sure
that nodes which are further away contribute less towards the value assigned to
the node. Finally the assigned value is corrected for the distance to the node at
time t. We have used β = 0.2 in our experiments.

This heuristic has similarities to Katz’ centrality measure (see [5]), which also
assigns a value to each node and also corrects for distance by applying a factor
with the distance as exponent. Yet this heuristic has several key differences to
fit our problem in a better way.

Katz’ centrality measure lets each node contribute multiple times to the
assigned value by counting all walks which exist between the nodes, so back-
and-forth walks are counted too. This heuristic does not do this. Furthermore,
Katz’ centrality measure does not have a concept of already visited nodes, so it
naturally uses all nodes, which does not make sense for this heuristic.

Finally, since Katz’ centrality measure does not have a concept of a current
position, it does not correct for the distance to the current node, which this
heuristic does.

7.2.5 Minimal total time

This heuristic finds a closed walk which minimizes the total time for visiting all
nodes. This is trivial to compute, since it simply means all edges have to be
visited exactly twice. We expect that this heuristic will not be very good, since
it does not prioritize nodes with large degrees, but it will provide an easy to
compute upper bound to E[T (Γ∗)].

20

Searching for Objects in Graphs 8 Generating Trees

8 Generating Trees

For the sake of testing the heuristics, we are going to need to be able to generate
trees. We do this in two different ways, using a branching process and using
preferential attachment model. Both models are described and explained in the
sections below.

8.1 Branching Processes

We can generate trees by using a branching process, as described in [6] A branch-
ing process can be seen as a population consisting of individuals able to pro-
duce offspring of the same kind. In order to create a tree this way, we let the
population start with 1 individual, r, and let every individual produce j new
offspring with probabilty pj , j ≥ 1. The number of offspring produced by each
individual are i.i.d.; indepent of each other and identically distributed. The
individual in the zeroth generation, r, will produce individuals in the first gen-
eration, r 0, r 1, ..., which will produce individuals in the second generation,
r 0 0, r 0 1, ..., r 1 0, r 1 1, ..., ..., and so on.

The expected number of nodes in generation n will be µn, where µ is the
expected number of offspring produced by each individual. If the process is
stopped after n generations, the expected number of nodes in the tree will be∑n
i=0 µ

n. In these formulas µ denotes
∑∞
j=1 jpj .

The distribution used in the branching process is the Zeta distribution (a
discrete power law distribution) with parameter 2.6, note that this yields a
different distribution in degrees for the preferential attachment model. We The

distribution function for the Zeta distribution is fs(k) = k−s

ζ(s) , where ζ(s) =∑∞
k=1 k

−s is the Riemann zeta function. An example tree is shown in figure 7.

21

Searching for Objects in Graphs 8 8.2 Preferential Attachment

r

r_0

r_1

r_2

r_3

r_4

r_5

r_6

r_0_0

r_0_1

r_1_0

r_2_0

r_3_0

r_4_0

r_4_1

r_5_0

r_6_0

r_0_0_0

r_0_1_0

r_1_0_0

r_1_0_1

r_2_0_0

r_2_0_1

r_3_0_0

r_4_0_0

Figure 7: A tree generated by a Branching Process with 25 nodes

8.2 Preferential Attachment

Another method we use to generate trees, is by using preferential attachment
model ([2]). Here we also start with just one node, and then start adding
other nodes one by one that will be attached to one of the already existing
nodes. The probability that the newly added node will be attached to a certain
already existing node is proportional to the degree of that already existing
node. Except the probability that a new node will attach to the starting node
is proportional to the degree plus one. This is in order to get the process
started in the first place. So if there are n already existing nodes in the tree,
with a total degree of

∑
v∈V δ(v) = 2n − 2 and therefore a total weight of∑

v∈V w(v) =
∑
v∈V δv + 1 = 2n − 2 + 1 = 2n − 1, then a newly added node

will be attached to node v that with probability δv+1{v is initial node}
2n−1 .

This way a tree will be constructed that has nodes with high degrees in the
first generations, whereas in the trees constructed by using a branching process,
nodes with high degree can occur at any generation. An example tree can be
seen in figure 8.

22

Searching for Objects in Graphs 8 8.2 Preferential Attachment

1

2

3

5 8

11

19

14

15

17

24

25

4

6

18

13

20

23

7

10

9

16

22

21

12

Figure 8: A tree generated by Preferential Attachment with 25 nodes
(Nodes are numbered in the order of their arrival.)

23

Searching for Objects in Graphs 9 Predicting the Performance of Heuristics

9 Predicting the Performance of Heuristics

All our heuristics are based on visiting nodes with large degrees first, because
at a node with high degree the probability of finding the hidden object is the
highest. The heuristics we use are in most cases not optimal, especially not in
large trees, and results will be different with each heuristic. We want to predict
which heuristic is better by looking at the structure of the graphs, but also by
looking at the performance of the heuristics.

With this performance we mean: with what probability we will find the
hidden object when visiting the nodes with large degrees. We can do this
because we know with which distribution the branching trees are generated and
we know how the preferential attachment trees are generated. With the quality
of the heuristics we want to test the idea whether visiting nodes with large
degrees is a good idea, while in our graphs a lot of nodes have degree one, so a
small degree.

In the branching process trees the nodes with large degree can be anywhere
because every node has the same probability of getting many children. To deter-
mine the diameter of the graph, we need to look at the number of generations.
If we generate a tree of 20, 000 node, we solve the following equation:

n∑
i=0

µi = 20, 000.

This is because the expected number of nodes in a generation is µn, with µ
the expected number of children of any node and n the generation. In our case
the number of expected children for every node µ is 1, 7509. Choosing n = 16
we get an expected number of 18201 nodes and for n = 17 we get an expected
number of 31048 nodes. This means that for a tree of 20.000 nodes the expected
number of generations is 17. So the largest distance between two nodes is about
34.

To this end, we use a heuristic argument based on average generation sizes.
This will not give an average depth of the tree, but it is a reasonable approxi-
mation.

Furthermore we can say something about the number of nodes with degree
one. In the last generation the nodes all have degree one, calling this last
generation the nth generation we can say there is an expected number of µn

nodes in this last generation. If we look at the fraction of nodes in the last
generation we can express this as follows:

µn = 1 + (µ− 1)

n−1∑
i=0

µi.

The result follows from the geometric series. This means there are almost
µ − 1 times more nodes in the last generation than all other nodes. With µ
is 1.7509, this means that around 0.7509

1.7509 , which is 42 percent of the nodes, has
degree one.

It is more difficult to say something like this about the preferential attach-
ment graph. We do know that nodes with a higher degree have a high probablity

24

Searching for Objects in Graphs 9 Predicting the Performance of Heuristics

of getting connected to a new node. Therefore we expect nodes with large de-
grees to be near each other. Because these nodes are more likely to be near to
each other the number of nodes of degree one will be large. While adding a new
node to the tree, meaning that this node gets degree one, it is much more likely
that the next new node will connect to a node with a higher degree than one
so that this node also gets degree one. Because these nodes with large degrees
have smaller distances to each other we expect our heuristics to do better on
preferential attachment graphs than on branching trees.

We know that many nodes in our generated trees have nodes with degree
one. The question is how profitable it is to visit the nodes with large degree. In
the figure beneath you can see how the probability grows of finding the object
when we visit the nodes in order with highest degree first and lowest degree at
last. This is optimistic of course while it suggests that it is possible to jump
from the node with largest degree to the node with the second largest degree to
the node with the third highest degree etcetera.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000

P

Number of nodes

Branching Process
Preferential Attachment

Figure 9: Number of nodes (sorted on degree from high to low) and probability
the object is hidden there

Observing this graph we can see that especially in the beginning the proba-
bility grows quickly. With a probability of almost 0.3 we find the object in the
preferential attachment graph by visiting only five percent of the nodes with
largest degree. What we also notice from the figure is that the preferential at-
tachment graph has far more nodes with degree one than the branching process
graph. We can see this by looking to the straight line at the right side of the
graph. For preferential attachment this line starts at 6700 nodes, while this line
starts at 11500 nodes for the branching process. This is due to the different dis-
tributions we used in both processes. If we used other parameters for instance
for the branching process it might be that the branching process tree has more

25

Searching for Objects in Graphs 9 Predicting the Performance of Heuristics

nodes of degree one.
This suggests that our heuristics will work better on preferential attachment

graphs than on branching process graphs.

26

Searching for Objects in Graphs 10 Numerical Results

10 Numerical Results

We have tested the heuristics described in section 7, both on trees created
with branching processes and with preferential attachment. We have tested the
heuristics on five small trees, consisting of 25 nodes, and one hundred large
trees, consisting of 20, 000 nodes. These results can be seen in table 1 and 2
respectively.

Method Branching process Preferential attachment
ET σT ET σT

7.1.2 15.18 1.12 13.8 0.22
7.2.1 18.41 1.31 15.53 1.04
7.2.2 α = 0.5 18.07 1.54 15.18 0.86

α = 1 18.47 1.62 14.9 0.65
α = 2 18.61 1.73 15.23 0.78
α = 3 18.61 1.73 15.1 0.66

7.2.3 α = 0.5 18.49 1.55 15.22 1.45
α = 1 18.39 1.76 15.13 1.16
α = 2 18.6 1.73 15.03 0.68
α = 3 18.61 1.73 15.1 0.66

7.2.4 46.73 18.36 17.28 2.21
7.2.5 15.29 1.15 13.99 0.47

Table 1: The results for small trees (25 nodes) with 5 samples

Method Branching process Preferential attachment
ET σT ET σT

7.2.1 24045 1259 19204 152
7.2.2 α = 0.5 18919 538 16347 63

α = 1 17171 436 14501 55
α = 2 18028 497 14438 68
α = 3 18962 566 15014 98

7.2.3 α = 0.5 19513 722 15898 82
α = 1 18178 480 15076 57
α = 2 17393 483 14350 57
α = 3 18671 575 14820 85

7.2.4 54064 32172 20531 1281
7.2.5 19420 553 19231 64

Table 2: The results for large trees (20000 nodes) with 100 samples

In the first column of these tables we list the heuristics used, these are described
in section 7. We only searched for the optimal solution on small trees, since this
method is very slow. The small and large trees consist of 25 and 20000 nodes
respectively. The third and fourth, as well as the fifth and sixth columns of
the tables, denote the average time and the standard deviation of E[T (Γ)] for
different graphs. The trees are created using either a branching process or
preferential attachment.

27

Searching for Objects in Graphs 10 Numerical Results

In the second table it can be seen that for large trees created by preferential
attachment, heuristic 7.2.2 with α = 1 works better than any other heuristic.
For branching processes, the standard deviation is too high to draw any con-
clusions, so table 3 shows results (5 samples) with the E[T (Γ)] of heuristic 7.2.2
subtracted (using α = 1). This removes a lot of the influence of the shape of
the graph, because the result of the best heuristic is subtracted before averag-
ing with different graphs. This shows that heuristic 7.2.2 using α = 2 is still
reasonably good, but α = 1 is a bit better. Note that the difference between
heuristic 7.2.2 (using α = 1) and heuristic 7.2.3 (using α = 2) is not significant,
so both methods give similar results.

Method E(T − κ) σT−κ
7.2.1 7370 314
7.2.2 α = 0.5 1869 113

α = 1 0 0
α = 2 888 88
α = 3 1881 262

7.2.3 α = 0.5 2592 167
α = 1 1060 60
α = 2 125 127
α = 3 1536 86

7.2.4 59794 30333
7.2.5 2437 257

Table 3: The results for large trees with κ equal to the E[T (Γ)] of heuristic 7.2.2
(per sample)

The results obtained on the small trees with the different heuristics are quite
in line though a little bit different then the results obtained on the large trees
with the different heuristics. These results however are insignificant, due to the
high standard deviations. There is one particular aspect that we could test on
the small trees but not on the large trees, the optimal solution to our problem
obtained via brute force search. As can be seen from the results, there is still
improvement on small graphs possible for the heuristics, and we expect that
this is true for larger graphs as well.

Figure 10 shows for a sample graph how much time is needed for both a
branching process graph and a preferential attachment graph to find the object
with a certain probability.

This figure allows several more observations if we compare it with figure 9.
We notice that given the degree distribution of figure 9 our heuristic performs
reasonably well (figure 9 shows the time needed to find the object assuming all
nodes can be visited in optimal order directly after each other).

We also notice that the preferential attachment graph has more nodes with
higher degree, making it possible to find the object faster on average.

28

Searching for Objects in Graphs 10 Numerical Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

P
(T
≤
t)

t

Branching Process
Preferential Attachment

Figure 10: Graph of how fast the object is found
(Computed with heuristic 7.2.2 using α = 2)

29

Searching for Objects in Graphs 11 Conclusion & Discussion

11 Conclusion & Discussion

We did research on finding a hidden object in a tree, when the probability that
an object is hidden at a node is proportional with the degree of the node. This
means that when a node has a relatively large degree that the probability that
a object is hidden in this node is also relatively high. We used trees instead
of graphs to make the problem easier to analyze, but for generality further
research is needed to see what results and observations in this paper hold for
general graphs too.

What we did was searching for the optimal walk in the tree which would visit
all nodes. Using brute force, so trying every possible walk, we could only find
the optimal walk in trees with a maximum of ten nodes. We then implemented
some strategies to improve our search. With this we could calculate the optimal
walk in trees with a maximum of 25 nodes in a reasonable time.

One strategy we used is visiting all leaf nodes connected to a comment
ancestor subsequently one after another, and only after that visiting other nodes
in the tree. We proved that this strategy is optimal.

One strategy we used and also proved correct in our report is, if it is optimal
to visit a leaf node(node with degree one) it is optimal to visit all leaf nodes
connected to the neighbour of the leaf node directly after visiting this leaf node.

In most networks you work with much larger graphs than say 25 nodes. To
solve the problem for larger trees, of a few thousand nodes, we came up with
several heuristics which try to find the optimal walk. However in smaller trees
where we can calculate the optimal walk we discovered that these heuristics are
not optimal in most cases.

We have created a way to convert our problem to a Travelling Repairman
Problem and an algorithm to find the optimal walk in a tree for our problem.
This algorithm uses dynamic programming.

To try the heuristics, we first needed to generate large trees. We chose to
generate two different types of trees: branching trees and preferential attach-
ment trees. Our heuristics are based on visiting nodes with large degree first,
because at the nodes with a large degree the probability of finding the object is
larger than in nodes with a small degree. We expected that in the preferential
attachment trees a hidden object is found faster than in a branching process
tree, our results also show this. Preferential attachment trees have, in our ex-
periments, far more nodes with degree one than branching process trees in most
cases, this means also more nodes with a large degree. Secondly the nodes with
large degree can be anywhere in a branching process tree and in the preferential
attachment trees these nodes mostly arise in the first generations of the tree.

From the results we do not get one best heuristic. What we can say is
that the heuristics ’Degree divided by distance’ and ’Summed degree divided
by distance’ with an α = 1, 2 give the best results. For further research we
recommend trying other heuristics, for example adapting heuristics used for the
Travelling Repairman Problem.

30

Searching for Objects in Graphs 11 Conclusion & Discussion

Since our problem has a lot of related problems, there are a lot of ways to try
and extend our problem. As noted above, instead of minimizing the expected
time in trees, one could minimize the expected time in a connected graph.
Another current limitation is the probability distribution for the location of the
object. Instead of a distribution proportional to the degree of a node, one could
have a distribution which increases with the degree of a node. Alternatively,
any restrictions on this distribution can be dropped.

In our problem walks are used to reach every node, but one could consider
jumping to a chosen node or to a random node. This even is recommended
in the case that the graph or tree is not fully known, but only a (set of) local
section(s) is visible at any given time.

A more hands-on improvement of this paper is looking at more ways to
generate graphs, using different parameters, or making sure that the Branching
Process graph has an distribution of degrees identical to that of a Preferential
Attachment graph.

31

Searching for Objects in Graphs 12 References

12 References

References

[1] Konstantin Avrachenkov, Nelly Litvak, Marina Sokol, and Don Towsley.
“Quick Detection of Nodes with Large Degrees”. In: CoRR abs/1202.3261
(2012). url: http://dblp.uni-trier.de/db/journals/corr/corr1202.
html#abs-1202-3261.

[2] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Ran-
dom Networks”. In: Science 286.5439 (1999), pp. 509–512. doi: 10.1126/
science.286.5439.509. eprint: http://www.sciencemag.org/content/
286/5439/509.full.pdf. url: http://www.sciencemag.org/content/
286/5439/509.abstract.

[3] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. “Paths, trees, and
minimum latency tours”. In: cited By (since 1996)34. 2003, pp. 36–45.
url: http://www.scopus.com/inward/record.url?eid=2- s2.0-

0344981511&partnerID=40&md5=17e26a41cd30173f0a4bcd6cf1ff449e.

[4] AFRATL F., COSMADAKIS S., PAPADIMITRIOU C. H., PAPAGEOR-
GIOU G., and PAPAKOSTANTINOU N. “The complexity of the travelling
repairman problem”. In: R.A.I.R.O. Informatique théorique 20.1 (1986).
Ed. by Dunod. eng, pp. 79–87. issn: 0399-0540. url: http://www.refdoc.
fr/Detailnotice?idarticle=13090207.

[5] Leo Katz. “A new status index derived from sociometric analysis”. In:
Psychometrika 18.1 (1953), pp. 39–43.

[6] Sheldon M. Ross. Introduction to Probability Models, Ninth Edition. Or-
lando, FL, USA: Academic Press, Inc., 2006. isbn: 0125980620.

[7] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach (2nd Edition). Prentice Hall, Dec. 2002. isbn: 0137903952. url:
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-

20\&path=ASIN/0137903952.

[8] Colin Schepers. “Searching in Networks”. June 2010.

[9] John N. Tsitsiklis. “Special cases of traveling salesman and repairman prob-
lems with time windows”. In: Networks 22 (1992), pp. 263–282.

32

http://dblp.uni-trier.de/db/journals/corr/corr1202.html#abs-1202-3261
http://dblp.uni-trier.de/db/journals/corr/corr1202.html#abs-1202-3261
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://www.sciencemag.org/content/286/5439/509.full.pdf
http://www.sciencemag.org/content/286/5439/509.full.pdf
http://www.sciencemag.org/content/286/5439/509.abstract
http://www.sciencemag.org/content/286/5439/509.abstract
http://www.scopus.com/inward/record.url?eid=2-s2.0-0344981511&partnerID=40&md5=17e26a41cd30173f0a4bcd6cf1ff449e
http://www.scopus.com/inward/record.url?eid=2-s2.0-0344981511&partnerID=40&md5=17e26a41cd30173f0a4bcd6cf1ff449e
http://www.refdoc.fr/Detailnotice?idarticle=13090207
http://www.refdoc.fr/Detailnotice?idarticle=13090207
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0137903952
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0137903952

	Introduction
	Research on Literature
	Problem Statement
	The Travelling Repairman Problem
	A Dynamic Programming Algorithm
	Visiting Leaf Nodes
	Numerical Solutions
	Optimal solution
	Heuristics

	Generating Trees
	Branching Processes
	Preferential Attachment

	Predicting the Performance of Heuristics
	Numerical Results
	Conclusion & Discussion
	References

