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Abstract

This research aims to derive an optimal bidding strategy for keyword auctions
in Google Search from the perspective of the advertiser. It presents a model
for the expected profit per view, depending on either the bid or the obtained
position of the advertiser. In a subsequent analysis, the position and bid are
optimized to reach the maximum profit per view. In the model the AdRanks are
assumed to be distributed by a general probability distribution. The analysis
is restricted to the uniform, exponential and normal distributions. In addition
an approximation of the expected profit per view is derived and subsequently
tested by Monte Carlo simulation for different distributions and parameters.
Finally, this research presents an algorithm to determine the AdRanks of the
other advertisers, which may be used for vindictive bidding.



1 Preface

We have conducted this research on Google auctions for our bachelor thesis of
Applied Mathematics at the University of Twente. The project was commis-
sioned by Dennis Doubovski, owner of Social Mining, a company that specializes
in optimization of online advertising campaigns. Social Mining is searching for
better ways of advertising in Google AdWords. Our internal supervisors were
Nelly Litvak and Judith Timmer of the chair Stochastic Operations Research.
This cooperation has resulted in this report.

2 Introduction

The market of online advertising is huge and still growing. Google has the
biggest market share in online advertising. When using Google Search, adver-
tisements are shown. The order in which they are displayed is determined by an
online auction. In figure (1) a heat map of Google Search is shown, displaying
where users look and click when their search results are shown. This heat map
demonstrates that most people look and click at the advertisements at the top
of the page.

Figure 1: Heat Map. The crosses are clicks and the red area is the region most
looked at.
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Companies can create advertisements in Google AdWords, which are dis-
played in Google Search. In Google AdWords the advertisers select the keywords
for their advertisements, the maximum price per click they are willing to pay
and the budget for a specific keyword. The position the advertiser gets depends
on the money they want to spend and the quality of the advertisement. In the
next subsection the mechanism of this auction of Google Search is explained in
more detail.

Generalized Second Price Auction

Each time a user searches on a keyword in Google Search, advertisements are
shown by Google. The position of these advertisements is determined by an
online auction, known as Generalized Second Price (GSP) auction. In this
auction the bidders each place a bid, unknown to the other bidders. The bidder
with the highest bid wins the auction and pays the price of the bid just below
his bid, that is why it is called a second price auction.
In the GSP auction used by Google the position of an advertiser is determined by
the AdRank, this is the quality of the advertisement multiplied by the maximum
amount the advertiser wants to pay per click. This means that the advertiser
with the highest bid does not always get allocated the best position, but the best
position goes to the advertiser with the highest AdRank. These advertisement
positions are called slots, with the first slot as the highest position.
Each time a user of Google Search clicks on an advertisement, the advertiser has
to pay an amount of money. This is called the cost per click (CPC). According to
the idea of the Generalized Second Price auction, the CPC paid by an advertiser
X is the AdRank of the advertiser just below X divided by the quality of the
advertisement of X.
The number of times users click on an advertisement depends on the position
in which the advertisement is shown. The click through rate (CTR) is defined
as the number of clicks on the advertisement divided by the number of views.
As figure (1) shows, the CTR is higher on top of the page. The total price an
advertiser has to pay depends on the CTR and the CPC. It is very difficult,
however, to know the exact value of the CPC, because it remains a well-kept
secret how Google computes the quality of an advertisement exactly.

2.1 Contributions

The first contribution is giving insight into how an advertiser who is using
Google AdWords should bid in order to get a maximum profit per view. This
is done with the help of a model. Based on the distribution of bids of the other
advertisers the model determines what would be the optimal bid and optimal
position to reach the maximum profit per view. To do so, some different distri-
butions for the AdRanks are examined. This leads to analytical equations that
give insight into a bidding strategy. Real-world data are used to get meaning-
ful parameters. The second contribution is making a simulation of an auction
in Google Search. Finally, a contribution is made by describing an algorithm
which determines the AdRanks of the other advertisers.
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2.2 Related Work

Generalized Second Price auctions have been studied by Easley and Kleinberg in
[1]. In [1, Ch.9] Easley and Kleinberg explain which auction types are common
and how they work. In [1, Ch.15] Easley and Kleinberg explain how sponsored
search markets work and discuss the principle of truthful bidding. This princi-
ple shows that the best bidding strategy is to make a bid that equals the price
one is willing to pay, bidding higher or lower than this bid may have a negative
effect on the profit.
The principle of GSP auctions is further examined in [2] by Pin and Key. They
have proposed a model to predict the number of clicks received by the adver-
tisers. In [3] Zhou and Lukose describe a strategy called vindictive bidding, in
which advertisers bid just below the bid of the advertiser above them, to make
the price for the other advertiser as high as possible. This will be discussed in
section 7.
In [4] Feldman, Muthukrishnan, Pál and Stein describe how to distribute the
advertiser’s budget among the search queries. In [5] Kitts and Leblanc describe
a bidding strategy for Overture, a programme like AdWords for Yahoo. In
[6] Feldman, Meir and Tennenholtz propose a slight modification to the GSP
mechanism. This leads to a higher revenue for the seller of the auction, which
in this case is Google. In [7] Aggarwal, Feldman and Muthukrishman study
prefix position auctions where advertiser i can specify that he is interested only
in the top κi positions. This is a variation to the GSP mechanism. In [8] Garg
and Narahari describe a new mechanism to model the sponsored search auction.
They compare it to the GSP and the Vickrey-Clarke-Groves mechanism, which
is based on truthfull bidding, by computing the expected revenue for the search
engine.
The majority of the research in online auctions is from the perspective of Google.
The aim of this report is to look at the problem from the advertisers’ prospec-
tive and consider the problem of optimal bidding in a simple auction so that
the profit resulting from this auction is maximized.
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3 Analytical Model

This section describes an analytical model for the bidding strategy in Google
AdWords of a particular company that wishes to display an advertisement in
Google Search.

3.1 Notations and Assumptions

The following variables are used in the model.

Variable Description Dim Range
s Number of slots 1 s > 0
a Number of other advertisers 1 a > 0
m Minimum price an advertiser 1 m > 0

pays for a slot
Bcomp Bid of the company 1 Bcomp ≥ m
qcomp Quality of the advertisement 1 qcomp ∈ (0, 10]

of the company
Rcomp AdRank of the advertisement 1 Rcomp > 0

of the company
r AdRanks of other advertisers a x 1 ri > 0 ∀i ∈ {1, 2, ..., a}
ρ Probability a user clicks on a slot a x 1 ρi ∈ [0, 1] ∀i ∈ {1, 2, ..., s},

ρi = 0 for i > s
r∗ Sorted descending vector r a x 1 r∗i > 0 ∀i ∈ {1, 2, ..., a}
Y Position of the advertisement 1 Y ∈ {1, 2, ..., s}

of the company
RPCcomp Revenue per click of the company 1 RPCcomp ≥ 0
PPVcomp Profit per view of the company 1 PPVcomp ≥ 0
CPCcomp Cost per click of the company 1 CPCcomp ≥ m
CTR Click trough rate 1 CTR ∈ [0, 1]

A few assumptions were made while making this model.

• The AdRanks of two advertisers are never equal.

• The number of slots never exceeds the number of advertisers.

After the introduction of these variables it is time to start with the framework
of the model.

3.2 Framework of the Model

The most important aspect of the model are the AdRanks. To get the most
realistic results, all the AdRanks need to be known. As explained before, the
AdRank is the bid multiplied by the quality.

Rcomp = Bcompqcomp
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If the AdRanks are known, it is possible to determine the place of the com-
pany amongst the other advertisers. To do so, the sorted vector r∗ has to be
compared with Rcomp, resulting in the following:

Y =



1 if Rcomp > r∗(1)
2 if r∗(1) > Rcomp > r∗(2)
...
s if r∗(s− 1) > Rcomp > r∗(s)
...

a+ 1 if r∗(a) > Rcomp

.

Once the position Y is known the cost per click, CPCcomp, can be calculated.
This is the AdRank of the advertiser just beneath the company divided by the
quality of the company. Since the number of slots never exceeds the number of
advertisers, Y can vary between 1 and a + 1. Of course the company does not
have to pay anything when their position is lower than s, because they do not
get a slot. In the model this implies that if a > s ρ(j), the probability a user
clicks on the slot, is defined to be zero for j > s. If the number of advertisers
is equal to the number of slots, it is possible that the company gets the lowest
slot. In this case the company has to pay the minimum price m. In formula:

CPCcomp =


r∗(Y )
qcomp

if Y < s

m if Y = s
0 if Y > s

. (3.1)

The goal is to maximize the profit per view, PPVcomp. When a user clicks on the
advertisement of the company, the company pays CPCcomp. If the visit of the
user results in a purchase, they get revenue. The average revenue gained by the
company when people click on the advertisement is called the revenue per click:
RPCcomp. The difference between RPCcomp and CPCcomp is the profit realized
by the company when a user clicks on the advertisement. On the other hand, in
case the user does not click on the advertisement, the company does not pay or
receive any money. The profit in case the user clicks on the advertisement has
to be multiplied by the click through rate: CTR. So the formula for PPVcomp
is as follows:

PPVcomp = (RPCcomp − CPCcomp)CTR.

In order to calculate the maximum profit, the expectation of PPVcomp has to
be calculated. In the next subsection an equation for the position is derived at
which the maximum profit per view occurs, this is called the optimal position.
After that another look will be taken at the maximum E[PPVcomp] by writing
down E[PPVcomp] as a function of Bcomp and calculating the bid where the
maximum profit per view occurs, the optimal bid.
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3.3 Optimal Position

First, the expected profit per view is conditioned on the position Y = i.

E [PPVcomp|Y = i] = E [(RPCcomp − CPCcomp)CTR|Y = i]

= (RPCcomp − E [CPCcomp|Y = i])ρ(i) (3.2)

The last equation follows because the expectation of the CTR given Y = i
results in the vector ρ(i). To calculate E [CPCcomp|Y = i] formula (3.1) is used.
For the first line, a distribution of r∗(i) is needed. r∗(i) is the ith order statistic
of r.

E [CPCcomp|Y = i] =


E[r∗(i)]
qcomp

if i < s

m if i = s
0 if i > s

(3.3)

In section 5 this formula will be used to calculate the maximum profit per view.
Bare in mind that when RPCcomp < E[CPCcomp|Y = i] the expected profit
becomes negative, so the company should not participate in the auction.

3.4 Optimal Bid

In this part the expected profit will be conditioned on the bid Bcomp.

E [PPVcomp|Bcomp = bcomp] =

E [(RPCcomp − CPCcomp)CTR|Bcomp = bcomp] (3.4)

To get more insight in the values of the AdRanks, several distributions are ex-
amined. First a general distribution of the AdRanks is implemented.

The probability for the company of getting position i can be determined as
a function of the AdRank Rcomp.

P (r∗(i) ≤ Rcomp ≤ r∗(i− 1)|Bcomp) = P (r∗(i) ≤ Rcomp, r∗(i− 1) ≥ Rcomp|Bcomp)

If r∗(i − 1) ≥ Rcomp there are i − 1 advertisers with an AdRank greater than
Rcomp. Similarly, if r∗(i) ≤ Rcomp the remaining a − i + 1 advertisers have an
AdRank between 0 and Rcomp. If the distribution of the AdRanks is known,
the probabilities of these events can be calculated. These probabilities have to
be muliplied by the number of ways the i − 1 advertisers can be chosen. This
results in the following:

P (r∗(i) ≤ Rcomp, r∗(i− 1) ≥ Rcomp|Bcomp) =(
a

i− 1

)
(p(Bcomp))

i−1
(1− p(Bcomp))a−i+1

, (3.5)

with p(Bcomp) = P (r(i) ≥ Rcomp|Bcomp).

Of course the exact p(Bcomp) depends on the distribution of the AdRanks.
To calculate the expected profit per view, the full expectation formula, condi-
tioning on Y = i is used. Thus from (3.4) and (3.5) the following formula gives
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the total expected profit per view.

E[PPVcomp|Bcomp = bcomp]

=

a+1∑
i=1

E[PPVcomp|Bcomp = bcomp, Y = i]P (Y = i|Bcomp = bcomp)

=

a+1∑
i=1

E[PPVcomp|Bcomp = bcomp, Y = i]

· P (r∗(i) ≤ Rcomp, r∗(i− 1) ≥ Rcomp|Bcomp = bcomp)

=

a+1∑
i=1

(
a

i− 1

)
(p(bcomp))

i−1
(1− p(bcomp))a−i+1

· E [(RPCcomp − CPCcomp)CTR|Bcomp = bcomp, Y = i] (3.6)

Formula (3.1) cannot be computed with the order statistics, because the knowl-
edge of the bid gives extra information about the probabilities that the other
advertisers are above or beneath the company. This is why the simplifying
assumption is made that CPCcomp = Bcomp. This is a reasonable worst-case
scenario, because a company always pays less than their bid. Thus the lower
boundary of PPVcomp, PPV

−
comp, is obtained in this way.

E[PPV −
comp|Bcomp = bcomp] =

a+1∑
i=1

(
a

i− 1

)
(p(bcomp))

i−1
(1− p(bcomp))a−i+1

((RPCcomp − bcomp) ρ(i) (3.7)

In this formula the binomial distribution can be recognized. Hence, a short-hand
notation of formula (3.7) is obtained as follows:

E[PPV −
comp|Bcomp = bcomp] = E[(RPCcomp − bcomp)ρ(X + 1)], (3.8)

with X ∼ B(a, p(bcomp)).

The AdRank of the company can be changed by varying the bid of the company.
The expected profit per view belonging to these bids can be calculated by (3.7)
or (3.8) and a bidding strategy can be derived. As said before there is a critical
treshold, namely, when RPCcomp < Bcomp the company should not participate
in the auction, because of the negative expected profit. In section 5 various
possible distributions of the AdRanks will be studied, followed by conclusions.
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4 Data Analysis

In order to evaluate the parameters of the analytical model, real world data has
to be used. In this section the real world data is being examined.

4.1 CTR versus Average Position

Since an advertisement with a higher position receives on average more clicks
than one with a lower position, the CTR depends on the position. Recall that
the CTR is the Click Through Rate, equal to the number of clicks on the
advertisement divided by the number of views. This dependency between the
CTR and the position is examined in this subsection. Comparable data often
follow Zipf’s law. The probability mass function of Zipf’s law is:

f(k; s,N) =
1
ks∑N
n=1

1
ns

, (4.1)

where f(k; s,N) is in this case the CTR, k = 1, .., N is the position, s > 0
is a parameter to characterize the distribution and N > 0 is the number of
positions. The Zipf’s law is observed by plotting the data on the log-log scale,
because the plot then becomes close to a straight line. In order to test whether
the data really follow the Zipf’s law, two plots are made. Figure (2) is a plot
of the average position against f(k; 1, 8), so s = 1 and N = 8 in formula (4.1).
Only the first eight positions have been taken into account, because for lower
positions the CTR is zero most of the time. Figure (3) is the log-log plot of
figure (2).

Figure 2: Zipf’s law
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Figure 3: Zipf’s law log-log

The figures show that the data approximately follows the Zipf’s law. When
taking s = 2 the average position differs more from the Zipf’s law. Also for
higher values of s the data do not fit better with Zipf’s law. The conclusion is
that Zipf’s law with s = 1 is in this case the best approximation for the CTR,
that is for ρ.

4.2 Average CPC versus Average Position

To analyse the dependency of the average CPC and the average position, several
samples were taken from international campaigns. These samples have been ex-
amined per day and per month. The results are shown in the following figures.
Each of the four keywords ”shirtjes kinder”, ”legging”, ”babymutsjes” and ”polo
korte mouw” are examined in the same period of time.

(a) ”Shirtjes kinder” per day (b) ”Shirtjes kinder” per month

Figure 4: ”Shirtjes kinder”
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(a) ”Legging” per day (b) ”Legging” per month

Figure 5: ”Legging”

(a) ”Babymutsjes” per day (b) ”Babymutsjes” per month

Figure 6: ”Babymutsjes”

(a) ”Polo korte mouw” per day (b) ”Polo korte mouw” per month

Figure 7: ”Polo korte mouw”

Figures (4a) and (4b) seem to show that for this keyword the average position
is more or less equal no matter what the average CPC is. Some of the figures,
like figures (5a) and (5b), seem to show that there is no influence of CPC on
the position at all. Other samples seem to have a slightly upward or downward
trend.
According to formula (3.1), if the CPC increases, the number of the position is
decreasing, assuming that the quality stays the same. If the position number is
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decreasing, the position is increasing. After all, the highest position is defined
as position number one.
Why does this pattern not occur in our samples? The first explanation is that
the sample size is too small. For all samples, 10 data points were used. However,
creating a bigger sample size is not solving the problem completely. Secondly,
in the samples the CPC does not vary sufficiently. The CPC changes at the
most e0.30, that is why the position does barely vary and the results can be
regarded as noise. The third and most important reason why this does not
occur is because the argumentation above is based on the assumption that the
bids of the other advertisers stay the same. In that case the conclusion that the
company gets a higher position when they pay more is legitimate. Otherwise,
when the other advertisers bid differently, the company might get a different
position. Since it is not very realistic to assume that over a period of 10 months
the bids of the other advertisers will not change, it is very likely that this also
has influence on these results.

5 Model Analysis

In this section the model of section 3 is analysed, assuming that the AdRanks
of the advertisers 1, .., a follow a specific probability distribution. To simplify
the model, the assumption is made that the number of slots s equals a + 1.
The analysis in this report is restricted to the uniform, exponential en normal
distribution of the AdRanks.

5.1 Uniform Distribution

The assumption is made that the AdRanks of the other advertisers are uniformly
distributed between α and β, with β > α > 0. At first the maximum of PPVcomp
is calculated for the optimal position. Secondly the optimal bid is examined.

Optimal Position

The probability for the company of getting a position i can be determined as a
function of the AdRank Rcomp. To calculate E[CPCcomp|Y = i] the order statis-
tics r∗ of the uniform distribution are needed. The expectation of CPCcomp is
shown in the formula below.

E[CPCcomp|Y = i] =
β − i−1

a (β − α)

qcomp
(5.1)

In the special case when the company is in the last slot a+1, E[CPCcomp|Y = i]
is equal to m. If i = a + 1 is substituted in formula (5.1), E[CPCcomp|Y = i]
becomes α

qcomp
. Now from formula (3.2) for E[PPVcomp|Y = i] it follows that:

E[PPVcomp|Y = i] =

(
RPCcomp −

β − i−1
a (β − α)

qcomp

)
ρ(i). (5.2)
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If the assumption is made that ρ(i) follows Zipf’s law, formula (5.2) can be
completed.

E[PPVcomp|Y = i]

=

(
RPCcomp −

β − i−1
a (β − α)

qcomp

)
1
i∑a+1

n=1
1
n

=
1

qcomp

1∑a+1
n=1

1
n

(
RPCcompqcomp − β − β−α

a

i
+
β − α
a

)

This formula is decreasing in i and, since i is positive, the maximum value
for E[PPVcomp|Y = i] occurs for small values of i. Hence, in this case the best
strategy is to obtain the highest position under the assumption that RPCcomp ≥
β− i−1

a (β−α)
qcomp

, which is equal to E[CPCcomp|Y = i].

Optimal Bid

Now the optimal bid that maximizes PPV −
comp is computed. Since p(Bcomp) is

needed to substitute in formula (3.7) it has to be specified.

p(Bcomp) =

{
β−Bcompqcomp

β−α if α ≤ Bcompqcomp ≤ β
0 otherwise

The following formula is used to give more insight in the behaviour of
E[PPV −

comp|Bcomp = bcomp]. If the assumption is made that ρ(i) follows Zipf’s
law, formula (3.8) becomes as follows:

E[PPV −
comp|Bcomp = bcomp]

= E

[
1

X+1∑a+1
n=1

1
n

(RPCcomp − bcomp)

]

=
1∑a+1
n=1

1
n

E
[

1

X + 1
(RPCcomp − bcomp)

]
, (5.3)

with X ∼ B(a, p(bcomp)).
Unfortunately, no conclusions can be drawn from this formula. This is why the
analysis continues with formula (3.7).
Taking the derivative of the following formula equal to zero, the optimal bid is
obtained.

E[PPV −
comp|Bcomp = bcomp] =

∑a+1
i=1

(
a
i−1

) (β−bcompqcomp
β−α

)i−1 (
bcompqcomp−α

β−α

)a−i+1

if α ≤ bcompqcomp ≤ β
· (RPCcomp − bcomp)

1
i∑a+1

n=1
1
n

0 otherwise

(5.4)
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The derivative of the previous formula for α ≤ bcompqcomp ≤ β is as follows:

∂E[PPV −
comp|Bcomp = bcomp]

∂bcomp
=

a+1∑
i=1

[
1
i∑a+1

n=1
1
n

](
a

i− 1

)[
−qcomp(i− 1)

(
β − bcompqcomp

β − α

)i−2(
1− β − bcompqcomp

β − α

)a−i+1

·(RPCcomp − bcomp) + qcomp(a− i+ 1)

(
β − bcompqcomp

β − α

)i−1(
1− β − bcompqcomp

β − α

)a−i
·(RPCcomp − bcomp)−

(
β − bcompqcomp

β − α

)i−1(
1− β − bcompqcomp

β − α

)a−i+1
]
,

otherwise it is zero.
The roots of this derivative cannot be found analytically, that is why the max-
imum E[PPV −

comp|Bcomp = bcomp] in formula (5.4) is determined numerically.
The following parameters are used:

a = 10,

RPCcomp = 4,

qcomp = 1,

α = 0.05,

β = 3.5.

In each of the following figures one of the parameters varies.
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Figure 8: Variation of the parameters for uniformly distributed AdRanks

These figures show that E[PPV −
comp|Bcomp = bcomp] = 0 if bcomp ≥ β

qcomp
,

since p(bcomp) = 0 in this case.
Figure (8a) shows that with an increasing number of advertisers, the expected
profit per view decreases. The explanation for this could be that if less adver-
tisers participate in an auction, it is more likely that the company obtains a
higher position, resulting in a higher click through rate. If there is only one
other advertiser, the company is already certain that they will get either slot
1 or 2, so it is not necessary to place a high bid. If the number of advertisers
increases, there are more competitors for the top position and the company has
to make a higher bid in order to maximize their profit.
Figure (8b) displays that varying RPCcomp makes a big difference. If RPCcomp
is lower then CPCcomp, which is equal to bcomp, the expected profit per view
becomes negative. For example, if RPCcomp is 3 the expected profit per view
stays positive for bids lower than 3 and becomes negative for higher bids. So
the best strategy is to bid as high is possible if RPCcomp is bigger than bcomp,
otherwise it is optimal to bid the minimum bid.
In figure (8c) qcomp is varied. Because the expected profit per view is zero in case

that bcomp ≥ β
qcomp

, the value of bcomp for which E[PPV −
comp|Bcomp = bcomp] be-

comes zero depends on qcomp. If qcomp increases, the company can make a lower
bid to receive a high position, so the optimal bid will be lower.
Also in figure (8d) the expected profit per view becomes zero if bcomp ≥ β

qcomp

and in this case this depends on β. For values of β higher than 4, the expected
profit per view becomes negative because RPCcomp is equal to 4. For values of
β lower than RPCcomp the conclusion can be drawn that the optimal bid is β,
so it is best to bid as high as possible in this case. If this is not the case then
it is optimal to bid the minimum bid.
Recall that the conclusion from the optimal position was that it is optimal to get

the first position, so to bid as high as possible when RPCcomp ≥
β− i−1

a (β−α)
qcomp

.

This follows the conclusion for the optimal bid.
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5.2 Exponential Distribution

Now the AdRanks of the other advertisers are assumed to be exponentially dis-
tributed with mean λ. Like in the case of the uniform distribution a distinction
is made between the optimal position and the optimal bid.

Optimal Position

To determine the optimal position, the expected profit per view will be condi-
tioned on the position Y = i with formula (3.2). To do so E[CPCcomp|Y = i]
of an exponential distribution has to be computed. This can be done with (3.3)
and the expected order statistics of the exponential distribution from [9]. This
results in:

E [CPCcomp|Y = i] =

{ ∑a−i+1
k=1

λ
a−k+1

qcomp
if i < a+ 1

m if i = a+ 1
. (5.5)

Because the summation is too difficult to substitute, boundaries of the sum of
(5.5) can be derived. The sum is bounded by two integrals:

∫ a−i+2

1

1

a− t+ 2
dt ≤

a−i+1∑
k=1

1

a− k + 1
≤
∫ a−i+2

1

1

a− t+ 1
dt. (5.6)

The integrals of the previous equation can be easily computed.∫ a−i+2

1

1

a− t+ 2
dt = ln(a+ 1)− ln(i)∫ a−i+2

1

1

a− t+ 1
dt = ln(a)− ln(i− 1)

First the boundaries are substituted in (5.5) and then the resulting expression
is substituted in (3.2). The lower boundary is substituted in formula (3.2) first
and results in the following formula.

E[PPVcomp|Y = i] =

(
RPCcomp −

λ(ln(a+ 1)− ln(i))

qcomp

) 1
i∑a+1

n=1
1
n

(5.7)

In this formula the Zipf’s law for ρ(i) is also substituted. Note that, since the
lower boundary is subtracted from the RPCcomp, it now becomes an upper
boundary for E[PPVcomp|Y = i] . To find the optimum of this formula, the
derivative is computed and set equal to zero:

∂E[PPVcomp|Y = i]

∂i
=
λ−RPCcompqcomp + λln(a+ 1)− λln(i)

qcompi2
∑a+1
n=1

1
n

= 0. (5.8)

Thus the optimal position is the solution for i of the following equation:

λ−RPCcompqcomp + λln(a+ 1)− λln(i) = 0. (5.9)
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Note that the denominater of formula (5.8) is never equal to zero. Solving (5.9)
for i this becomes:

i = e1−
RPCcompqcomp

λ +ln(a−1).

This is the optimal position for the upper boundary of E[PPVcomp|Y = i]. This
does not always has to be an integer, but then bic and die have to be calculated
to see which of the two has the highest E[PPVcomp|Y = i]. This is probably a
good approximation for the optimal position.

Secondly, the upper boundary from formula (5.5) is substituted. Also this
boundary is substituted in formula (3.2) and the derivative is set equal to zero.
Note that this will result in a lower boundary for E[PPVcomp|Y = i].

E[PPVcomp|Y = i] =

(
RPCcomp −

λ(ln(a)− ln(i− 1))

qcomp

) 1
i∑a+1

n=1
1
n

The derivative is as follows:

∂E[PPVcomp|Y = i]

∂i
=

λ

qcomp
∑a+1
n=1

1
n

(
−RPCcompλ qcomp + ln(a)− ln(i− 1)

)
(i− 1) + i

i2(i− 1)
.

So the optimal position is the solution of the following formula:(
−RPCcompqcomp

λ
+ ln(a)− ln(i− 1)

)
(i− 1) + i = 0.

This equation is not solvable analytically, so the boundaries as well as the orig-
inal formula are implemented numerically. In the following figure these param-
eters are used:

a = 10,

RPCcomp = 4,

qcomp = 1,

λ = 1.75.
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Figure 9: E[PPVcomp|Y = i] with the boundaries

The figure shows that the upper and lower boundaries result in a good
approximation for the original problem and it shows that with these parameters
the first position is the best one. Next, the optimal bid will be analysed and
later on it will be compared to the optimal position.

Optimal Bid

Now the maximum PPV −
comp is calculated for the optimal bid. For the expo-

nential distribution the probability p(Bcomp) in formula (3.7) becomes:

p(Bcomp) = e−
1
λBcompqcomp .

With this probability the maximum PPV −
comp can be calculated in the same

way as in the previous subsection. Again a binomial distribution can be rec-
ognized, the only difference is p(bcomp). So (5.3) holds true for the exponential
distribution as well. The derivative of PPV −

comp is also taken in this case.

∂E[PPV −
comp|Bcomp = bcomp]

∂bcomp
=

a+1∑
i=1

[
1
i∑a+1

n=1
1
n

](
a

i− 1

)[
−(i− 1)e−

bcompqcomp
λ

qcomp
λ

(
e−

bcompqcomp
λ

)i−2

·
(

1− e−
bcompqcomp

λ

)a−i+1

(RPCcomp − bcomp) + (a− i+ 1)e−
bcompqcomp

λ
qcomp
λ

·
(
e−

bcompqcomp
λ

)i−1 (
1− e−

bcompqcomp
λ

)a−i
(RPCcomp − bcomp)−

(
e−

bcompqcomp
λ

)i−1

·
(

1− e−
bcompqcomp

λ

)a−i+1
]
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Since the roots of this formula cannot be found analytically, formula (3.7) is
implemented numerically. The parameters are varied to determine the influence
of each parameter. The standard parameters are as follows:

a = 10,

RPCcomp = 4,

qcomp = 1,

λ = 1.75.
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Figure 10: Variation of the parameters for exponentially distributed AdRanks

In figures (10a), (10c) and (10d) RPCcomp is equal to 4. Remember that
CPCcomp is chosen to be equal to bcomp. That is why all lines in these figures
intersect at bid 4, where the expected profit per view equals zero.
Similar as for the uniform distribution, figure (10a) shows that with a lower
number of advertisers, the company can make a lower bid.
From figure (10b) it can be concluded that a higher RPCcomp results in a higher
expected profit per view and the optimal bid becomes higher.
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As for the uniform distribution, figure (10c) shows that a higher quality results
in a higher expected profit per view and a lower optimal bid.
If the mean λ of the AdRanks of the other advertisers becomes higher in figure
(10d), the company has to make a higher bid to reach the same position.

Recall that it still has to be discussed whether the conclusion of the position
follows the conclusion of the bid. With the standard parameters the optimal
position is the first position, so to bid as high as possible. With the same pa-
rameters the optimal bid is between 2 and 2.5. The difference between these
results may occur because for the optimal bid E[PPV −

comp|Bcomp = bcomp] is
used.

5.3 Normal Distribution

Next, the assumption is made that the AdRanks of the a advertisers are nor-
mally N (µ, σ2) distributed. For the normal distribution only the optimal bid
is determined and the optimal position is skipped, since the order statistics are
not known analytically.

Optimal Bid

Because the optimal bid is difficult to determine analytically, this is done nu-
merically. To do so, p(Bcomp) is taken as:

p(Bcomp) = 1− Φ

(
qcompBcomp − µ

σ

)
.

This is substituted in formula (3.7). As done for the uniform and exponential
distribution, the outcomes for different values of the parameters are compared
to each other. The standard parameters are chosen as follows:

a = 10,

RPCcomp = 4,

qcomp = 1,

µ = 1.75,

σ = 0.6.
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Figure 11: Variation of the parameters for normally distributed AdRanks

Just as with the exponential distribution, RPCcomp is equal to 4 in figures
(11a), (11c), (11d) and (11e). Remember that CPCcomp is chosen to be equal
to bcomp. That is why all curves in these figures have a root at bid 4.
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Since the AdRanks of the advertisers are normally distributed in this case,
only 2.5% of the other advertisers have an AdRank higher than µ + 2σ = 2.95
in expectation. Figure (11a) shows that when a increases, the optimal bid ap-
proaches approximately 2.95. This makes sense because the probability that an
arbitrary advertiser has an AdRank higher than this value is only 2.5%. The
optimal bid increases when more advertisers are participating, because it be-
comes more likely that an advertiser has a high AdRank. There are only a few
advertisers with a low AdRank, so it is not worthy to bid below approximately
1. The curves are decreasing in this part of the graph, since CPCcomp is equal
to bcomp. Because RPCcomp stays the same, the cost increases with the same
revenue, resulting in a lower profit per view.

The first prominent aspect in figure (11b) is that a higher RPCcomp gives a
higher expected profit per view. Furthermore, the optimal bid for high revenues
lies at approximately 2.95 like in the figure before. The first part of the graph
is slightly decreasing since for low positions the click through rate is approx-
imately the same, so it does not make a big difference in expected profit per
view to bid a little higher. If the RPCcomp is too low, the graph is monotone
decreasing, so the company should bid the minimum bid in this case.

In figure (11c) the optimal bid is decreasing for a higher quality, because a
lower bid results in the same AdRank. After a certain optimal bid, the curves
are decreasing since bidding higher results in a higher cost per click and the
same revenue.

By varying µ, figure (11d) was created. With a lower µ the company can
bid less to get the same slot, because the other advertisers also have a lower
AdRank on average. This is why the optimal bid decreases for lower µ. When µ
gets higher than RPCcomp, the curves are monotone decreasing because bidding
higher than RPCcomp does not give a positive profit and bidding lower than µ
is also not worthy for the same reasons as before.

When σ increases in figure (11e), the optimal bid increases. This could be
explained because when σ increases the probability that other advertisers have
a high AdRank also increases. The maximum expected profit per view also de-
creases when σ increases, since the company has to bid more in order to get the
same revenue. The curves belonging to low σ are decreasing in the beginning
because there are hardly any advertisers in this interval. Bidding more results
only in a higher CPCcomp, while the probability of getting the last position
stays really high.
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6 Simulation

In C++ a simulation program is written, that simulates auctions and deter-
mines the expected profit per view by the Monte Carlo method. The code of
this program can be found in appendix A. In this simulation program AdRanks
of the other advertisers are uniformly, exponentially or normally distributed.
These distributions are input parameters of the program. The number of other
advertisers, which is equal to the number of slots minus one, is also an input
value, as are the click-through-probabilities, the revenue per click of the com-
pany and the quality of the advertisement.
For several input parameters this simulation is compared to formula (3.7). This
formula was used as an estimation for the profit per view for given input param-
eters. For each distribution, figures are shown for several standard parameters
and for a few variations of the parameters. The standard parameters are as
follows:

a = 10,

RPCcomp = 4,

qcomp = 1.

6.1 Uniform Distribution

The AdRanks of the other advertisers are Uniform[α, β] distributed, with α is
0.05 and β is 3.5.
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Figure 12: Comparison of simulation to E[PPV −
comp|Bcomp = bcomp] with Ad-

Ranks uniformly distributed

These figures show that E[PPV −
comp|Bcomp = bcomp] = 0 if bcomp ≥ β

qcomp
,

since p(bcomp) = 0 in this case. As the figures show, E[PPV −
comp|Bcomp = bcomp]

is a pretty good estimate of the expected profit per view except for figure
(12b). By the definition of E[PPV −

comp|Bcomp = bcomp] it is always lower
than the expected profit per view. For higher bids the approximation gets
less accurate. The reason for this is that in the simulation, when bcomp is in-
creasing, the company pays the AdRank of the company beneath divided by
their own quality, which is bounded. On the contrary, the cost bcomp used in
E[PPV −

comp|Bcomp = bcomp] keeps increasing.
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6.2 Exponential Distribution

Next, the AdRanks of the other advertisers are exponentially distributed with
mean λ = 1.75.
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Figure 13: Comparison of simulation to E[PPV −
comp|Bcomp = bcomp] with Ad-

Ranks exponentially distributed

For the exponential distribution the figures show that for small values of
bcomp, E[PPV −

comp|Bcomp = bcomp] is an accurate lower boundary for the ex-
pected profit per view. For the same reason as for the uniform distribution, the
approximation gets less accurate when bcomp increases.

6.3 Normal Distribution

Next, the AdRanks of the other advertisers are N(µ, σ2), with µ = 1.75 and
σ = 0.6.
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(f) Standard deviation of normal distribution σ =
1.2

Figure 14: Comparison of simulation to E[PPV −
comp|Bcomp = bcomp] with Ad-

Ranks normally distributed

In figure (14a), (14c) and (14f) there is a spike in the graph of the simu-
lated PPVcomp at bcomp = 0.05. The reason for this is that normal random
variates lower than 0.05 are adjusted to 0.05 by the simulation program. If µ
decreases or σ increases the probability that an AdRank is smaller than 0.05
increases which results in a bigger spike at bcomp = 0.05. As was the case for
the uniform and exponential distribution, E[PPV −

comp|Bcomp = bcomp] gives a
good approximation for the expected profit per view for low values of bcomp.
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7 An Algorithm to Determine the AdRanks

The profit of an advertiser depends greatly on the position of the other adver-
tisers. In this section will be discussed how the AdRanks of other advertisers
can be emperically discovered.
It is possible to calculate the AdRanks of the other advertisers by an algorithm,
after making a few assumptions. Only the AdRanks of the advertisers who re-
ceived a slot can be calculated with this algorithm. This algorithm terminates
in s steps or less, where s is the number of slots. At each step an auction is
held. The reason why the algorithm may terminate in less than s steps will be
explained later.

The main assumption is that the vector of AdRanks of the other advertisers
r is constant in time, so they do not change in the s steps. Furthermore,
the company knows their quality qcomp and can vary their bid bk in step k
(k = 1, 2, .., s). So the company knows their AdRank in each step, which is
qcompbk. The bid in each step k results in a cost per click CPCcomp(bk) for the
company.

7.1 The algorithm

In the first step, or initialization step, choose the bid b1 very high, such that
the AdRank b1qcomp is higher than the AdRanks of all other advertisers. Math-
ematically this means that

b1qcomp > r∗(1),

where r∗ is the sorted descending vector r. The resulting cost per click after the
first bid, CPCcomp(b1), is known. Because of formula (3.1) CPCcomp(b1)qcomp
equals the highest AdRank among all other advertisers, so

CPCcomp(b1)qcomp = r∗(1).

The next step is to calculate r∗(2) with information obtained by choosing a new
bid b2 smartly. The idea is to choose the bid b2 such that the resulting AdRank
b2qcomp is lower than r∗(1) and higher than r∗(2), because then r∗(2) can be
calculated via the CPC formula and the obtained CPCcomp(b2). Because you
do not know the value of r∗(2) you want to bid as high as possible, but still
lower than r∗(1), this means that you have to bid

b2 = (CPCcomp(b1)− 0.01).

Bidding b2 does not guarantee that the calculated AdRank is r∗(2), it could be
r∗(j), j > 2. But this is only the case if r∗(1) − r∗(2) < 0.01qcomp. Then the
AdRanks r∗(1),..,r∗(j) are very close to each other and they are in the interval
[r∗(1), r∗(1)− 0.01qcomp).

The next steps are similar to the second step. So in general for step k = 2, .., s
the bid is:

bk = (CPCcomp(bk−1)− 0.01).
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This results in CPCcomp(bk) and the next calculation is:

CPCcomp(bk−1)qcomp = r∗(k) if r∗(j − 1)− r∗(j) > 0.01qcomp ∀ j = 2, .., k.

If the difference between two AdRanks is smaller than 0.01qcomp, the algorithm
skips one or more advertisers who have AdRanks in this interval. Then the
algorithm will be finished in fewer steps than s and you know that some Ad-
Ranks are close to each other. Thus in this case you get a good impression of
the distribution of the AdRanks.

7.2 Optimal Bidding

When the company knows the AdRanks of the other advertisers it is possible
to determine an interval for the optimal bid. In this case optimal means that
the maximal profit per view is gained by bidding in this interval. In this algo-
rithm the profit per view PPVcomp(i) = (RPCcomp(i)−CPCcomp(i))CTR(i) is
dependent of the position i = 1, .., s. So in this case RPCcomp also depends on
i and is not a constant like before.
When all these values from the previous formula are known by the company,
maxi PPVcomp(i), the maximum profit per view, can be calculated. So
arg maxi PPVcomp(i) is the position with the highest profit. This position is
acquired by choosing the bid bopt optimal. To acquire the first position the
company chooses the bid bopt > CPC(1) = r∗(1)/qcomp. For the other posi-
tions i > 1 choose the bid r∗(i)/qcomp < bopt < r∗(i− 1)/qcomp.

7.3 Practicability

Outcomes, like the resulting CPC and position, of a single auction are not known
in Google Adwords. The average is taken over the outcomes of all auctions in
an hour. The resulting averages such as average position and average cost per
click are not very precise, since all the variables are averaged and the conditions
per auction could differ. This is probably not a problem for the first step but it
probably is for the next steps of the algorithm. One of the reasons is that the
number of advertisers in an auction may vary because of budget constraints,
which leads to a (positive) variance in the average cost per click. Then it is
not possible anymore to determine the other AdRanks precisely. Because of the
former statement constructing a confidence interval is not possible too, because
of not knowing the outcomes per auction.

7.4 Vindictive Bidding

A possible application of the algorithm is the vindictive bidding strategy. Vin-
dictive bidding is a bidding strategy used in GSP auctions, according to [3]. In
general, in this strategy the bids are known by the company. The goal of vin-
dictive bidding is to let the competitor pay as much as possible without paying
extra costs himself. By letting the competitor pay more, the company makes
sure that the competitor runs out of cash more quickly. If his whole budget is
spent, there is one competitor less in the auction.
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With vindictive bidding a participant bids as close to the competitor above him
as possible, but with the restriction that he stays under the competitor’s bid.
This way he will make sure that the competitor pays as much as possible for
the item.
But what if other competitors also use this strategy? Then the competitor bids
just below the participant, since his goal is now to maximize the participants
price. He reacts by bidding just below the competitor’s new bid and then the
competitor reacts, etcetera. This continues until an equilibrium occurs.
Vindictive bidding might be a useful strategy when a participant knows the bids
of his competitors. Unfortunately, most auctions use sealed bids to prevent this
kind of strategy.

The ’bids’ in a Google auction are the AdRanks of the participants. Because it
is difficult in practice to determine the AdRanks of the other bidders, vindictive
bidding is not a very useful strategy. An advertiser may end up having his
AdRank a little bit higher than his competition, by a bad estimate. Thereby
his competitors’ costs are reduced and his own are raised. This is the opposite
of what he wanted to achieve.

8 Conclusion

In this report a model has been presented to determine the optimal bid and
position in Google AdWords, resulting in a maximum profit per view. For the
AdRanks of the advertisers distributions were chosen to substitute in the model.
The uniform, exponential and normal distribution were selected in this report
to examine the different outcomes of these distributions.

To calculate the optimal bid a lower boundary of the expected profit per view
has been derived by assuming the cost per click equal to the bid of the company.
This lower boundary of the profit per view was compared to a simulation of the
auction. It turned out that this lower boundary is a good estimate of the profit
per view for low values of the bid. However, when the bid increases, the cost per
click increases at the same rate. Since normally an advertiser pays the AdRank
of the advertisement beneath divided by his own quality, the profit per view de-
creases when assumed that the cost per click equals the bid. In the simulation
when the advertiser is on the first position, he still pays the AdRank of the ad-
vertiser below him divided by his own quality when his bid is increasing, so the
profit stays constant. Still, the lower boundary of the profit per view and the
outcome of the simulation show the same behaviour when several parameters
are varied.

When the AdRanks of the advertisers are distributed uniformly, it turns out
that the optimal position is the highest slot and the optimal bid is the highest
bid, but only when the revenue per click is high enough. If the revenue per click
is below the cost per click, it is best to bid the mimimum.

For an exponential distribution of the AdRanks, conclusions are more difficult
to draw. A lower and upper boundary have been derived for the profit per view
conditioned on the position. For the upper boundary the optimal position was
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calculated in an analytical way, but for the lower boundary this was not possi-
ble. This is why the optimal position, as well as the optimal bid, is determined
numerically. It turned out that with the same parameters the optimal bid is
not equal to the optimal position. The explanation for this could be that the
profit per view for the optimal bid is a lower boundary of the exact profit per
view. The optimal bid and position are dependent of several parameters, but
for fixed parameters, optima can be found.

In case the AdRanks are normally distributed, only the optimal bid was ex-
amined. Again, this had to be done numerically, resulting in different outcomes
for different parameters.

To fulfill the model resulting in the conclusions above, some data had to be
analysed. Examination of the click through rate versus the average position,
showed that the click through rate follows the Zipf’s law. This is an important
aspect implemented in the model.

The AdRanks of the other competitors could be calculated by an algorithm,
at least in theory. If this would be possible in practice, vindictive bidding might
be a useful bidding strategy.

9 Discussion

In this report several assumptions were made, some more realistic then others.
The first important assumption was that the AdRanks of the advertisers are
never equal. Of course in Google Adwords it can happen that two advertisers
have the same AdRank. In this case Google determines which advertiser gets a
higher position in a way unknown to the public. This gives the same outcome
as in the case where one advertiser has an AdRank slightly higher than the
other advertiser, which is done in the model. So although this assumption is
not realistic, it does not have a significant effect on the model.

The second assumption made at the start of the model, is that the number
of slots never exceeds the number of advertisers. This is realistic, because the
number of slots depends on the number of advertisers. Google determines for
each auction how many slots are shown in Google Search and this is never more
then the number of advertisers. Later on in the model, the extra assumption
was made that the number of slots equals the number of advertisers. In a real
auction there are more participating advertisers than available slots. If there are
not enough participating advertisers, Google changes the number of slots, like
explained before. This assumption was made to simplify the model, although
this might change the outcome, because if not all advertisers can get a slot they
have to place a higher bid to get one.

In the model three different distributions for the AdRanks were examined. These
three were chosen because these are common distributions. The uniform distri-
bution was chosen to start with because it is relatively easy to analyse and it
gives a good impression of the behaviour of the bid and position. The expo-
nential and normal distributions were chosen because they are a more truthful
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representation of the true behaviour of the AdRanks. The normal distribution
is the most realistic one of the three, because in most auctions the same type of
companies participate and they want to pay approximately the same price for a
slot. Thus there are not many advertisers bidding much more or much less than
the average bid. Of course also the assumption of the normal distribution does
not exactly hold for the AdRanks in every auction in Google Search, but it is a
good approximation to base the model on. Unfortunately the optimal position
with a normal distribution is not covered in this report, because to do so, the
order statistics of the normal distribution are needed. This is difficult to imple-
ment. There are some approximations for this function, but the approximations
found were not good enough to say something about the optimal position.

In section 3 the assumption is made that the cost per click is equal to the
bid of the company. This is not very realistic, but it gives a good lower bound-
ary for the profit per view, because the cost per click only be lower than the bid
of the company. It becomes more realistic when there are more participants in
the auction, since then the bids are closer to each other.

In the model the revenue per click does not depend on the position. This is
probably a good approximation of the reality. In reality the revenue per click
does depend on the position, since the behaviour of the user of Google Search
changes during the search. For example, the user clicks on the first advertise-
ment to look for information. After clicking on the third advertisement the
user knows enough of the product he is looking for and then decides to buy the
product at that website. The advertiser on the third position then gets revenue
with only one click. This is why in the algorithm the revenue per click does
depend on the position.

In the algorithm the assumption is made that the vector of AdRanks is constant
in time. This is a realistic assumption since most companies probably do not
change their bid often.

Of course not all aspects of bidding in Google Adwords are covered in this
report. A closer look at other distributions can be taken to further examine
the behaviour of the bid and position. The normal distribution can be solved
analytically to see if the conclusions of the numerical part can be confirmed.
Besides that, if more detailed data is available, the model could be tested more
accurately. Furthermore, the conclusions drawn are based on the minimal profit
per view. If a maximum profit per view can be derived, more conclusions can
be drawn about the optimal position.
Also, if more data would be available, the average cost per click versus the aver-
age position could be further examined. The hypothesis that a higher cost per
click will give a higher position could then be tested.
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11 Appendix

In this appendix both C++ and Matlab programs can be found, that are used
for the simulation of our model.

Appendix A

The first program is in C++ and is used to simulate the different distributions
of the AdRanks. This program calculates the expected profit for different values
of the bid.
#include <s td i o . h>
#include <math . h>
#include <s t d l i b . h>
#include <iostream>
#include <fstream>
#include <ctime>
#include <c s td l i b>
us ing namespace std ;

FILE ∗ i n f i l e , ∗ o u t f i l e ;

f loat exp ( f loat mean , f loat rand ) ;
f loat uniform ( f loat min , f loat max , f loat rand ) ;
f loat l cgrand ( int stream ) ;
f loat normal ( f loat mu, f loat sigma , f loat rand1 , f loat rand2 ) ;
void z i p f s l aw ( int Aa , int Ss , f loat s ) ;

#define NUM OF SIMULATIONS 100

#define S 11
#define A 10

f loat r [A+1] ;
f loat r s t a r [A+2] ;
f loat r s t a r adv [A+2] ;
f loat cpc [A+1] ;
f loat prob [ S+1] ;
f loat er [A+1] ;
f loat av er [10000000+1] ;
f loat a v r s t a r [10000000+1] ;
f loat t o t a v e r [ 1 0000000 ] ;
int main ( )
{

f loat rpc = 4 . 5 0 ;
f loat q comp = 1 ;

int maxbodmaal100 = 500; // c e i l ( r p c ∗100 ) +90 ;

for ( int i =5; i<=maxbodmaal100 ; i++)
{

t o t a v e r [ i ]=0;
}
for ( int sim num = 1; sim num <= NUM OF SIMULATIONS; sim num++)
{

for ( int i =1; i<=A; i++)
{

// r [ i ] = u n i f o rm ( . 0 5 , 2 . 0 , l c g r a n d ( s im num ) ) ;
// r [ i ] = e x p ( 2 . 0 , l c g r a n d ( s im num ) ) ;
r [ i ] = normal ( 2 . 1 , . 3 , l cgrand ( sim num) , lcgrand ( sim num) ) ;

}
z i p f s l aw (A, S , 1 ) ;

for ( int m=5; m<=maxbodmaal100 ; m++)
{

r [ 0 ] = q comp∗(m/100 .0) ;

for ( int j =0; j<=A; j++)
{

int counter = 0 ;
for ( int i =0; i<=A; i++)
{

i f ( r [ j ]< r [ i ] )
{

counter++;
}

}
counter++;
r s t a r [ counter ]= r [ j ] ;
r s t a r adv [ counter ]= j ;

}

int j =0;
int n ;
for ( int i =1; i<=S ; i++)
{

i f ( r s t a r adv [ i ] == j )
{
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n=i ;
}

}
i f (n==S)
{

cpc [ j ]=0 .05 ;

}
i f (n<S)
{

cpc [ j ] = r s t a r [ n+1]/q comp ;
}
i f (n>S)
{

cpc [ j ] = 0 ;
}

er [m] = ( rpc−cpc [ 0 ] ) ∗prob [ n ] ;

t o t a v e r [m] += er [m] ;
}

int h = 5 ;
for ( int j =5; j<=maxbodmaal100 ; j++)
{

i f ( er [ j ]> er [ h ] )
{

h=j ;
}

}
f loat max er = er [ h ] ;
f loat opt b id = h∗1 .0/100 ;

// c o u t << o p t b i d << max e r << e n d l ;

}
o u t f i l e = fopen ( ” bo so r s imu l a t i e 2 . out” , ”w” ) ;
for ( int m=5; m<=maxbodmaal100 ; m++)
{

f p r i n t f ( o u t f i l e , ”\n m \%10.3 f ” , m/100 .0) ;
// f p r i n t f ( o u t f i l e , ”\n ER \%8.3 f \n ” , a v e r [m ] ) ;
f p r i n t f ( o u t f i l e , ”\n ER \%8.3 f \n” , t o t a v e r [m] / ( 1 . 0∗

NUM OF SIMULATIONS) ) ;
}

f c l o s e ( o u t f i l e ) ;
}

f loat uniform ( f loat min , f loat max , f loat rand )
{

f loat f = min+(max−min)∗rand ;
return f ;

}

f loat exp ( f loat mean , f loat rand )
{

/∗ e x p o n e n t i a l v a r i a t e w i t h mean mean f r om ( 0 , 1 ) random number rand , u s i n g
i n v e r s e t r a n s f o r m a t i o n me t hod ∗/

f loat f = −mean∗ l og ( rand ) ;
return f ;

}

f loat normal ( f loat mu, f loat sigma , f loat rand1 , f loat rand2 )
{

f loat z1 = sqr t (−2∗ l og ( rand1 ) )∗ cos (2∗M PI∗rand2 ) ;
f loat z2 = sqr t (−2∗ l og ( rand1 ) )∗ s i n (2∗M PI∗rand2 ) ;
i f ( sigma∗z1+mu<0.05)
{

return 0 . 0 5 ;
}
else
{

return sigma∗z1+mu;
}

}

void z i p f s l aw ( int Aa , int Ss , f loat s )
{

f loat sum = 0 . 0 ;
for ( int i =1; i<=Ss ; i++)
{

f loat j =1.0∗ i ;
prob [ i ]=1.0/ j ;
sum = sum + prob [ i ] ;

}
i f (Aa+1>Ss )
{

for ( int i=Ss+1; i<=Aa+1; i++)
{

prob [ i ]=0;
}

}
for ( int i =1; i<=Ss ; i++)
{

prob [ i ] = prob [ i ] / sum ;
}

}
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// Random G e n e r a t o r

#define MODLUS 2147483647
#define MULT1 24112
#define MULT2 26143

stat ic long zrng [ ] =
{ 1 ,
1973272912 , 281629770 , 20006270 ,1280689831 ,2096730329 ,1933576050 ,
913566091 , 246780520 ,1363774876 , 604901985 ,1511192140 ,1259851944 ,
824064364 , 150493284 , 242708531 , 75253171 ,1964472944 ,1202299975 ,
233217322 ,1911216000 , 726370533 , 403498145 , 993232223 ,1103205531 ,
762430696 ,1922803170 ,1385516923 , 76271663 , 413682397 , 726466604 ,
336157058 ,1432650381 ,1120463904 , 595778810 , 877722890 ,1046574445 ,
68911991 ,2088367019 , 748545416 , 622401386 ,2122378830 , 640690903 ,

1774806513 ,2132545692 ,2079249579 , 78130110 , 852776735 ,1187867272 ,
1351423507 ,1645973084 ,1997049139 , 922510944 ,2045512870 , 898585771 ,
243649545 ,1004818771 , 773686062 , 403188473 , 372279877 ,1901633463 ,
498067494 ,2087759558 , 493157915 , 597104727 ,1530940798 ,1814496276 ,
536444882 ,1663153658 , 855503735 , 67784357 ,1432404475 , 619691088 ,
119025595 , 880802310 , 176192644 ,1116780070 , 277854671 ,1366580350 ,

1142483975 ,2026948561 ,1053920743 , 786262391 ,1792203830 ,1494667770 ,
1923011392 ,1433700034 ,1244184613 ,1147297105 , 539712780 ,1545929719 ,
190641742 ,1645390429 , 264907697 , 620389253 ,1502074852 , 927711160 ,
364849192 ,2049576050 , 638580085 , 547070247 } ;

f loat l cgrand ( int stream )
{

long z i , lowprd , hi31 ;

z i = zrng [ stream ] ;
lowprd = ( z i & 65535) ∗ MULT1;
hi31 = ( z i >> 16) ∗ MULT1 + ( lowprd >> 16) ;
z i = ( ( lowprd & 65535) − MODLUS) +

(( hi31 & 32767) << 16) + ( hi31 >> 15) ;
i f ( z i < 0) z i += MODLUS;
lowprd = ( z i & 65535) ∗ MULT2;
hi31 = ( z i >> 16) ∗ MULT2 + ( lowprd >> 16) ;
z i = ( ( lowprd & 65535) − MODLUS) +

(( hi31 & 32767) << 16) + ( hi31 >> 15) ;
i f ( z i < 0) z i += MODLUS;
zrng [ stream ] = z i ;
return ( z i >> 7 | 1) / 16777216 .0 ;

}

void l c g rands t ( long zset , int stream )
{

zrng [ stream ] = z s e t ;
}

Appendix B

For the exponential distribution, a graph of the optimal position is made with
the following program in Matlab. The expected profit per view is shown together
with the lower and upper boundary.

c l o s e a l l
c l e a r a l l
a=10; B=4; A=0.05; RPC = 4; r=0; q=1; L=1.75;
PPV1=0; PPV2=0; PPV3=0;
x = [ ] ; v = [ ] ; w= [ ] ; z = [ ] ; y = [ ] ;

for n=1:( a+1)
r = r+(1/n) ;

end

for i =1:a+1
f =0;

PPV1 = (RPC−( log ( a+1)−l og ( i ) ) /(L∗q) ) ∗((1/ i ) / r ) ;
PPV2= (RPC−( log ( a )−l og ( i−1) ) /(L∗q) ) ∗(1/ i ) / r ;
i f ( i==a+1)

f=A;
else

for k=1:a−i+1
f=f +1/(a−k+1) ;
end

end
PPV3 = (RPC−f /(L∗q) ) ∗((1/ i ) / r ) ;

v = [ v i ] ; w = [w PPV1 ] ; z = [ z PPV2 ] ; y = [ y PPV3 ] ;
end
hold on
p lo t (v ,w, ’ r ’ , ’ Linewidth ’ ,3) ;
p l o t (v , z , ’b ’ , ’ Linewidth ’ ,3) ;
p l o t (v , y , ’ g ’ , ’ Linewidth ’ ,3) ;
x l abe l ( ’ i ’ ) ;
y l abe l ( ’E [PPV|Y=i ] ’ ) ;
legend ( ’Upper boundary ’ , ’ Lower boundary ’ , ’ Or i g ina l ’ , ’ Locat ion ’ , ’ Best ’ )
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Appendix C

Also for the optimal bid a program in Matlab is made. This program is shown
below for a uniform distribution of the AdRanks. If the AdRanks are distributed
otherwise, only the probabilities change. The RPCcomp is varying in this case,
of course another parameter can be varied by making a few changes to the
program.

c l o s e a l l
c l e a r a l l
a=10; C=5; B=3.5; A=0.05; q=1;
cc=hsv (10) ;

for RPC=1:0 .5 :5
r=0; v = [ ] ; w= [ ] ;

for i =1:( a+1)
r = r+(1/ i ) ;
end

for b=A: 0 . 0 1 :C
y=0;
for i =1:( a+1)

x = nchoosek (a , i−1) ;
i f B>b∗q
y = x ∗ ( ( (B−b∗q) /(B−A) ) ˆ( i−1) ) ∗((1−(B−b∗q) /(B−A) ) ˆ(a−i +1) ) ∗(RPC − b) ∗((1/

i ) / r )+y ;
else
y=y ;
end

end
v = [ v b ] ;
w = [w y ] ;
end

hold on
k=RPC∗2−1;
p lo t (v ,w, ’ Color ’ , cc (k , : ) , ’ Linewidth ’ ,3)
x l abe l ( ’ b {comp} ’ ) ;
y l abe l ( ’E [PPVˆ−|B {comp}=b {comp} ] ’ ) ;
l e g endIn fo {k} = [ ’RPC {comp} = ’ num2str (RPC, 2 ) ] ;
end
legend ( legendInfo , ’ Locat ion ’ , ’ Best ’ ) ;
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