Interference Exploitation in Wireless Networks

State-of-the-art wireless technology treats interference as noise, wasting valuable resources. Compute-and-forward, a combination of network coding and a new type of forward error correcting code, allows to exploit interference.

Introduction

Network coding: Relays mix data of different connections by computing and retransmitting linear combinations (xor) of bits.

- Alice: has a wants b
- Bob: has b wants a

b = (a ⊕ b) ⊕ a
a = (a ⊕ b) ⊕ b

Wireless medium: superposition of signals as well as noise. — Computation code: A new type of error correcting code that enables the decoding of linear combinations of bits.

Combining network and computation coding is called compute-and-forward [Nazer & Gastpar], or reliable physical-layer network coding.

Example: XOR Erasure Channel

Alice and Bob are exchanging bits. The Relay receives the xor of these bits, or an erasure. Using only network coding (below left), this takes 8 time slots. Compute-and-forward (below right) requires only 5 time slots. Compute-and-forward increases efficiency.

Challenge 1: Queueing

- Compute-and-forward leads to a new class of queueing networks.
- Example for a relay of two connections:

 - No compute-and-forward: Jackson network
 - Compute-and-forward: new transition structure

 - Product-form models (e.g., Jackson networks) can not be used to model compute-and-forward.
 - New tools are required to analyze wireless networks that employ compute-and-forward.

Challenge 2: Larger Networks

- Develop scheduling mechanisms that support compute-and-forward.
- Determine network capacity under compute-and-forward:
 - Without compute-and-forward interference leads to scheduling constraints.
 - Compute-and-forward significantly reduces constraints, increasing capacity.
 - Example for nodes on hexagonal lattice:

Challenge 3: Integrate

- Compute-and-forward: The number of constraints reduces, capacity is increased.

INTEX Project

- NWO “Interference Exploitation in Wireless Networks”, 612.001.107
- Website: http://www.ewi.utwente.nl/ori/goseling/intex/
- Contact: Jasper Goseling, email: j.goseling@ieee.org
- Groups involved:
 - University of Twente: Stochastic Operations Research
 - TU Delft: Multimedia Signal Processing Group
 - EPFL: Laboratory for Information in Networked Systems

Publications

University of Twente. TU Delft. ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. NWO. Netherlands Organization for Scientific Research