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Abstract
A digital security breach where confidential information is being obtained often does not only influence
the agent whose system is being infiltrated, also other agents socially or digitally connected to the dam-
aged system can be affected. This leads to externalities in which the actual security of an agent does
not only depend on his own investments in security, it also depends on investments by other agents. As
no agent would invest to protect information of others, misaligned incentives may appear in this setting.
It has been argued that these incentives provoke under-investments, which in turn make the network
prone to fail. Recently this presumption is challenged however by the introduction of an intelligent ad-
versary who chooses an optimal trade-off between expected damage and precision of the attack. In
this research we build on the impact of an intelligent adversary by combing the strategic attack model
with a new model for information spread. We show that agents tend to compete for security under the
strategic attack as an increase in investments can cause the adversary to attack someone else. When
dependencies among agents are low, because the network is not very dense or because the proba-
bility that information is shared is small, agents even invest more in security than they would in the
social optimum. When dependencies increase these over-investments prevail due to a second order
force originating from the adversary. In this situation the adversary chooses a more precise attack as
the expected gain compensates the increased costs for a more precise attack. Nevertheless, when de-
pendencies continue to increase and consequently it becomes meaningless to discourage an attack, at
some point over-investments pass on to under-investments. We show that this point is reached earlier
in a more dense network. However, when the network consists of several components where the intelli-
gent adversary can strategically decide which component is attacked, investments are always higher in
a more dense network.

Keywords: Network security, security investments, information protection
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1 Introduction
1.1 Motivation

Our society and economy have become largely dependent on information networks. People commu-
nicate with others around the globe, students aggregate information from electric libraries and cloud
computing services are widely used. Although in general these networks provide benefits, cyber attacks
become more and more attractive and potentially disastrous as our dependence on these networks
increase. Estimates of the total damage of cyber attacks vary as stakeholders generally conceal infor-
mation to prevent reputational damage. Yet, security giant Symantec estimates that over 552 million
identities were exposed via breaches and that 66% of email traffic was spam in 2013 (Symantec, 2014).

Security breaches come in many forms, such as spread of malware, social engineering compromises
(e.g. phishing) and exploitations of a system’s vulnerabilities. A special form of cyber-attack are attacks
where hackers - without permission - obtain confidential information. Relevant information is diverse
and includes for instance strategic decisions and intellectual properties (e.g. industrial espionage) but
also includes identity information like passwords and (email) addresses. The impact of this stolen infor-
mation can be destructive: bank accounts can be plundered, legitimate owners can be threatened that
strategic decisions or sensitive information will be released or for instance identities can be stolen for
criminal purposes. Recent examples are extensive. For instance on November 24, 2014, Sony Pictures
Entertainment has been subject to a massive computer hack where attackers stole a huge number of
confidential documents. Among the document are unreleased movies, internal e-mail contacts and per-
sonal information like medical information and salaries of employees and their families. Not only Sony,
but also employees received threats that more sensitive data will be exposed unless certain demands
are met. This attack on Sony is certainly not the first security breach where confidential information
is obtained. On August 5, 2014, it was announced that hackers amassed over a billion passwords,
names and e-mail addresses by breaching Internet websites. With this information, hackers accumu-
lated money by hacking into e-mail and social accounts, posing as a trusted friend but sending malicious
spam. Also smaller examples but potentially more destructive for individuals are known. For instance,
fake social network accounts are notorious for, if accepted as ‘friend’, amassing sensitive information
about their victims and - potentially - their victims friends.

These forms of cyber-attacks where confidential information is obtained are increasingly common and
cybersecurity experts Jang-Jaccard and Nepal (2014) and security company Symantec (2014) worry
that keeping personal information out of the hands of thieves is a losing battle. Although agents in
information networks can protect against these attacks by using anti-virus programs, refraining from
suspicious emails or by adopting prudently chosen passwords, it has been argued by Moore (2010),
Dynes et. al (2007) and Anderson & Moore (2006) that security investments are not as high as they
should be. These under-investments have been atrributed primary to misaligned incentives that arise
from externalities. Externalities originate because confidential information can be leaked through other
channels than one’s own device. As a consequence, agents face risks whose magnitude depends not
only on an agent’s own security level, it also depends on the security level of others. In this setting
investments in security act like strategic substitutes as benefits of security adoption are not exclusively
for the one that invested in the security. Consequently, a negligent agent who does not adequately
protect his system due to free-riding may cause considerable damage to other agents. This can lead to
situations where benefits of security adoption fall significantly below the cost of adopting. This in turn
provokes under-investments in security. Anderson and Moore (2006) recognize for instance that security
failure is caused at least as often by bad incentives (not adopting security and incautious behavior) than
by bad design (technical limitations to protect against security breaches). Lelarge and Bolot (2008)
verify from a theoretical model that adopting new security features in the Internet has been an ongoing
challenge due to externalities. Varian (2000) recognizes that a rational consumer might well spend effort
to protect his own hard disk, he might not do so to prevent an attack on a wealthy company.

Recently this prediction of under-investments in information networks has been challenged. Acemoglu
et al. (2013) and Bachrach et al. (2014) show that investments in security might as well be strategic
complements when agents face an intelligent threat. As this intelligent threat endeavors to do as much
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damage as possible, possibilities to free-ride are reduced as the attacker might target a negligent agent
with a higher probability. This in turn forces agents to adopt security. This incentive may even lead
to characteristics of an arms race where agents mutually compete who is targeted by the attacker.
Acemoglu et al. show that agents indeed invest too much but stress that the exact magnitude depends
on the network topology and on the specific cost functions. Bachrach et al. even propose that optimal
policy requires taxing security, as opposed to subsidize security as recommended by models which do
not include an intelligent adversary.

1.2 Summary of our contributions

Our model
This research builds on the growing literature on the economics behind security. We develop a theoret-
ical model to investigate incentives to invest in security. The focus lies on comparing investment levels
in a cooperative and a non-cooperative environment with the purpose to uncover the consequences
of egoistic behavior. In line with Acemoglu et al. we adopt a model of an intelligent/strategic attacker.
Although in potential a fruitful research direction with satisfying early results, the role of the attacker is
not fully understood. To further understand this role, we combine the model of the strategic attack with
a new spreading model fitted to spread of information1.

Specifically, in our model every agent owns a unique document which for instance could be a credit
card number, a strategic decision or a contract. It is assumed that documents are shared among agents
in the network. Although the documents are confidential, it is beneficial (at least not detrimental) for an
agent when this document is obtained by other agents. For instance, families might exchange credit
card numbers, employees exchange strategic decisions and friends share personal information. It is
assumed that the spreading of the documents happens independently of each other and in a way such
that agents who are connected to the owner of the document, in a - so called- transmission network,
obtain the document. This transmission network is formed from the original network by removing edges,
independently of each other and with an exogenous probability 1− p (see figure 1). As we assume that
this probability p is independent of security, agents do not limit spread facing the upcoming attack.

Before the spreading of documents is realized, we assume that agents had the opportunity to invest in
security. These security investments reduce the chance that an attack is successful which would allow
the malignant attacker to amass all the confidential documents obtained by the target agent. This at-
tacker, who strives to obtain as many documents as possible, attacks one of the agents. This is modeled
by drawing a random variable from a probability distribution over the agents. This distribution is set up
before the documents diffuse through the network but after the precautionary security investments are
made. Moreover it is assumed that a more precise attack, which requires more knowledge about the
characteristics of the agents, is more costly. This set-up forces the attacker to determine an optimal
trade-off between precision and cost.

We model the precautionary security investments as the outcome of a game between agents. In this
game, rational agents simultaneously invest in security and in a way such that gains (reduced exposure
risks) compensate investments costs. In the process of making this decision, agents have full infor-
mation about the game, the network structure and choose their security investments anticipating the
strategic decision of the attacker. Uncertainty lies in the probability that documents are shared, the lo-
cation of the attack and the probability that this attack is successful. In order to fully characterize the
role of a possible strategic attack, as opposed to a non-strategic (random) attack and the role of the
level of cooperation among agents, we limit our attention to homogeneous agents. Such normalization
guarantees that a change in investments is due to the attack form or to the cooperation level as op-
posed to heterogeneity across agents. Nevertheless, our simulation results indicate that forces present
in homogeneous settings extend to broader, heterogeneous settings.

1. Although we focus on security investments to protect (digital) information, our model is easily extended to other situations
where a successful ‘attack’ on one agent leads to damage to other agents. One can think of financial shocks, terrorist attacks and
betraying criminals (in case law enforcement attacks/arrests one criminal who - in turn- betrays others).
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Figure 1 – Our spread model: from the original interaction network (left network) edges are removed
with probability 1 − p. This models the idea that agents may or may not communicate in some time
period. Agents connected to each other in the remaining - so called - transmission network share their
documents with each other. In the figure, the networks on the right are possible realizations of the
transmission network for two different values of p. When p = 0.2 agent 1 obtains the document of agent
2 (and vice versa) and agent 3 obtains the document of agent 4 (and vice versa). When p = 0.8 an agent
obtains all documents of others. The value of p is assumed to be exogenous and hence independent of
security investments.

Our results
The first set of results indicate that without a strategic attacker (random attack), agents invest less in
equilibrium of a non-cooperative game than in social optimum (equilibrium of a full cooperative game).
This result agrees with existing literature which presumes under-investments in security. However, the
incentive structure is drastically changed when a strategic attacker is introduced. Although we base
our conclusion on homogeneous agents and simulation results, we believe that our results point to a
general theme: agents mutually compete for security when the attack is strategic. Specifically, we show
that equilibrium investments under the strategic attack always exceed equilibrium investments under the
random attack.

When we compare the investment levels in equilibrium with the social optimum our results challenge
earlier results on the strategic attacker. In line with earlier research though, when dependencies between
agents are low, because the network is not very dense or p is low, agents indeed invest too much and
equilibrium investments exceed the social optimum. On the other side, when dependencies are large
and therefore documents are shared with a high probability, agents tend to invest less than in social
optimum. This result challenges existing literature on the strategic attacker which showed that under-
investments (or over-investments) prevail independently of the level of dependencies between agents.

Furthermore we explore investment levels as function of dependencies between agents in more detail.
We show that investments initially increase in p. This behavior originates from the strategic attacker
whose strategy is an optimal trade-off between precision and cost. When p increases it becomes more
and more optimal for the attacker to choose a more precise attack. As this leads to increased competition
between agents, agents tend to invest more in security. On the other side, when p continues to rise, more
agents obtain an agent’s document. At some point this makes it meaningless for an agent to invest to
cause the attacker to attack someone else. Specifically, we show that there is a unique transition point
where over-investments pass on to under-investments. This point is reached earlier in a more dense
network.
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Lastly we extend our model to a situation where the network consists of several components. As infor-
mation generally only spreads among members in a family, employees in a firm or in a specific operating
system, the attacker can fit his attack to characteristics of the component. In this set-up we propose a
new attack form: the strategic-random attack. Under this attack the malicious attacker strategically de-
cides which component is attacked, but he or she can not decide which specific agent is attacked.
Results indicate that equilibrium investments under this new attack form lie between equilibrium in-
vestments under the (full) random attack and the (full) strategic attack. Additionally we show that all
investment levels increase in both the probability that information is shared (p) and the density of the
network.

1.3 Outline of the report

This report is structured as follows. First we thoroughly discuss related literature and background mate-
rial in chapter 2. The background material is focused on both diffusion models (e.g. epidemiology and
gossip spread) and network games (strategic decision making in networks). In the discussion on related
literature we primary focus on theoretic models that discuss incentives to adopt security. These models
often combine diffusion models with network games. Next in chapter 3 we present our model more fun-
damentally and mathematically than in this introduction. The spread model is presented and analyzed
in more detail in chapter 4. The core of our research is presented in chapter 5. Here we first endeavor
to find characteristic equations for security investments in both a cooperative and in a non-cooperative
environment. Later in this chapter we compare the outcomes and analyze the role of certain parame-
ters. In chapter 6 we present an extension to our model where the attacker can focus his attack on one
component in particular. Finally in chapter 7 we discuss limitations of our model and give an outlook on
future research.
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2 Background material and related literature
In this section we discuss several relevant models. First the focus lies on background material that com-
bines network theory and game theory to models which are often called network games. The frame-
work of network games is sketched and some examples are given. Next we focus on mathematical
approaches to model diffusion in networks. After this discussion on background material we consider
related literature in which security in networks is analyzed.

2.1 Network games, strategic complements and strategic substitutes

First of all, game theory studies strategical decision making of several involved agents. Often a formal
mathematical model is set up in which every agent has a certain utility/payoff function which describes
the ‘well-being’ of an agent. The process of strategical decision making, in a non-cooperative setting,
is consequently modeled as optimizing this utility function given the anticipated/expected strategical
decision of other agents. Peters (2008) more formally analyzes the theory and provides several results
in the field.

The classic example in game theory is the prisoner’s dilemma. In this dilemma two arrested suspects
that collaborated in a crime each have the opportunity to betray the other criminal or to remain silent
in a police interrogation. Each decision gives a different payoff for an agent depending on the decision
made by the other criminal. A possible payoff structure is given in table 1. Because betraying the other

Player A / Player B Betray Silent

Betray
Player A serves 2 year/
Player B serves 2 year

Player A serves 0 year/
Player B serves 3 year

Silent
Player A serves 3 year/
Player B serves 0 year

Player A serves 1 year/
Player B serves 1 year

Table 1 – Payoff structure in the prisoners’ dilemma

criminal offers a greater reward2, all rational and self-interested criminals will betray each other. Note
however that it is more (socially) optimal to remain silent for both agents.

In this research security adoptions are investigated in a similar way as behavior in the prisoners’
dilemma is explored. Also in this research we compare the outcome in a non-cooperative and a co-
operative (socially optimal) variant. Differently, in our research we consider a continuous game3 with
more than 2 agents. Additionally in our research the payoff of each agent depends on a network struc-
ture. This is the basic framework of a special class of game theory called network games.

Network games are thoroughly discussed by Jackson (2008) and Galeotti (2010). Networks itself allow
to model dependencies and relations among objects like for instance people, cities and systems. In a
network these objects, represented by nodes, are linked by edges, representing the relation between
certain objects. This way a wide range of structures can be modeled varying from traffic architectures to
social interactions to financial dependencies. In network games, an agent’s well-being depends on his
own action, as well on the actions taken by agents whom the agent is linked to in the network. Yet, in this
setting an agent’s well-being also depends on the actions taken by indirect neighbors, since the actions
taken by an agent’s neighbors - in turn - depend on their neighbors’ actions (and so on). Formally in
network games, the utility of an agent, say agent i, can be described by a function

Πi(xi, xNi(A)), (2.1)

where xi is an agent’s own action and xNi(A) is the profile of actions taken by agents whom agent i is
linked to in the network.

2. This can be seen by noting that for each choice of player B, for player A it is optimal to betray. Parallel reasoning will show
that B should also betray.
3. In a continuous game there are infinitely many strategies. In our research the strategy of each agent is a decision in [0, 1].
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Several forms for (2.1) exist. Note for instance that, as an extreme case, if the network is full (i.e.
everybody is linked to each other), a network game is a standard (matrix) game like the prisoners’
dilemma. If the network is not full, a network game adequately models situations where actions of
other’s are weighted differently: actions by neighbors have the largest impact whereas actions taken by
agents ‘further away’ in the network have less impact. This corresponds for instance with changes in
opinion: opinions of friends/eminent people have a greater influence on one’s opinion than opinions of
unknown people.

Another widely used form for (2.1) is as discussed by Jackson. In this model Πi satisfies

Πi(1, xNi(G)) < Πi(0, xNi(G)) if and only if
∑

j∈Ni(G)

xj ≥ ti, (2.2)

where xi ∈ {0, 1}, ti is some threshold and Ni(G) are the neighbors of agent i in network G. In this
model, taking action 1 is costly and therefore an agent would prefer that neighbors take action 1 rather
than the agent himself. Actions are strategic substitutes here as actions mutually offset one another.
Corresponding actions are for instance to buy a book (which can be borrowed from friends), to do the
dishes or to invest in security/R&D, which - to some extent - provides benefits to others. In general,
this model leads to incentives to free-ride on actions taken by others. This in turn might lead to under-
provision of the good or under-investments. Figure 3 shows two possible equilibria for this game where
the threshold, ti in (2.2), is set to 1 for all agents. Here it is assumed that a profile of actions is in
equilibrium if no agent would change his action under the current profile.

Figure 2 – Two possible equilibrium situations in a game with utility as in (2.2) with ti = 1. In the situations
above no agent would change his behavior because either the agent himself, or an agent’s neighbors
takes action 1. Surely the left situation, where one agent takes action 1, is more (social) optimal than
the right situation where two agents take action 1.

Another case of interest has an opposite incentive structure. Now an agent does not tend to lower his
action when neighbors increase their action profile, in this case, higher levels of actions by neighbors
lead to incentives to take a higher action yourself. This corresponds for instance with investments in
warfare material and changes in (social) behavior like pursuing higher education and adopting sustain-
able behavior. In this setting, actions are called strategic complements because they mutually reinforce
one another. In this case, (2.1) is such that Πi satisfies,

Πi(1, xNi(G)) > Πi(0, xNi(G)) if and only if
∑

j∈Ni(G)

xj ≥ ti. (2.3)

Figure 3 shows two possible equilibrium action profiles for this game. In the figure the threshold ti is set
to 2 for each agent. Note that when actions are strategic complements, agents tend to invest more than
when actions are strategic substitutes.

For wider strategy spaces, xi ∈ Si for some set Si, often the same framework as above is used. As an
example, consider a game with three agents who are connected as in figure 4. Assume that the utility
of each agent is

Πi(xi, xNi(G)) = xi(1 +
∑

j∈Ni((G)

xj)− x2
i , (2.4)

where xi ∈ [0,∞]. One can show that actions are strategic complements4 and that x1 = x3 = 3/2 and

4. One can prove that if Πi is concave in the strategy of i and super-modular, then actions are strategic complements.
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Figure 3 – Two possible equilibrium situations in a game with utility as in (2.3) with ti = 2. In the
situations above no agent would change his behavior because either an agent takes action 1 and at
least two neighbors take action 1, or an agent takes action 0 and less than two neighbors take action 1.

x2 = 2 is a (unique) equilibrium profile. This can be seen from figure 5, given the decision of others, no
agent will change his action.

Figure 4 – Network where the
utility of each agent is given
in (2.4). From figure 5 one
can see that {3/2, 2, 3/2} is an
equilibrium action profile: given
this action profile, no agent will
change his behavior. One can
also show that this equilibrium
is unique.

Figure 5 – Pay-off function (2.4) given the decision of others.
Note that the best response of player 2 is 2 and the best re-
sponse of player 1 and player 3 is 3/2.

In this research, investments in security are modeled as a strategic decision in Si = [0, 1] for some
utility function similar as in (2.4). In contrast with the models discussed above, in this research the utility
function is such that investments/actions are in some cases strategic substitutes and in other cases
strategic complements.

2.2 Diffusion through networks

In the network games discussed in the previous section, there is no element that spreads/diffuses
through the network. However, when adopting security, often one protects against an element that
spreads through the network. For instance, agents might adopt security to protect against infection
of a virus or to protect against fires. In this review we discuss two diffusion models. First we give an
overview of compartment models. Although traditionally applied to model spread of diseases, compart-
ment models are also used to model spread of information and ideas. Next we discuss percolation
models. Although percolation models are somewhat limited than compartments models, they are more
tractable when combined with a network game.

2.2.1 Compartment models and contact networks

Jackson (2008) notes that the classic example in epidemiology of a model on diffusions is the Bass
model. In this model, the number of agents in a compartment of infected/influenced agents is described
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by a differential or a difference equation. In general the model (the continuous time variant) is described
with

dA(t)

dt
= f(A(t),p),

where f is some function, A(t) the number of influenced agents and p some set of parameters. Note
that A(t) is the compartment in this model. A widely used form for f is for instance f = pA(t)(m−A(t))

where p and m are some constants.

Since the Bass model several other, more complex models have been developed. Most prominent in
epidemiology are the so called SIR and SIS models. In these models each individual is either: suscep-
tible, meaning that the individual is susceptible to being infected or infected, meaning that the individual
currently has the disease. Additionally in the SIR model an agent can be resistant; meaning that the
individual does not have the disease, can not infect others and can not be infected. As agents interact
with each other in a society, susceptible agents might be contaminated by infected agents. On the other
hand, infected agents might heal and in the SIR model become resistant, or in the SIS model become
susceptible again. These changes are often described by differential equations. For instance in the SIR
model, for some functions f , g and h

dS

dt
= f(S, I,R,p),

dI

dt
= g(S, I,R,p) and

dR

dt
= h(S, I,R,p).

Although originally used to model spread of diseases, the SIR model is also used in other disciplines.
For instance Xiang et al. (2014) model the propagation of worms in information networks with a SIR
models.

Compartment models tend to overestimate the number of infected/influenced agents (Dimitrov and Mey-
ers, 2006). An explanation of these overestimations is the fully mixed, homogeneous population as-
sumption in compartment models: every individual equally likely catches the disease from any infected
individual. This way, compartment models do not accurately model diverse interactions between indi-
viduals that underlie disease transmissions. For instance, in practice, agents in a cluster5 in which the
infection spreads face a higher contagion risk than agents outside this cluster. To overcome this limita-
tion, recent literature proposed to combine SIR and SIS models with network models. Basic framework
is as follows:

I. a contact network is constructed that describes interactions between agents,
II. diffusions are predicted in this contact network.

Several approaches are possible to predict diffusions in a contact network. Van Mieghem (2011) pro-
posed the N-intertwined model : a SIS-model that incorporates a network structure. Instead of focusing
on a compartment as a whole, in the N-intertwined model focus lies on each agent separately. When
xi(t) is the event that agent i is infected at time t, it is assumed that

Pr{xi(t) = 1} = vi(t) = 1− Pr{xi(t) = 0}.

Here vi(t), the rate of change, is described by some differential equation

dvi(t)

dt
= f(vi, vNi), (2.5)

where f is some function and vNi is the rate of change of neighboring agents. Generally, if an element
in vNi increases (i.e. it is more likely that a neighbor is infected) also vi will increase.

To build a contact network often a random graph model is considered. In this model the number of
neighbors of each agent is a random variable drawn from some distribution. The classic example is
the so called Poisson random graph (or Erdós-Rényi network) where this distribution is binomial with
parameters n − 1 (there are n agent in the network) and p. Figure 6 shows a possible realization of

5. A cluster is a group of individuals who interact more often with each other than they would with individuals outside this cluster.
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this procedure. Note that this realization features a unique largest component which is called the giant
component in random graph theory. One can show that - if this giant component exists - it is unique with
a probability going to one (in the number of nodes). Erdós and Rényi proved that there exist several
thresholds for p so that the realized network attains some specific structure:

I. If p > 1/n2 almost surely the first edges appear. The number of nodes in each component is at most
O(log n).
II. If p > 1/n almost surely a giant component exists. The expected fraction of nodes outside this giant
component is the solution 0 < x < 1 of

x = 1− e−x(n−1)p.

The size of all other component is at most O(log n).
III. If p > log(n)/n almost surely the network is connected.

Alternatively the Poisson random graph can be constructed by removing edges in a full network, inde-
pendently of each other and with probability 1−p. Also when this network is not full, it can be proved that
there exist several thresholds for p so that the realized network attains some specific structure. Frieze
et al. (2004) provide thresholds for regular graphs and Chung et al. (2009) provide results for graphs
that satisfy some mild conditions depending on its spectral gap6 and higher moments of its degree
sequence.

Figure 6 – A possible realization of a Poisson random network. The network is formed by connecting
each node with probability 0.055. Only 13 of the 190 edges are maintained. Note that there is a unique
component which contains a nontrivial fraction of all nodes (the giant component).

While the Poisson random graph exhibits some features observed in (disease/social) contact networks,
some features are clearly lacked by the Poisson random graph (e.g. high clustering and preferential
attachment7). Researchers (e.g. Newman, 2006) have focused on different models like small-world
networks, (strategically) growing networks and random networks with different degree distributions. Al-
ternative degree distributions are for instance an exponential distribution or a power-law distribution.
Figure 7 shows a possible realization of a network created with a power-law distribution.

2.2.2 Percolation models

An alternative spread model is percolation theory. The theory originates from theoretical physics and
models the spread of a liquid through some porous material. In this model, the porous material is
modeled as a graph where nodes, called ‘sites’, are open with some probability and edges, called
‘bonds’, are open with some probability. The liquid will consequently flow only through open sites and
open bonds. When all sites (nodes) are open, but not all bonds (edges) are, the model is denoted as
bond percolation. The other way, when all bonds are open, but not all sites are, the model is denoted as
site percolation. Also the spread of diseases and information can be modeled this way (Moore, 2000). In

6. For graphs, the spectral gap is the absolute value of the difference between the two largest eigenvalues of the adjacency
matrix.
7. Preferential attachment is often found in growing networks. The more links a node has on some time instant; the more it will
have later on. This corresponds for instance with a citation network or a friendship network.
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Figure 7 – A network where the number of neighbors is drawn from a power-law distribution. Observe
that the network features several nodes with a small number of neighbors and some nodes with a
high number of neighbors (preferential attachment). Scale-free networks show to adequately model the
structure of the Internet and the Word Wide Web (Newman, 2006).

epidemiology, often two parameters are of interest: susceptibility and transmissibility. Susceptibility is the
probability that an individual exposed to a disease/idea will contract it. Transmissibility is the probability
that contact between an infected individual and a healthy individual will result in the healthy individual to
become infected. When transmission takes place with less than 100% efficiency, but all individuals are
susceptible, the spread of a disease can be modeled by bond percolation. Reversed, when transmission
takes place with 100% efficiency, but not all individuals are susceptible, site percolation can be used.
Basic framework of these diffusion models is as follows:

I. A contact network is constructed.
II. Nodes are removed (site percolation) or edges are removed (bond percolation) with some probability,
leading to some transmission network T .
III. All nodes connected - in this transmission network - to initially infected nodes are infected/influenced.

Bond percolation and site percolation often lead to totally different transmission networks. Figure 8
shows an example of site percolation and figure 9 shows an example of bond percolation. Generally
bond percolation leads to larger transmission networks.

Figure 8 – Site percolation: susceptible (S) nodes in a contact network (left network) are maintained in a
transmission network (right network) with probability p. If one of the agents in the transmission network
is initially infected, then all agents connected in the transmission network to this agent will become
infected.

Transmission networks can be seen as an extended contact network. Where contact networks model a
possible contact between individuals, for instance friends might meet in some time period, the transmis-
sion network models if this contact actually occurred or not. This way spread of diseases or information
can be modeled.

In this research, information spread is modeled as bond percolation opposed to site percolation. Reason
for this choice is that we feel that an agent with a high number of contacts (i.e. neighbors), more likely
becomes aware of information. When modeling information spread as site percolation, this probability
is independent of the number of neighbors.
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Figure 9 – Bond percolation: diffusing (D) edges in a contact network (left) are maintained in a trans-
mission network (right) with probability p. If one of the agents in the transmission network is initially
infected, then all agents connected in the transmission network to this agent will become infected.

2.3 Related literature on network security

In this section we give an overview of literature that models security in networks. Two different models
are distinguished: models that cast security as exogenous and models that cast security as endoge-
nous. When security is modeled as exogenous often an intelligent defender (like an authority) defends
the network against an intelligent adversary. This form of security is often modeled as a (Colonel) Blotto
game in the literature. Although there are many variants, in a Blotto game generally two players distribute
resources over a network (like a battlefield). The player that allocates the highest level of resources to
an object wins the object. In contrast, when security is modeled as endogenous, multiple intelligent and
self-interested agents (modeled as nodes in a network) are responsible for security. In this research,
network security is modeled as endogenous security where multiple agents secure against an intelligent
attacker. For completeness we start with a prompt discussion on exogenous security.

2.3.1 Exogenous network security

We define exogenous security as (theoretical) security models where not the nodes/agents in the net-
work determine the security level, but instead an outsider (an authority or ISP) determines the security
level. Often, for instance in Blotto games, this outsider chooses the security level anticipating an attack
of a (malicious) attacker. The attacker, upon learning the ‘defense resources’, chooses an attack strat-
egy. In this set-up security is modeled as a sequential game: a game where one player chooses his
actions before others.

Blotto games can be used to model a wide
range of situations. Possibilities include war-
fare battlefields, patrol schedules, terrorist at-
tacks and firewall construction. In their recent
paper, Goyal and Vigier (2014) build a model
where a defender can both choose the secu-
rity level and the network structure. They con-
clude that, in almost all situations, the star net-
work with all defense resources allocated at
the central node is optimal. In figure 10 an
example is given from Goyal and Vigier. Bier
(2007) builds a similar model: a defender al-
locates defensive resources to a collection of
locations and an attacker, by observing these
defensive resources, chooses a location of at-
tack. Bier concludes that the defender some-
times prefers a higher vulnerability at a par-
ticular location even if a lower risk could be
achieved at zero cost.

Figure 10 – The attacker allocates 1 attack
resource A at 4 periphery nodes while the
defender allocates 4 defense resources D

at the central node. In the figure the at-
tack resources ‘attack’ the central node: an
attack which is successful with probability
(attack resources/total resources) = 1/2.
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2.3.2 Endogenous network security

Different than in exogenous security models, in endogenous security models (self-interested) agents are
responsible for security. Often some specific elements (e.g. a virus, resource or information) spreads
through a network and provide advantages or disadvantages to affected agents. The strategic decision
of an agent often enhances or decreases the spread of these elements, providing benefits or disadvan-
tages to the agent himself and, to some extent - dependent on the network structure - to other agents.
Heal and Kunreather (2005) denote these models as interdependent security models (IDS). The central
issue in these models is behavior in the face of risks whose magnitude depends on an agent’s own
risk-management strategies and those of others. In this section, we first discuss literature that cast the
risk-management strategy as an investment in security. Next we discuss literature that includes an in-
telligent attacker in these models. Lastly, we discuss models that cast security as a network formation
process. In this process, each agent determines his (expected) connectivity in the network.

IDS problems
In their widely referenced paper, Heal and Kunreuther set up an extensive interdependent security
model (IDS). It is assumed that each agent has some direct loss, which depends on an agent’s own
strategy, and some indirect loss, which depends on the strategy of other agents. The authors show that
security investments of an agent create positive externalities for others, which in turn may discourage
the investments of others. In this case agents invest less than socially optimal. Interesting notion which
is discussed is tipping: identifying a coalition of agents with the property that if they invest, others will
follow.

Heal and Kunreather base their conclusions without explicitly including the network structure (adopting a
complete network). Acemoglu et al. (2013) show in their recent paper that this network structure can be
very relevant. In a model where spread of an infection is modeled as site percolation (see section 2.2.2)
with a probability that depends on security investments, the authors give an example of an asymmetric
network where agents invest more than socially optimal. Nevertheless, bulk of the research is based on
showing that under-investments prevail in symmetric networks.

This approach of considering homogeneous agents in symmetric networks is more common. For in-
stance Lelarge and Bolot (2008) model security investments in complete networks and tree networks
where the infection spreads according to bond percolation. By using a local mean field method (LMF)
based on estimating externalities by a tree structure, the authors compute the price of anarchy (PoA:
measure of efficiency of the equilibrium due to selfish behavior) and conclude from this PoA that agents
under-invest in security.

A similar approach as Lelarge and Bolot is applied by Amin et al (2013) and Yang and Lui (2014). Yang
an Lui characterize a network game in which agents only have local information about the network struc-
ture and security investments. They show that under-investments in security prevail in this incomplete
information model. Amin et al. model inter-connectivities between control systems where failures of one
system influence the number of failures of other systems. The authors show that individual systems
tend to invest less in a non-cooperative situation than in a cooperative situation (social optimum).

Although in previous literature contagion is modeled as percolation, also other possibilities are known.
For instance Omic et al. (2009) model security investments in a compartment model (see section2.2.1).
In their model the authors slightly adapt the N-intertwined model by including a ‘curing rate’. Although a
higher curing rate is more costly, agents with a higher curing rate recover more quickly from an infection.
When agents choose their curing rate to minimize their cost function in a steady state environment, the
authors show that the price of anarchy may be prohibitively high. This - once again - indicates under-
investments in security.

IDS problems with an intelligent adversary
In this class of IDS problems the role of the adversary is explicitly modeled while maintaining the core
component of the IDS problem: security investments of one agent affect other agents. Different than in
the previous class, by including an intelligent adversary security adoptions might as well create negative
externalities for others: greater investments by an agent pushes the attacker to attack someone else.
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Acemoglu and others (2013) also analyze the effect of an intelligent adversary (strategic attack) in their
paper. By allowing a mixed strategy for the attacker and obviate (by a cost function) a very precise
location of the attack, the authors show that a Nash equilibrium exists. Additionally the authors de-
rive several sufficient conditions for over-investment or under-investment in symmetric networks. They
show that when the cost for the adversary is low, i.e. allowing a more precise attack, generally over-
investments prevail.

Bachrach et al. (2013) set up a quite similar model as Acemoglu and others. Different however, they
consider mixed strategies for agents and assume that the attacker does not incur any cost for attacking
an agent. Their results (in complete networks) indicate a general theme: agents compete for security
when the attacker is intelligent. In line with Acemoglu this competition results in over-investments in
security. Additionally the authors show that an increase in the number of agents leads to a first order
stochastic shift of the security investments.

Johnson et al. (2013) assume that the agent with the lowest protection is attacked by a strategic adver-
sary. Although the authors do not incorporate contagion (empty network), they show that agents invest
much more in a non-cooperative situation than in a cooperative situation.

Network formation as security measure
In previous literature security measures are investments in security which decrease the probability of
infection or increase the recovery rate. An alternative security measure however is to adapt the network
structure. In real world there are many situations in which self-interested agents form links with each
other, producing an underlying network structure. Intuitively there is a trade-off between connectivity
and contagion risk: while agents receive benefits by connecting to other agents, a higher connectivity
results in more ways in which the infection can reach an agent.

Blume et al. (2013) construct a very basic model for this situation. Although an agent can not choose
to whom he is connected, he receives some fixed payoff by choosing a higher connectivity. The authors
show that that more welfare is obtained when agents cooperatively (socially) choose their connectivity.

Baccara and Bar-Isaac (2006) set up an extensive network formation model where criminals form con-
nections with each other. Increased connectivity again provides an increased pay-off. Drawback of in-
creased connectivity is an increased chance that the criminal is betrayed by other criminals who are
‘detected’ by an external authority. Baccara and Bar-Isaac provide characteristics of optimal networks.
In most nontrivial situations (trivial situations lead to an empty or complete network) this is either a star
network or a binary network in which every agent is connected to one (and only one) other agent.

Larson (2011) proposes a model in which agents can choose both their connectivity and their security
investments. In this model, both (positive) tips and (negative) viruses spread through a large random
network. Agents strategically decide, before the initial location of the virus/tip is known, their security
level as well as their expected number of connections. For infinitely large random networks and under
a symmetry assumption between agents, equilibria are derived and its properties are discussed for two
cases of cost functions. The author shows for instance that connectivity in a cooperative game is lower
than in the non-cooperative game. Also Larson derives conditions for over-connectivity and evaluates
the effects of a change in likelihood that an outbreak is either a tip or a virus (resilience of the network).
Although the model is exceptional in allowing individual agents to form links and to choose their security
investments, the complexity of the model forces the author to work with infinitely large networks and a
symmetry assumption between agents.
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3 The model
In this chapter we first discuss the notation and terminology that we use in this research. Afterwards we
present our model of endogenous security.

3.1 Notation and terminology

In this paper x = {x1, . . . , xn} is viewed as a row vector where xi is the ith element of x. Define
the subvector of x induced by some integer vector T as x−T = {xi ∈ x|i 6∈ T}. A vector x is said
to be symmetric if all the elements are identical (i.e. xi = xj ∀i, j). In this case, the notation x = c

indicates that all elements in x are equal to some scalar c. Similar, cx indicates that all elements in x

are multiplied with c. A vector is said to feature over-investments relative to some equal length vector y
if all elements in x are larger than the corresponding element in y (i.e. xi ≥ yi ∀i). Similarly, x features
under-investments relative to y if xi ≤ yi ∀i. The 1-norm |x| is defined as the sum over all elements in
x.

In this research we consider twice differentiable functions f from In = [0, 1]n to I = [0, 1]. We say
that f attains a global maximum in f(x∗) if f(x∗) ≥ f(x) for all x ∈ In. Note that by Weierstrass
Theorem8 f attains such global maximum in In. To find this global maximum some additional notions
are required. We say that the function f attains a local maximum at f(x∗) if there exists an ε > 0 such
that f(x∗) ≥ f(x) for all x ∈ Bε(x), where Bε(x∗) = {x ∈ In | |x−x∗| < ε}. Surely any global maximum
is a local maximum but the converse is not necessarily the case. We define the gradient of f at x∗ ∈ In
as

∇f(x∗) = { df
dx1

(x∗), . . . ,
df

dxn
(x∗)}

and say that f satisfies the first order condition (FOC) for optimality at x∗ if

∇f(x∗) = 0.

Although the local maxima of f necessarily satisfy the FOC, the global maximum may not do so. Specif-
ically when the global maximum does not satisfy the FOC, then it is a boundary maximum. We say that
f attains such boundary maximum at x∗ if f(x∗) is a global maximum and either 0 ∈ x∗ or 1 ∈ x∗.

In this research we say that f is strictly concave when the Hessian of f ,

H(f(x∗)) =



d2f

dx21
(x∗)

d2f

dx1 dx2
(x∗) · · · d2f

dx1 dxn
(x∗)

d2f

dx2 dx1
(x∗)

d2f

dx22
(x∗) · · · d2f

dx2 dxn
(x∗)

...
...

. . .
...

d2f

dxn dx1
(x∗)

d2f

dxn dx2
(x∗) · · · d2f

dx2n
(x∗).


is negative definite for every x∗ ∈ In. The function f is strictly convex when −f is strictly concave. When
a function is strictly concave it can not attain more than one local maxima.

To analyze the behavior of f({xi,x−i}), where x−i ∈ In\I is given, note that the same definitions
as above apply to f({xi,x−i}) only with f({xi,x−i}) a 1-dimensional function. In this research we let
ϕi : In\I → B a set valued function9 such that for all xi ∈ I and all x∗i ∈ ϕi(x∗−i):

f({x∗i ,x∗−i}) ≥ f({xi,x∗−i}).

This function ϕi(x∗−i) is denoted as the best response in f and given x∗−i.

We say that x∗ is a fixed point if x∗i ∈ ϕν(x∗−ν) for every i. When ϕi(x∗) ∈ [0, 1] we denote
ϕ = {ϕ1(x∗−1), . . . , ϕn(x∗−n)} as the vector of best responses. In this case x∗ is a fixed point if
ϕ(x∗) = x∗.

8. Let D ⊂ Rn be a compact set and f : D → (R) a continuous function, then f attains a maximum (and a minimum) on D.
9. Here a set valued function is a function that maps an element in In \ I on some set in I, for instance an interval.
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3.2 Model description

The strategic behavior of n interconnected agents is investigated in an undirected network
G = (V (G), A(G)) with some edge set E(G)10. Here V = {1, .., n} is a finite set of agents and
A : V × V → {0, 1} is the adjacency matrix in which A(ν, µ) = A(µ, ν) = 1 if and only if ν and µ are
linked.

Assume that every agent owns a unique document. We denote the document of agent ν as dν . Other
agents in the network might obtain dν as the documents spread over the network. We assume that
the spreading of the n distinct documents happens independently of each other. An agent ν might for
instance share his own document with another agent, this agent in turn might not share his document
with ν.

Spreading of the n documents happens according to the bond percolation model as described in section
2.2.2. From network G edges are removed, independently of each other and with some exogenous
probability 1−p. When we consider the spread of - say - document dν , we denote the emerging network
as the transmission network Tν . If an agent is still connected to ν in Tν , then the agent receives dν . As
the spreading of the n distinct documents happens independently, note that n transmission networks
are formed when we consider the spreading of all documents.

By exploring the network structure one can compute the probability that a document spreads from the
owner of a document to another agent. We set

DGµ,ν = Pr{Agent ν obtains dµ in network G}

and set DGν,ν = 1. Note that although DGµ,ν is a function of the network structure and p, we do not
highlight this dependency as we assume the network structure and p to be exogenous. Also when there
is no ambiguity we denote DGµ,ν as Dµ,ν in this report. Note that in an undirected network, Dµ,ν = Dν,µ

but also note that, as the documents spreads independently of each other

Pr{Agent ν obtains dµ | Agent κ obtains dη } = Pr{Agent ν obtains dµ}

for every κ 6= ν and η 6= µ.

We denote the expected number of documents obtained by agent ν in network G as DGν . Again, when
there is no ambiguity, we abbreviate DGν to Dν . By noting that Dν is the expectation of a sum of Bernoulli
random variables, we establish that

Dν =
∑
µ∈V

Dµ,ν .

Now suppose that a malicious attacker attempts to hack one of the agents to acquire confidential docu-
ments. Although it is not harmful for an agent for other agents to possess his confidential document, it is
detrimental if the attacker acquires his document. Assume that, if the attack is successful, the attacker
obtains all the documents that are obtained by the target. This includes the target’s own document
but can additionally include documents of others which are obtained by the target. In expectation, if
the attack on agent ν is successful, the attacker acquires Dν documents. Let xν be the event that the
document of agent ν is obtained by the attacker11 and set x = {x1, . . . , xn}.

The decision of the attacker which agent to target can be represented by a random variable (r.v.) drawn
from a probability space {Ω,F , a}, where Ω = {1, . . . , n}, F = P(Ω) the power set of Ω and a : F → [0, 1]

with
∑
ν∈V a({ν}) = 1. This probability a can conveniently be represented by a probability vector12

a = {a1, . . . , an}, where aν is the probability that agent ν is attacked. Recognize that, as all aν add
to one, the attacker will always attack an agent. The vector a is denoted as the attack vector in this

10. When there is no ambiguity these notions are abbreviated - respectively - to V , A and E.
11. Note that xν = 1 if the attacker obtains dν and xν = 0 if the attacker does not obtains dν .
12. The vector a is a probability vector if and only if all entries are non-negative and the entries add up to one.
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research and, with a slight abuse of terminology, it is said that the decision of the attacker is a random
variable drawn from a.

To prevent that an attack is successful, agents precautionarily invest in security. Let qν ∈ [0, 1] be the
investment of agent ν and set q = {q1, . . . , qn}. The vector q is denoted as the security vector in this
research. It is assumed that an attack on agent ν is successful with probability (1−qν) and not successful
with probability qν . By conditioning we deduce that

Pr{xν = 1} = Pr{ the attacker obtains dν }

=
∑
µ∈V

aµ Pr{xν = 1|µ is attacked }

=
∑
µ∈V

aµ(1− qµ) Pr{xν = 1|µ is attacked, attack is successful }

=
∑
µ∈V

aµ[1− qµ]Dν,µ. (3.1)

Recognize that x is a vector of Bernoulli random variables with probability of the ith element given in
(3.1). Clearly this probability does not only depends on an agent’s own security investment qν , but in
fact depends on the whole security vector and, moreover, on the attack vector. In the next two sections
we discuss how the security vector and the attack vector are established. First, table 2 gives a summary
of all the relevant variables in our model.

Variable Description

dν Unique and confidential document of agent ν.
G Network where edges may transmit documents.
Tν Network where edges do transmit documents.
p Probability that an edge transmits documents.
q Vector where qν are security investments of agent ν, q ∈ [0, 1]n.
a Vector where aν is the probability that agent ν is attacked (|a| = 1 and aν ≥ 0).
x Vector where xν is the event that dν is obtained by the attacker.

Dν,µ Probability that agent µ obtains dν .
Dν Expected number of documents obtained by agent ν.

Table 2 – Summary of relevant variables in the model.

3.2.1 The security vector

The security investments by each agent can be conveniently modeled as the outcome of a game be-
tween agents. This game can be represented by

Γ = 〈 V, (qν)ν∈V , (Hν)ν∈V , (Πν)ν∈V 〉, (3.2)

where V is the set of agents in network G, qν ∈ [0, 1] is the strategy space (the investments in security) of
agent ν, Hν is the information set and Πν is the utility function. The game Γ is called the security game
between agents. In this game rational agents simultaneously choose their investments in security. This
decision is made under Hν = {G, p,a}: every agent has complete information about the network, is
aware of the value of p and knows the attack vector a.

We consider a cooperative game and a non-cooperative game in this research. If Γ is a non-cooperative
game, every agent rationally chooses investments such that his utility is maximized given the expected
strategic decision of other agents and under the information set. Formally every agent plays an element
from his best response ϕν(q−ν) in Πν and given q−ν . We define a security profile qN to be a (pure
strategy) Nash equilibrium if the best response of each agent given qN is the same security profile
again (i.e. qN is a fixed point of all best responses).
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We assume that the utility Πν : [0, 1]n → R of agent ν is the probability that dν is not exposed to the
attacker minus the investment cost:

Πν = Pr{xν = 0} − c(qν). (3.3)

Here c(qν) is the cost agent ν incurs for investing qν and Pr{xν = 0} is given in (3.1). As xν depends
both on an agent’s own strategy and on the strategy of other agents, we developed an interdependent
security model as defined by Heal and Kunreuther (2004).

In a cooperative game, different than in a non-cooperative game, (two or more) agents cooperate to
maximize their combined utility given the expected decisions of other agents. Let T1 . . . Tk be a partition
of the vertex set V and assume that agents in each set cooperate. The combined utility STi of agents in
Ti is defined as

STi =
∑
ν∈Ti

Πν . (3.4)

Again we assume that every agent plays a strategy such that STi is maximized given the expected
decision of other agents and under the information set. Specifically agent ν plays q∗ν ∈ ϕν(q−ν), where
ϕν is the best response of ν in STi given q−ν . An equilibrium situation emerges when the best response
of each agent given q∗ is the same investment level again. Note that when Ti contains one agent for
every i, the investment level q∗ ≡ qN , the Nash equilibrium of the security game. Differently when T1

contains all agents, we define q∗ ≡ qs to be the social optimum of the security game. In this case ST1

is abbreviated to S. It can be showed that by combining (3.1) with (3.4), S can be written as

S = n− E( |x| )−
∑
ν∈V

c(qν), (3.5)

where E(|x|) is the expectation13 of |x|.

Neither the Nash equilibrium nor the social optimum is always unique. Let {qN} be the set of all pure
Nash equilibria and similar {qs} be the set of all social optima of Γ.

To measure the efficiently of the Nash equilibrium, the price of anarchy (PoA) can be used. In this paper,
this PoA is defined as

PoA =
min{qs} E( |x| | q = qs)

max{qN} E( |x| |q = qN )
. (3.6)

This PoA is the ratio between the expected damage in the best social optimum and the worst pure Nash
equilibrium.

3.2.2 The attack vector

The probability that an agent is affected, as given in equation (3.1), does not only depends on the se-
curity vector, it also depends on the attack vector a. In line with Acemoglu et al. (2013) we investigate
two different strategies: a random attack and a strategic attack. Under the random attack a is a proba-
bility vector which is chosen independently of security investments and the network. In this situation the
attacker targets agents according to for instance (non-modeled) characteristics or just randomly.

When the attack is strategic a does depend on the investments and the network. We assume that the
attacker holds some utility function Πa : [0, 1]n → R, where

Πa = E[ number of documents obtained in an attack ]−
∑
ν∈V

ψ(aν).

In this utility function ψ(aν) is the cost the attacker incurs for choosing aν . One can show that Πa can be
written as

Πa = E( |x| | q )−
∑
ν∈V

ψ(aν). (3.7)

13. Note that E( |x| ) = E(
∑
ν xν) =

∑
ν E(xν) =

∑
ν Pr(xν = 1) as in (3.1).
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The attacker chooses a such that his utility is maximized. As this decision is under the constraint that
the attack vector remains a probability vector, the strategy of the attacker is the solution of the program:

max Πa (3.8)

subject to: |a| = 1 and aν ≥ 0 for all ν ∈ V.

Note that we assume that q is known to the attacker as q is given in (3.7). In this setting first agents
play the security game, choosing their security investments. Next the attacker, by observing the security
investments, chooses his strategy by solving (3.8). However, as a is included in the information set
Hν of each agent, agents choose their security investments anticipating the decision of the attacker.
Specifically, we assume that agents know the strategy of the attacker a as a function of q. This function
(later we will show that it exists) is substituted in the utility of each agent14.

Finally note the resemblance of the social utility (3.5) with (3.7). In this framework the attacker endeavors
to find an optimal trade-off between damage and costs while the cooperating agents find an optimal
trade-off between safety and costs15.

To conclude this model description, figure 11 summarizes all the events and the corresponding timing.

Figure 11 – Summary of events and timing in the model. As decisions of the attacker and agents are
based on stochastics of the last (right) event, the dashed line is included.

14. This approach is common in sequential games where one player chooses his actions before others choose theirs (see Peters
2008). The strategy of the player who chooses last, is analyzed first and is substituted in the decision process of other agents.
15. In fact this setup is similar as seen in many Blotto games (see section 2.3.1 on page 11). For instance Goyal and Vigier
(2014) adopt two utility functions that create opposite incentives: one player defends while the other attacks.
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4 Spreading of documents
In this chapter we discuss the spreading of the documents in more detail. As our focus lies on the
security game in this research the discussion in this chapter is not thorough. Yet, several results in this
chapter are used later in the security game to analyze the role of the network structure.

First we present some basic definitions from graph theory to further specify the notations that we will
use. Next we focus on the probability that documents are shared and afterwards we continue on the
expected number of documents obtained by each agent.

4.1 Basic definitions from graph theory

Remind that the behavior of n interconnected agents16 is investigated in a undirected network
G = (V (G), A(G)), with E(G) the edge set of G. In this research, e = {ν, µ} is an edge in E if and only if
A(ν, µ) = 1.

It is convenient to define several notions of connectivity of the network. For l ∈ N, let N l(ν) be the l

order neighborhood of ν. Formally define N l(ν) iteratively as

N l(ν) = {µ ∈ V |A(µ, κ) = 1, for some κ ∈ N l−1(ν)},

with initial condition N 0(ν) = ν.

Agent ν and agent µ are said to be neighbors if µ ∈ N 1(ν). We define the degree of agent ν as the
number of neighbors of ν: degree(ν) = |N 1(ν)|. Agent ν and agent µ are said to be connected if

µ ∈
∞⋃
l=0

N l(ν),

which will be denoted as ν ∼ µ. Note that as G is undirected, µ ∈
⋃∞
l=0N l(ν) if and only if ν ∈⋃∞

l=1N l(µ). The distance between ν and µ is defined as dist(ν, µ) = min{l|µ ∈ N l(ν)}. If ν and µ are
not connected then dist(ν, µ) =∞. We define the component C in which ν lies as

C(ν) = {µ | µ ∈ ∪∞l=0 N l(ν)}.

If all agents lie in the same component, then A is said to be connected.

Remind that our spread model is based on removing edges from a network. The process of removing
edges (or nodes) leads to a subgraph of the original network. Formally H is said to be a subgraph of G
(denoted as H ⊂ G) if V (H) ⊂ V (G) and the adjacency matrix of H is a subset of that of G; restricted
to the subset V (H). The other way around, if H is a subgraph of G, then we call G a super-graph
of H. Additionally we define a subgraph induced by S ⊂ V as the graph G[S] with node-set S and
AG[S](ν, µ) = 1 if and only if AG(ν, µ) = 1 and ν, µ ∈ S.

A path in G is a sequence u = {ν1, e1, ν2, . . . , en, νn} such that all ei are distinct and ν1 and νn are
connected by the path. We set Uµ,ν = {u1, . . . , un} as the set of all paths between agent µ and agent
ν. A cycle is a path from Uν,ν , i.e. a path starting and ending at the same agent.

In figure 12 several concepts are illustrated. Additionally figure 13 features some networks that have a
special interest in this research. Formally a complete network is a network which features a maximal
number of edges. A network is a ring network if and only if there are two disjoint paths (i.e. no edge is
in multiple paths) between any two nodes. Lastly in a tree network there is a unique path between any
two agents.

16. In this research we use the terms agents, nodes and vertices (singular: vertex) interchangeable. Similarly the terms network
and graph are used interchangeable.
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Figure 12 – Denote the first (left network) as G. Recognize that N 1(0) = {1, 4}, N 2(0) = {2, 3} and
C(0) = V = {0, 1, 2, 3, 4}. In the network u1 = {0, (0, 4), 4, (4, 1), 1, (1, 2), 2} is a path from agent 0 to
agent 2. Note however that u2 = {0, (0, 1), 1, (1, 2), 2} is a shorter (in fact the shortest ) path from agent 0
to agent 2. The other two networks in the figure are subgraphs of G. Specifically, the last (right) network
is a subgraph of G induced by {0, 1, 2, 4}.

Figure 13 – Several networks of interest. The first (left) network is the complete network K5 while the
middle network is the ring network R5. The last (right) network is an example of a tree: there is a unique
path between any two agents.

4.2 Probability that documents are shared

Remind that the spreading of the documents happens independently of each other and according to
bond percolation with probability p. Specifically, for every document a transmission network T is formed
by removing edges in the original network, independently of each other and with some exogenous
probability 1 − p. All the agents connected to the owner of a document in this transmission network
obtain the document. Consequently, the probability that an agent obtains a document

Dµ,ν = Pr{Agent ν obtains dµ}
= Pr{ν ∼ µ in Tµ} = Pr{ν ∈ C(µ) in Tµ}, (4.1)

where Tµ is the transmission network when considering document dµ. When there is no ambiguity this
is shortened to T . In this section we present methods to compute Dµ,ν . As these methods require a lot
of ad hoc reasoning we leave the computation of Dµ,ν as an open problem for the practitioner. Yet we
do compute Dµ,ν in a ring and a complete network in this section.

4.2.1 How to compute Dµ,ν?

In this section we present two methods to compute Dµ,ν . The first method is based on removing edges
from G while the second method is based on considering all paths between two agents in G.

First method to compute Dµ,ν : decomposing the network.
One way to compute Dµ,ν is to condition on the event that an edge is present, or not, in the transmission
network. When an edge is not in T , then it can be removed from the original network as this edge never
transmits a document. The result is showed in the next proposition.
Proposition 4.1. For all e ∈ E(G)

Dµ,ν = Pr{ν ∼ µ in T , e ∈ E(T )}+ Pr{ν ∼ µ in T , e 6∈ E(T )}

= Pr{ν ∼ µ in T |e ∈ E(T )}p+DE(G)\e
µ,ν (1− p),

where DE(G)\e
µ,ν is the probability that agent ν obtains dµ in a network where e is removed.
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The relation in the proposition provides some grasps on Dµ,ν . Note however that information between
two arbitrary agents does not necessarily spread over e and hence ad hoc reasoning is required. Still,
for some networks Dµ,ν is readily computed by applying proposition 4.1. An example is a tree.

Proposition 4.2. If G is a tree network, then Dµ,ν = pdist(µ,ν).

Proof. Let u = {ν, . . . , µ} be the unique path from agent µ to agent ν. By applying proposition 4.1 to
every edge in u and noting that DE(G)\e

µ,ν = 0, the result follows.

Although quite sparse, there are some examples of information networks which themselves attain a
tree structure. One can think of a hierarchy network in a company or a provider/user network. In the first
example, information (a strategic decision) is told to a chef, who in turn might inform his chef about the
decision. Note however that in reality the decision might first be told to a colleague who - in turn - informs
the chef about the decision. This clearly touches the limitation of tree networks as in many real world
information networks multiple cycles are present. Figure 14 shows for instance three (non exhausting)
transmission networks in which agent 2 obtains d0 in G as in figure 12. In the first two network the
information is obtained through agent 1, while in the last network the information is obtained through
agent 1 and agent 317.

Figure 14 – Transmission networks of G as in figure 12. In these transmission networks agent 2 obtains
d0. The networks emerge with a probability of (from left to right) p2(1 − p)5, p4(1 − p)5 and p4(1 − p)5.
Note however that the probability that (for instance) the path {0, (0, 1), 1, (1, 2), 2} emerges in T is p2.

Figure 14 highlights that a document can spread over several paths. To computeDµ,ν in these networks,
the practitioner should apply proposition 4.1 in a way such that the number of cycles are reduced. When
repeating this procedure, eventually all cycles are removed and a tree network emerges. Consequently
proposition 4.2 can be used to compute Dµ,ν in this tree network. For instance in K3, as showed in
figure 15, D0,2 can be computed by removing (0, 2):

D0,2 = Pr{0 ∼ 2 in T |(0, 2) 6∈ E(T )}(1− p) + Pr{0 ∼ 2 in T |(0, 2) ∈ E(T )}p
= p2(1− p) + p

= p+ p2 − p3.

Figure 15 – Computing D0,2 in a network with a cycle by applying proposition 4.1.

Like every network can be decomposed to a network without cycles (a tree), also every network can be
decomposed to a network in which every edge is in at least one cycle. Specifically, every network can

17. Note that as our spread model is time independent, one can not deduce from who - agent 1 or agent 3 - agent 2 obtains d0
first. Also note that in our model it does not make any difference if a document is obtained once or multiple times.
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be decomposed to a network that does not feature any cut-edges18. As a cut edge is either in every
path between two agents, or not in any path between these agents, the following result is established.
Proposition 4.3. Let e be a cut-edge. If e is in every path between agent ν and µ,

Dµ,ν = Pr{Agent ν obtains dµ in G } = pPr{Agent ν obtains dµ in G · e },

where G · e is the network where e is contracted 19. If e is not in any path between agent ν and µ,

Dµ,ν = Pr{Agent ν obtains dµ in G } = Pr{Agent ν obtains dµ in G · e }.

The next example will shed some light on the proposition above.
Example 4.1. In this example we compute D0,2 in the first (left) network in figure 16. As (0, 4) is a cut-
edge and in every path between agent 0 and agent 2 we are allowed to apply proposition 4.3 to (0, 4).
It follows that D0,2 = pDM

0,2, where M is the middle network in figure 16. The network can be further
decomposed by applying proposition 4.3 to (0, 3). It follows that D0,2 = pDM

0,2 = p2DL
0,2, where L is the

last (right) network. Consequently by using the earlier result in K3, it follows that D0,2 = p2(p+p2−p3) =

p3 + p4 − p5.

Figure 16 – Networks in which D0,2 is computed by contracting edges.

Second method to compute Dµ,ν : probability that a path exists in T .
An alternative method to compute Dµ,ν is to consider all paths between agent µ and agent ν. Clearly,
agent ν obtains dµ when at least one path between the two agents is (still) present in the transmission
network, that is

Pr{ν ∼ µ in T } = Pr{
n⋃
i=1

[
G[u∗i ] ⊂ T

]
},

where u∗i is the set of all agents in a path between agent ν and agent µ20. Note that, as paths may
overlap (an edge may be present in several paths), G[u∗i ] ⊂ T and G[u∗j ] ⊂ T are not always independent
events. By using the inclusion-exclusion principle21

Dµ,ν = Pr{ν ∼ µ in T }

=

n∑
i=1

Pr{G[u∗i ] ⊂ T } −
n∑
i<j

Pr{
⋂

s={i,j}

G[u∗s] ⊂ T }+

n∑
i<j<k

Pr{
⋂

s={i,j,k}

G[u∗s] ⊂ T } − . . . , (4.2)

continuing till s = V . In the next proposition we extend (4.2) to an alternative method to compute Dµ,ν .
Proposition 4.4. Let {u1, . . . , un} be all the paths between agent ν and µ. When |uiujuk . . . | are the
number of edges in ui ∪ uj ∪ uk . . . , then

Dµ,ν =

n∑
i=1

p|ui| −
n∑
i<j

p|uiuj | +

n∑
i<j<k

p|uiujuk| − . . . + (−1)n+1
∑

1<···<n
p|u1u2...un|

18. An edge e is a cut edge if and only if G with E \ e is disconnected.
19. Edge contraction is an operation that removes an edge from a network while merging the two nodes that were joined by the
edge.
20. To clarify the expression, first note that G[u∗i ] is the subgraph induced by u∗i , which simply is the path itself. If this path is a
subgraph of T , i.e. the path is present in T , then ν obtains dµ. As there possibly are several paths, we use the ∪ operator.
21. Note that

∑
i<j<k... is a contraction of

∑n
i=1

∑n
j=i+1

∑n
k=j+1 . . . .
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Proof. First note that the probability that a particular graph emerges as subgraph of T is px, where x

are the number of edges in the graph. When applying this to (4.2), the result follows.

To apply proposition 4.4 still a lot of ad hoc reasoning is required as it is unclear how many edges are
included in each combination of paths. Still, proposition 4.4 can be an useful tool to compute Dµ,ν , for
instance in the next example.

Example 4.2. Consider the first network in figure 17. We like to compute D0,2 by applying proposition
4.4. Note that (with help of the 4 paths highlighted in figure 17)

n∑
i=1

p|ui| = p|u1| + p|u2| + p|u3| + p|u4| = p2 + p2 + p3 + p3.

By repeating this procedure:

n∑
i=1

n∑
j>i

p|uiuj | = 5p4 + p5,
n∑
i=1

n∑
j>i

n∑
k>j

p|uiujuk| = 4p5 and lastly
n∑
i=1

n∑
j>i

n∑
k>j

n∑
l>k

p|uiujukul| = p5.

By combining the results it follows that

D0,2 = [2p2 + 2p3]− [5p4 + p5] + [4p5]− p5 = 2p2 + 2p3 + 2p5 − 5p4.

Figure 17 – The network K4 with all the paths between agent 0 and agent 2.

Also more general results can be derived by using proposition 4.4. For instance in a ring network, Dµ,ν

is readily computed as there are only two paths between any two nodes.

Proposition 4.5. In a ring network on n nodes, Dµ,ν = pdist(µ,ν) + pn−dist(µ,ν) − pn.

Proof. Let u1 and u2 be the two - disjoint - paths between agent µ and agent ν. Note that the number of
edges in the shortest path is equal to the distance between ν and µ, while the number of edges in the
longest path is equal to n− dist(µ, ν). By applying proposition 4.4 the results follows.

4.2.2 Exact probabilities in a complete network

Proposition 4.4 is not easily applied to networks with multiple paths between two nodes. To give an
indication that the number of paths may be very large, in K10 there are 109,601 distinct paths between
two arbitrary nodes22. Clearly another method is required to compute Dµ,ν in a complete network.
Proposition 4.7 provides such method. The method is based on the following result23.

22. In Kn, the number of paths between any two nodes can be computed by the recursive relation, p(n) = 1 + (n− 2)p(n− 1),
where p(n) are the number of paths between any two nodes in Kn and p(2) = 1.
23. The result in proposition 4.6 - without proof - is found at slide 4 in: ’http://keithbriggs.info/documents/connectivity-
Manchester2004Nov19.pdf’
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Proposition 4.6. Let Tn be the transmission network of Kn, the complete network on n nodes. Then,
for any p

Pr{Tn is connected } = 1−
n−1∑
i=1

(
n− 1

i− 1

)
(1− p)i(n−i) Pr{Ti is connected }, (4.3)

with Pr{T1 is connected } = 1.

Proof. Define Cn(ν) as the component in which ν lies in the transmission network Tn. Definitely the
event that Tn is connected is equivalent with the event that all nodes lie in the component in which ν

lies. Consequently,

Pr{Tn is connected } = Pr{|Cn(ν)| = n}

= 1−
n−1∑
i=1

Pr{|Cn(ν)| = i},

where |Cn(ν)| is the number of nodes in Cn(ν). Next we will show that

Pr{|Cn(ν)| = i} =

(
n− 1

i− 1

)
(1− p)i(n−i) Pr{|Ci(ν)| = i}, (4.4)

completing the proof. For this, let Vi ⊂ V be all the subsets of size i of V that include node ν. Recognize
that there are

(
n−1
i−1

)
elements in Vi. Next, by conditioning on all Ṽ ∈ Vi,

Pr{|Cn(ν)| = i} =
∑
Ṽ ∈Vi

Pr{Cn(ν) = {ν} ∪ Ṽ }.

As each edge is included independently in Ti∑
Ṽ ∈Vi

Pr{Cn(ν) = {ν} ∪ Ṽ }

=
∑
Ṽ ∈Vi

Pr{ {ν} ∪ Ṽ is connected }Pr{ no edge between ({ν} ∪ Ṽ ) and (V \ ({ν} ∪ Ṽ )) }

=
∑
Ṽ ∈Vi

Pr{|Ci(ν) = i|}Pr{ no edge between ({ν} ∪ Ṽ ) and (V \ ({ν} ∪ Ṽ )) }

=
∑
Ṽ ∈Vi

Pr{|Ci(ν) = i|}(1− p)i(n−i) =

(
n− 1

i− 1

)
(1− p)i(n−i) Pr{|Ci(ν) = i|}.

In this derivation the second equality follows because - in a complete network - the probability that ν∪ Ṽ
is connected is independent of the nodes in Ṽ . The third equality follows because there are i(n − i)
edges between ({ν} ∪ Ṽ ) and (V \ ({ν} ∪ Ṽ )), all included with probability p.

The probability that the transmission network of a complete network is connected can be linked to Dµ,ν .
The next proposition presents a method.

Proposition 4.7. In a complete network on n nodes, for every p and all µ 6= ν

Dµ,ν =

n∑
i=2

(
n− 2

i− 2

)
(1− p)i(n−i) Pr{Ti is connected }, (4.5)

where Pr{Ti is connected } is given in (4.3).
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Proof. By conditioning on the size of the component in which ν lies

Dµ,ν = Pr{ν ∼ µ in T }

=

n∑
i=1

Pr{ν ∼ µ in T | |Cn(ν)| = i}Pr{|Cn(ν)| = i} =

n∑
i=1

i− 1

n− 1
Pr{|Cn(ν)| = i},

where the second equality follows because every node - in the transmission network of a complete
network - equally likely is in Cn(ν). By using (4.4) in proposition 4.6, the result follows.

The following example helps to elucidate the result.
Example 4.3. When xi = Pr{Ti is connected }, by equation (4.3):

x1 = 1,

x2 = 1− (1− p)x1 = p and

x3 = 1− (1− p)2x1 − 2(1− p)2x2 = 1− (1− p)2 − 2(1− p)2p = 3p2 − 2p3.

Consequently by using (4.5):

DK2
1,2 = x2 = p and

DK2
1,2 = x2(1− p)2 + x3 = p(1− p)2 + 3p2 − 2p3 = p+ p2 − p3.

This result agrees with the result derived in figure 15.
As a final comment, recognize that Dµ,ν is independent of µ and ν in a complete network.

4.2.3 Comparing several networks

Proposition 4.1, proposition 4.4 and the exact results in a complete and a ring network are the tools
used in this research to compute Dµ,ν for arbitrary networks. As the focus lies on the security game,
this probability is not further explored in this chapter. Nevertheless, the following proposition provides
some grasp on this value.
Proposition 4.8. Let H be a subgraph of G, then for any ν and µ, DHµ,ν ≤ DGµ,ν . Moreover, for any
network in which µ and ν are connected, Dµ,ν is strictly increasing in p.

Proof. Surely, all paths between µ and ν in H also exist in G. Consequently the result follows by noting
that

DHµ,ν = Pr{
n⋃
i=1

[
H[u∗i ] ⊂ T

]
} = Pr{

n⋃
i=1

[
G[u∗i ] ⊂ T

]
} ≤ Pr{

m⋃
i=1

[
G[u∗i ] ⊂ T

]
} = DGµ,ν ,

where u∗1, . . . , u∗n are the paths between µ and ν in H and u∗n+1, . . . , u
∗
m the paths between µ and ν in G.

Next, when p is increasing, the probability that any path u∗i in particular is still present in T is strictly
increasing. Consequently it can not be the case that Dµ,ν = Pr{

⋃n
i=1 G[ui] ⊂ T } is decreasing.

Proposition 4.8 has an intuitive motivation, when dependencies grow between agents, in the form of
more connections or a higher value of p, information is shared with a higher probability. This property
can be used to find bounds on Dµ,ν . For instance, in any network G on n nodes, DGµ,ν is bounded above
by DKn

µ,ν in a complete network. The following example further demonstrates the result in proposition 4.8
and shows - in some simple networks - the effects of adding an edge to the network.
Example 4.4. In this example we compute and compare the probability that agent 2 obtains d0 in the
networks showed in figure 18. First DG10,2 and DG40,2 are computed by applying - respectively - proposition
4.7 and proposition 4.5. Next note that DG30,2 and DG40,2 can be computed from

DG30,2 = p+ (1− p)DG40,2 and DG10,2 = p+ (1− p)DG20,2;
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Figure 18 – Several networks
on 4 nodes.

Figure 19 – Probability that agent 2 obtains d0 for the networks
showed in figure 18.

two expressions that follow from proposition 4.1 when deleting, in both cases, (0, 2). The results are
plotted in figure 19.

Several characteristics are noticeable in figure 19. First observe that, as stated in proposition 4.8, D0,2

is strictly increasing in p and in the number of edges. Not every edge has the same impact though. For
instance, the impact of removing (1, 3) in a full graph is negligible as the plots of DG10,2 and DG30,2 are quite
similar. This shows that by increasing the number of edges, the probability that information is shared
does not necessarily increase significantly.

Another noticeable feature in figure 19 is that - for small p - the probability that agent 2 obtains d0 in
network G2 and network G4 is lower than in a two agent network with agent 0 and agent 2 (solid red line
is above solid blue and dashed black). As a network with two agents is neither a subgraph of G2 or G4,
this confirms that proposition 4.8 only holds if one graph is a subgraph of the other. In fact, G1 and G3

are super-graphs of a two agent network with agent 0 and agent 2 and hence it follows indeed that DG10,2

and DG30,2 are larger than the solid red line in figure 19.

4.3 Expected number of documents obtained

In our model we assume that every agent will store his own document and the documents obtained by
other agents. In this section we focus on the expected number of documents stored at an agent. This
stochastic variable - denoted by Dν for agent ν - depends on p and the network structure. Remind that
the attacker, if his attack on an agent is successful, will steal - in expectation - this quantity of documents.

4.3.1 How to compute Dν?

When Dµ,ν is known for all µ, then also Dν can be computed. This follows because

Dν = E( documents obtained by agent ν)

=
∑
µ∈V

E(αµ,ν) =
∑
µ∈V

Pr{αµ,ν = 1} =
∑
µ∈V

Dµ,ν , (4.6)

where αµ,ν is the event that agent ν obtains dµ. The third equality in (4.6) follows because αµ,ν is a
Bernoulli random variable24.

24. Note that Dν is not equivalent with the expected size of the (random)-component in which ν lies in the transmission network
(as used often in random graph theory). This follows because in our model the n documents spread independently of each other
and hence n transmission networks are formed.

4 SPREADING OF DOCUMENTS Page 28



Note that the dependency on Dµ,ν allows to extend properties of Dµ,ν to Dν . For instance proposition
4.8 can be extended.
Proposition 4.9. LetH be a subgraph of G, then for all ν ∈ V (H), DHν ≤ DGν . Moreover, for any network
in which degree(ν) > 0, Dν is strictly increasing in p.
The result follows easily by combining (4.6) with the results in proposition 4.8.

The dependency of Dν on Dµ,ν additionally allows to compute Dν in specific networks. For instance in
a ring and a complete network the following results hold.
Proposition 4.10. In a ring network on n nodes, if p < 1

Dν =
1 + p− pn(1 + n) + pn+1(n− 1)

1− p
, (4.7)

and if p = 1 then Dν = n. In a complete network on n nodes for every µ,

Dν = 1 + (n− 1)Dµ,ν , (4.8)

where Dµ,ν follows from (4.5).

Proof. From proposition 4.5, in a ring networkDν = 1+2
∑n
i=1 p

i−(n−1)pn. By observing the geometric
series, this expression can be written to the result in the proposition. The result in a complete network
follows by the earlier observation that Dµ,ν is identical for every choice of ν and µ 6= ν.

Figure 20 shows Dν as function of p for a complete and a ring network for several values of n. Observe
for instance that Dν is increasing in p and in n. Additionally observe that DKn

ν much faster touches n
than DRn

ν . Surely this follows because a document can spread over way more paths in the complete
network.

Figure 20 – Expected number of documents D obtained by each agent in a complete network K and a
ring network R. Note that D is both increasing in p and in the density of the network.

Also note that Dν is independent of ν in both a complete network and a ring network. Apparently every
agent obtains as much documents - in expectation and for every value of p - as every other agent. This
property, present in several networks, is highly used in this research and allows to compute security
investments more efficiently. In the sequel of this section, if Dν is identical for every ν, Dν is shortened25

to D. In the next section we define a class of networks for which this is the case.

25. To recapitulate, DGν are the expected number of documents obtained by agent ν in network G. When there is no ambiguity
this expression is shortened to Dν and even further shortened to D when Dν is identical for every ν.
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4.3.2 Vertex-transitive networks and circulant networks

In this section we first define vertex-transitive (VT) networks. For this class of networks Dν shows to be
identical for every ν. Additionally we specify a subclass of VT-networks: circulant networks. We prove
that Dν in circulant network can be bounded below and bounded above by respectively a ring and a
complete network.

Vertex-transitivity is related to automorphisms. An automorphism is a mapping from a graph to itself (a
permutation) while preserving the edge-vertex connectivity. Formally, an automorphism is a permutation
φ of the vertex set V , such that if and only if ν and µ are neighbors then φ(ν) and φ(µ) are neighbors.
One can define a set of all such permutations.

Definition 1. The automorphism group is the group Aut(G) such that

Aut(G) = {φ : V → V | ∀ν, µ ∈ V A(ν, µ) = Aφ(φ(ν), φ(µ))}, .

where Aφ is the adjacency matrix of the image of φ.

One can prove that Aut(G) satisfies the group axioms: closure, associativity and an identity and in-
verse exist in Aut(G). Moreover note that because the structure of the network is unchanged under an
automorphism, also A - the adjacency matrix - is unchanged under an automorphism (i.e. A ≡ Aφ).

Vertex-transitivity is closely related to Aut(G) as the following definition shows.

Definition 2. A network G is vertex-transitive if and only if for all ν, µ ∈ V there is a φ∗ ∈ Aut(G) such
that φ∗(ν) = µ.

In other words, a network is vertex-transitive if for every two nodes, there exists an automorphism that
maps one of these nodes on the other node while the structure of the network is preserved. Informally
stated, a VT-network is one that ’looks the same’ at every vertex, such as a cube, tori or complete graph.

Vertex-transitivity is a stronger requirement than regularity of a graph as it can be proved that every
VT-network is regular but, on the other side, not every regular graph is vertex-transitive.

Figure 21 shows some examples of regular graphs. The first (left) and the middle graph are both vertex-
transitive as - informally - the network looks the same at every node. For the last (right) network this is
much harder to see. In fact, although the graph is regular, it is not vertex-transitive26.

Figure 21 – Several regular networks. The first two (from the left) are VT-networks while the last network
is not.

When two identical VT-network are combined, the result is still a VT-network as the following proposition
shows.

Proposition 4.11. If G = G1 ∪ G2 is the union of two identical networks which are both vertex-transitive,
then G is also vertex-transitive.

26. This follows because not every node is part of a clique of three nodes. A clique is a subgraph induced by a set B ⊆ V (A)
such that A[B] is fully connected. For instance S = {0, 1, 2} is a clique on three nodes. Observe that node 3 is not part of a clique
of three node and hence a mapping such that (for instance) φ∗(2) = 3 can never be in Aut(G).
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Proof. Label the vertices in G as V (G) = {1G1 , .., nG1 , 1G2 , .., nG2}. To prove the first statement, first
note that when mapping νGi on µGi , then there clearly exists (by vertex-transitivity of both networks) a
φ1 ∈ Aut(G1) × Aut(G2) such that φ1(νGi) = µGi . Second, when mapping νGi on νGj , there exists a
φ2 ∈ Aut(G) such that φ∗(νG1) = νG2 and φ∗(νG2) = νG1 for all ν = 1, 2, ..n. The result follows by noting
that φ2(φ1) ∈ Aut(G) because Aut(G) is a group.

The results in the proposition shows to be useful when an extension of the security game is considered
in chapter 6. In this extension the attacker can (strategically) choose which network to attack.

As already stated, in vertex transitive networks Dν is independent of ν. As the network seen from
every agent is identical in a VT-network, the result is intuitive. In the following proposition we prove this
mathematically.

Proposition 4.12. In a vertex-transitive network G, Dν ≡ Dµ for every ν, µ ∈ V .

Proof. In this proof we show that
∑
κDκ,ν =

∑
κDκ,µ in VT-networks. For this let φ∗ ∈ Aut(G) such that

φ∗(ν) = µ and denote the network G after this automorphism as Gφ. It follows that∑
κ∈V (G)

Dκ,ν =
∑

φ∗(κ)∈V (Gφ∗ )

Dφ∗(κ),ν .

By noting that V (G) and V (Gφ∗) are the same sets, the result follows.

Although the proposition above allows to conclude that Dν is independent of ν in VT-networks, it does
not say anything about the exact value of D. As the practitioner can compute D by earlier tools and
using equation (4.6), we continue by finding bounds on D; other than (by definition) the lower bound of
1 and the upper bound of n.

First note for instance that D is clearly bounded above by D in a complete network by proposition 4.9.
To find a (more strict) lower-bound, we first define a special class of networks.

Definition 3. A network Gn is said to be a circulant network on n nodes with structure S ⊂ V if and only
if for all ν, µ ∈ V for which (ν − µ) mod (n) ∈ S it holds that A(µ, ν) = A(ν, µ) = 1.

For instance, when S = {1} (or S = {n − 1}), the circulant graph is a ring network and if S = V (or
S = {1, . . . , bn2 c}), the circulant graph is a complete network. Figure 22 shows three circulant networks
with S = {1, 2}.

Figure 22 – Circulant networks with structure S = {1, 2} on 6, 8 and 10 nodes.

Although one easily observes that the networks in figure 22 are circulant, it is not always easy to con-
clude that a network is circulant. For instance the first network in figure 21 is not circulant (as shown by
Leighton, 1982), while the middle network is circulant (with structure S = {2, 3, 4}).
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One can prove that all circulant networks are vertex-transitive27. Indeed the networks in figure 22 and
the middle network in figure 21 are vertex-transitive. Note however that the first network in figure 21 is
vertex-transitive but not circulant and hence not all VT-networks are circulant.

The expected number of documents obtained in a circulant network can be bounded by D in a larger
circulant network. This property is showed in the next proposition.

Proposition 4.13. Let H and G be two circulant networks; both with n nodes and respectively with
structure SH ⊂ SG . It holds that DH ≤ DG.

Proof. The results is a corollary of proposition 4.9. As SH ⊂ SG , H is a subgraph of G and the result
follows.

Specifically the proposition allows to conclude that D in circulant network with structure S ⊃ {1} on n
nodes always lies between DRn and DKn (D always lies between the black and the blue lines in figure
20). Circulant networks with structure S ⊃ {1} can be ‘build’ from a ring network by adding edges such
that the lth order neighborhood in the ring becomes the first order neighborhood if and only if l ∈ S.
Hence any circulant network with structure S ⊃ {1} is a super-graph of the ring network.

4.3.3 Growing networks and asymptotics

Recognize from figure 20 that the expected number of documents obtained by agents in both a ring and
a complete network are increasing in n. In this section we define what is meant with ‘D is increasing in
n’ and (promptly) discuss some asymptotics. To highlight the dependency of D on n, the notation D(n)

is used in this section.

A network is growing in n when nodes are added to the network. To say something about the emerging
network, we assume that the same ‘structure’ is maintained when nodes are added. This leads to the
following definition.

Definition 4. The set G = {Gi,Gi+1, . . . ,Gn} is sequence of growing networks when Gj is a circulant
network with structure S for all i ≤ j ≤ n.

As an example: R5, R6, R7 is a sequence of growing ring networks and figure 22 shows a (part of the)
sequence of growing networks with structure S = {1, 2}. When D(n) is increasing in n, we mean that
DGn ≤ DGn+1 where both Gn and Gn+1 are from a sequence of growing networks.

We expect D(n) to be strictly increasing in a ring and a complete network. For a ring network this result
is not so trivial because Dν,µ is decreasing in n. This is showed in the next example.

Example 4.5. Consider two ring networks; one on 4 and one on 5 nodes. In both networks let agent 1

and agent 2 be two neighboring agents. Note that DR4
1,2 = p+ p3 − p4 and DR5

1,2 = p+ p4 − p5. It follows
that DR4

1,2 > DR5
1,2 for 0 < p < 1. Also note that (from proposition 4.10)

D(4) =
1 + p− 5p4 + 3p5

1− p
and D(5) =

1 + p− 6p5 + 4p6

1− p
.

As −5p4 +3p5 < −6p5 +4p6 for 0 < p < 1, it follows that D(5) > D(4). So while the probability that agent
2 obtains d0 is decreasing in n, the expected number of documents obtained by agent 2 is increasing in
n.

Next we formally prove that D(n) is strictly increasing in a complete and a ring network.

Proposition 4.14. The expected number of documents obtained by each agent in a ring and in a
complete network is strictly increasing in the number of agents when p > 0.

27. To prove this, we show that there always exists a φ ∈ Aut(G) such that φ(ν) = µ for two arbitrary nodes ν and µ. Specifically,
define φ(ν) as ν+k mod (n) where k is such that ν+k mod (n) = µ. Next, if (κ1, κ2) is an edge, then clearly (φ(κ1), φ(κ2)) =
(κ1 + k, κ2 + k) is an edge because (κ1 + k)− (κ2 + k) = κ1 − κ2.
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Proof. To show that D(n) is strictly increasing in a ring network (for 0 < p < 1), the derivative of (4.7) to
n can be computed. This leads to

dD

dn
=
− ln(p)pn(1 + n)− pn + ln(p)pn+1(n− 1) + pn+1

1− p
.

Note that the denominator is always strictly larger than 0 for p < 1. As the numerator is also strictly
larger than 0 for p > 028, it follows that D(n) is strictly increasing in n when 0 < p < 1. When p = 1 then
D(n) = n and D is definitely increasing in n.

For a complete network the result is trivial as D = 1+(n−1)Dν,µ for every µ 6= ν. As a complete network
on n nodes is a super-graph of a complete network on n − 1 nodes, Dν,µ is increasing by proposition
4.8. Consequently, as D(n+ 1) = 1 + nD

Kn+1
ν,µ > 1 + (n− 1)D

Kn+1
ν,µ ≥ 1 + (n− 1)DKn

ν,µ = D(n), D(n) is
indeed strictly increasing in n.

In fact one can prove that D(n)→ 1+p
1−p when n→∞ in a ring network. In a complete network D(n) is a

divergent series as D(n)→∞.

Although simulation results in appendix section B conjecture thatD(n) is increasing in n for a wide range
of circulant networks, it is hard to prove this formally. We leave this conjecture as an open problem in
this research.

Another open problem is whether or not D(n) converges. Simulation results lead to the presumption
that D(n) converges when S is independent of n (e.g. a ring). Contrary, when S depends on n, different
behavior is observed. Specifically, when S increases ‘significantly’ (e.g. in a complete network) we feel
that D(n) diverges. On the other side, when S does not increase significantly then D(n) might as well
converge. We do not further explore these surmises in this research as the focus lies on the security
game.

Asymptotic behavior of D(n)/n.
Also the asymptotic behavior of D(n)/n, the expected fraction of documents obtained by an agent is of
interest in this research. In a ring the following result holds.

Proposition 4.15. In a ring network, for all p < 1

lim
n→∞

D(n)

n
= 0.

Proof. For a ring networkD(n) is given in (4.7). AsDν → 1+p/1−p when n→∞, the result follows.

The following proposition shows that different behavior is observed in a complete network.

Proposition 4.16. In a complete network, for all p > 0

lim
n→∞

D(n)

n
= 1.

Proof. The proof is based on showing that a Poisson-random graph, in which the number of agents is
asymptotically large and p > 0 fixed, is almost surely connected. More formally and in the notation of
proposition 4.6, we would like to show that Pr{Tn is connected } → 1. This would imply that Dν,µ → 1

(by proposition 4.5) and hence D/n = [1 + (n− 1)Dµ,ν ]/n]→ 1.

To show that Pr{Tn is connected } → 1, let xn be the probability that the transmission network of a
complete network on n nodes is connected and take p > 0 fixed. From proposition 4.6, xn is iteratively

28. This follows because the numerator can be written as pn[ln(p)[p(n− 1)− (n+ 1)] + p− 1]. This expression is strictly larger
than 0 for p > 0 because p(n− 1)− (1 + n) < 0 < p−1

ln(p)
.
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computed with (4.3). Note that

0 ≤
n−1∑
i=1

(
n− 1

i− 1

)
(1− p)i(n−i) xi ≤

n−1∑
i=1

(
n− 1

i− 1

)
(1− p)i(n−i)

≤
n−1∑
i=1

(
n− 1

i− 1

)
(1− p)i−1 = (1− p)n−1 − (n− 1)(1− p)n−2 n→∞−−−−→ 0.

The second inequality follows because 0 ≤ xi ≤ 1 by definition. The third inequality is correct because
i(n− i) = in− i2 ≥ i(i+ 1)− i2 = i > i− 1, where the second equality follows because i ≤ n− 1. The
third inequality follows from the binomial theorem. By inspection of (4.3) we conclude that xn → 1.

Again it is hard to say what the asymptotic behavior of D(n)/n is in other circulant networks. In appendix
section B some simulation results are given. The results conjecture that D(n)/n converges to zero
when we consider circulant networks where S is independent of n. When S depends on n different
behavior is observed. Overall we conjecture that D(n)/n converges to one when the structure increases
‘significantly’ with n (e.g. in a complete network). Similar as forD(n), we do not fully explore the behavior
of D(n)/n in circulant networks and leave the conjectures as open problems.
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5 The security game under a strategic attack
In this chapter we analyze the security game. Main focus lies on finding the pure strategy Nash equi-
librium and the social optimum as function of the network structure and p. First an extensive example
is given in section 5.1 to elucidate the model and to give a preview of some results. Next in section
5.3, after some preliminaries in section 5.2, the focus lies on the random attack. Results are used as
benchmark in subsequent sections on the strategic attack. This analysis is started in section 5.4 where
the strategy of the attacker is uncovered. Next in section 5.5 and in section 5.6 the security game is
analyzed in respectively a non-cooperative environment and in a cooperative environment. Lastly, we
compare results in section 5.7 and analyze the role of certain parameters in section 5.8.

5.1 The two-agent case

Suppose two agents - agent 1 and agent 2 - play the security game. We assume that the cost to adopt
security is (1/2)q2

ν . Consequently, the utility of each agent is reduced to

Πν = 1− aν(q)[1− qν ]− a−ν(q)[1− q−ν ]p− 1

2
q2
ν . (5.1)

Figure 23 shows the network and highlights how certain parameters relate to each other.

When considering a random attack in
which a1 = a2 ≡ 1/2, an agent’s best re-
sponse is independent of the strategy of
the other agent. This can be seen by not-
ing that the external effect on an agent’s
utility, aν [1 − q−ν ]p, is independent of an
agent’s own strategy. Consequently, al-
though the security investments of the
other agent impacts an agent’s utility, the
best response is independent of this in-
vestment.

The best response of each agent can be
found by maximizing the utility function
when q−ν is given. Later we show that this
best response under the random attack is
such that c′(qν) = 1/n. Under the current
assumption on investment costs, a fixed
point of the best responses of agent 1
and agent 2 is

Figure 23 – Two interconnected agents who play the se-
curity game. In this figure p is the probability that the
link between 1 and 2 is present in the transmission net-
work. Every agent is attacked with probability aν , an at-
tack which is successful with probability 1 − qν . If an at-
tack is successful the attacker will steal all the documents
stored at an agent. This is necessarily the target’s own
document and, with probability p, the document of the
other agent.

qN = {1

2
,

1

2
}. (5.2)

A fixed point of the best responses is a pure strategy Nash equilibrium of the game.

Differently, the social optimum can be found by maximizing S = Π1 + Π2 in [0, 1]2. It can be showed that

qs = {1

2
+
p

2
,

1

2
+
p

2
} (5.3)

is the unique social optimum. Observe that (for each p) qN features under-investments relative to qs.

The random attack is used as a benchmark for the strategic attack. In this strategic attack a is chosen
such that the utility of the attacker,

Πa = a1(1− q1)(1 + p) + a2(1− q2)(1 + p)− ψ(a1)− ψ(a2)
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is maximized, subject to a1 + a2 = 1, a1 ≥ 0 and a2 ≥ 0. One can show that when ψ = a2 and p = 0.5,
the strategy of the attacker is uniquely described with

a1(q) =
3

8
q2 −

3

8
q1 +

1

2
and (surely) a2(q) = 1− a1(q). (5.4)

Note for instance that if q1 = q2 then a1 = a2 = 1/2. Also observe that a1 is decreasing in q1 (i.e. an
agent can discourage an attack by increasing investments).

Remind that in the security game agents choose their strategy anticipating the strategy of the attacker.
This is modeled by substituting (5.4) in an agent’s utility in (5.1). This procedure leads to

Πν =
11

16
qν +

1

16
q−ν +

9

16
qνq−ν −

7

8
q2
ν −

3

16
q2
−ν +

1

4
. (5.5)

This function is plotted for both agents in figure 24. Observe that Πν is strictly concave in q, a property
which greatly simplifies the optimization process. By finding the first order condition for optimality (and
checking that the solution is indeed the global maximum of (5.5)), one finds that the best response is
ϕν(q−ν) = (9/28)q−ν + (11/28). Figure 24 also features the utility at this best response for both agents.
Note that there is a unique intersection of both lines: the utility at the Nash equilibrium. The exact
location of this intersection can be found by solving the system of best responses:

ϕ1(q2) =
9

28
ϕ2(q1) +

11

28
and ϕ2(q1) =

9

28
ϕ1(q2) +

11

28
.

One can prove that

qN = {11

19
,

11

19
} (5.6)

is the unique solution.

Figure 24 – Plot of utility functions in (5.5) together with the utility when each agent plays his best
response. The intersection of these lines is the utility at the Nash equilibrium (blue point). One can show
that the red point is the utility at the social optimum. Note that under-investments prevail in equilibrium
relative to social optimum.
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Note that the equilibrium investment level under the strategic attack, in (5.6), is larger than the invest-
ment level in the random attack in (5.2). Apparently an agent indeed uses the opportunity to discour-
age an attack by increasing investments. Unfortunately, as also other agents use this opportunity, still
aν = 1/n and each agent is attacked with the same probability.

Yet, the increase of investments under the strategic attack makes the Nash equilibrium more socially
optimal. This can be showed by first proving that the social optimum under the strategic attack is equiv-
alent with the social optimum under the random attack. This indicates that by substituting p = 0.5 in
(5.3), qs = {3/4 , 3/4} under both the random and the strategic attack. Next the price of anarchy can
be computed:

PoAstrategic attack =
(1 + p)(1− 3

4 )

(1 + p)(1− 11
19 )

=
1/4

9/19
=

19

36

and

PoArandom attack =
(1 + p)(1− 3

4 )

(1 + p)(1− 1
2 )

=
1

2
=

18

36
.

As PoArandom attack < PoAstrategic attack < 1 we conclude that the outcome under the strategic attack is
more social optimal.

Note however that although the investments in equilibrium are more socially optimal, still under-investments
prevail when p = 0.5 because qN = 11/19 < 3/4 = qs. This can be different when p is changed. For
instance when p = 0.1, the utility of each agent and the corresponding utility at the best response is
showed in figure 25. Note that the Nash equilibrium features over-investments relative to the social
optimum in this case.

Figure 25 – Plot of the utility of each agent when p = 0.1. Similar as in figure 24, again the blue point is
the utility at the Nash equilibrium and the red point is the utility at the social optimum. Note that in this
case over-investments prevail in equilibrium relative to social optimum.

In this research - similar as in the example - the outcomes of the security game in a cooperative (social
optimum) and a non-cooperative environment (Nash equilibrium) are compared. Differently, this is done
for a much wider space of possible cost functions, values of p and network topologies.
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5.2 Preliminaries to the security game

5.2.1 Assumption on investment cost

Throughout this research the following basic assumption on the security cost is adopted.

Assumption 1. (Security cost) The cost function c : [0, 1] → R+ is assumed to be two times contin-
uously differentiable in [0, 1], to be strictly convex in (0, 1], strictly increasing in (0, 1] and to satisfy the
boundary conditions c(0) = 0, c′(0) = 0, c(1) ≥ 1 and c′(1) ≥ 1.

The convexity assumption implies that marginal costs will increase when security investments are
higher, which is a standard assumption in economic literature. The boundary assumptions are tech-
nical restrictions and generally make sure that solutions fall inside the interior of the strategy space.

5.2.2 Maximum of strictly concave function

The following result is highly used in this
research. It formally shows that the first
order condition for optimality of a strictly
concave function - without a boundary
maximum - has a unique solution. At
this solution the function is globally maxi-
mized.

Proposition 5.1. Let f(q) be a twice
differentiable function from [0, 1]n to
R. If for every q ∈ [0, 1]n the Hessian
H(f(q)) < 0 and ∇(f(q)) does not point
outward In at the boundary, then there is
a unique solution q∗ ∈ In of∇(f(q)) = 0.
Necessarily f(q∗) is the unique global
maximum. Figure 26 – Illustration of the result in proposition 5.1.

The results allows to conclude that a function attains his unique global maximum at the unique solution
of the first order condition (FOC). This observation is showed in figure 26. Note that the function is
strictly concave with ∇(f(0)) > 0 and ∇(f(1)) < 0. By using proposition 5.1 we conclude that there is a
unique solution to the FOC and that f attains the global maximum at this solution.

5.2.3 Measure for expected damage

The variable E( |x| ) is an important random variable in this research as this expectation is not only
included in the social utility in (3.5), also the utility of the attacker in (3.7) features this variable. This is
no surprise because informally E( |x| ) can be seen as a measure of the (expected) damage done by
an attack. Of course the attacker would like to maximize this quantity while cooperating agents (or some
security planner/authority) would like to minimize this quantity. Formally E( |x| ) can be written as

E( |x| ) =
∑
ν

xν =
∑
ν

Pr{xν = 1}

=
∑
ν

∑
µ

aµ(1− qµ)Dν,µ

=
∑
µ

aµ(1− qµ)
∑
ν

Dν,µ

=
∑
µ

aµ(1− qµ)Dµ.
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In this derivation the second equality follows because xν is a Bernoulli random variable, the fourth
equality- switching of summation sign - is allowed because there are a finite amount of agents and -
lastly - the fifth equality follows because Dν,µ = Dµ,ν as the network is undirected.

5.3 Random attack as a benchmark

In this section we analyze the security game under the random attack. Remind that under this attack
every agent is attacked with an exogenous probability. This models a situation where agents can not
discourage an attack by increasing investments. In this case the adversary attacks according to non-
modeled characteristics or just randomly. We normalize the probability that every agent is attack to 1/n

for every agent. This allows to use the derivations in this section as a benchmark for results later in this
report.

Under the random attack an agent’s utility is reduced to

Πν = 1− 1

n

∑
µ

(1− qµ)Dν,µ − c(qν).

An agent cannot control the external effect in his utility as this external effect (
∑
µ6=ν(1 − qµ)Dν,µ) is

independent of an agent’s own strategy. So although this external effect alters an agent’s well-being, a
rational agent will not change his strategy due to this. The pure strategy Nash equilibrium takes a very
comprehensive form when the investment cost satisfies assumption 1.
Proposition 5.2. Under the random attack and under assumption 1, the unique Nash equilibrium level
solves

c′(qNν ) =
1

n
(5.7)

for each agent.

Proof. To find the best response of each agent, first note that

dΠν

dqν
=

1

n
− c′(qν).

Clearly the solution of (5.7) solves this FOC above. Uniqueness and existence of the solution follows
from lemma A.1 on page 81. To prove that the solution is indeed an agent’s best response (i.e. a
maximum) note that

d2Πν

dq2
ν

= −c′′(qν) < 0,

and that
dΠν

dqν
(0, q−ν) =

1

n
≥ 0 and

dΠν

dqν
(1, q−ν) =

1

n
− c′(1) ≤ 0.

By combining these observations with proposition 5.1, it follows that (5.7) is the unique Nash equilibrium.

As an agent cannot control the external risk that his document is lost through another agent, every
rational agent will act accordingly and only protects against a direct loss. Many real world cases can
be modeled this way; in particular in situations where the attack is not too involved. One can think of a
Facebook identity theft (which may simply consist of sending - randomly - a friend request) or a hacker
sending malware to randomly guessed email-addresses.

In a cooperative environment agent’s agree that they also invest to protect documents of others. We
assume that agents adopt a security investment such that

S =
∑
ν

Πν = n− E( |x| )−
∑
ν

c(qν)

= n− 1

n

∑
µ

[1− qµ]Dµ − c(qµ)
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is maximized in [0, 1]n. Remind that the investment level for which S is maximized is denoted as the
social optimum. By analyzing if S is strictly concave and ∇(S) does not point outward at the boundary,
the next result can be proved.

Proposition 5.3. Under the random attack, the unique social optimal investment level of agent ν solves

c′(qsν) =
Dν

n
(5.8)

for each agent.

Proof. The social optimum qs is the argument of the global maximum of S. This value can be found by
solving the FOC and verifying that this solution indeed is the global maximum. For this, first note that
the derivative of S to qν is given by

dS

dqν
=

1

n
Dν − c′(qν).

Clearly the solution of (5.8) solves this FOC. Uniqueness and existence of qs follow again from lemma
A.1. To prove that the solution of 5.8 indeed is the global maximum, we next prove that S is strictly
concave in q and does not feature any boundary maximums. Note that

dS

dqν
({0,q−ν}) =

1

n
Dν ≥ 0 and

dS

dqν
({1,q−ν}) =

1

n
Dν − c′(1) ≤ 0,

from which it follows that ∇S does not point outward [0, 1]n at the boundary. This - in turn - implies that
there cannot be a boundary global maximum. Finally, note that

d2S

dq2
ν

= −c′′(qν) < 0 and
d2S

dqνdqµ
= 0,

which implies that the Hessian H(S) features negative entries on the diagonal while other entries are
zero. As this means that H(S) is negative definite, we conclude that S is strictly concave. By using
proposition 5.1 we indeed prove that S attains it’s global maximum at the unique solution of (5.8).

By comparing proposition 5.2 and proposition 5.3 one immediately sees that - when c is strictly con-
vex (and hence c′ is strictly increasing) - the Nash equilibrium features under-investments relative to
the social optimum for every value of p. Economic motivation for this result is intuitive. As an agent
can not control a possible external loss in a random attack, an increase in investments does not lead
to a reduced risk that his document is stolen through another agent. This forces an agent - in non-
cooperative setting - to ignore the external risk and to find the optimal trade-off between investment
costs and protection against a direct loss. Contrary, in the cooperative game an agent invests as well to
protect documents of others. This leads to the higher investments in security in a cooperative setting.
The following example shows this observation in a star network.

Example 5.1. Consider a star network on four nodes as showed in figure 27. Recognize thatD1 = 1+3p

and D2 = D3 = D4 = 1 + p+ 2p2. When we assume that the cost to adopt security is (1/2)q2
ν , it follows

that qN = 1/4, qs1 = 1/4 + 3p/4 and qs2 = qs3 = qs4 = 1/4 + p/4 + 2p2/4. These investment levels
are plotted in figure 28 as function of p. Observe that the Nash equilibrium indeed features under-
investments relative to the social optimum in figure 28. Also observe that the social optimal investment
level of agent 1, the central agent, is higher than investments of other agents. Of course this is in line
with expectation as the central agent obtains more documents in expectation.

5.4 Incentives of a malicious attacker

Now that we have established characteristic equations to find the Nash equilibrium and the social opti-
mum under the random attack, we shift the focus to the strategic attack. Remind that under this attack
the attacker observes the security investments made by the agents (the outcome of the security game)
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Figure 27 – The star network
on four nodes.

Figure 28 – Equilibrium investments qN under the random attack. In this
figure the network of figure 27 is adopted. Note that qN features under-
investments relative to social optimum qs = {qs0, qs−0, q

s
−0, q

s
−0}.

and consequently chooses an optimal probability distribution over all agents. Nevertheless, as we as-
sume that agent’s choose their investments anticipating the decision of the attacker, agents know the
strategy of the attacker as function of their investments. Consequently, to adequately analyze the be-
havior of agents, the strategy of the attacker is analyzed first in this report.

First some basic results like uniqueness of the attack vector are deduced for arbitrary networks. These
results are derived from Kuhn-Tucker conditions which are conditions to solve maximization problems
with both equality and inequality constraints. Next the strategy of the attacker is analyzed in vertex-
transitive networks. Remind that in these networks the expected number of documents stored at each
agent (Dν) is identical for every agent ν (and therefore shortened to D). This makes the attacker indif-
ferent if investments are identical among agents.

5.4.1 General results

Remind that the utility of the attacker are the expected number of documents obtained in an attack
minus the attack costs. The expected number of documents obtained in an attack is equivalent with
E(|x|) as the following derivation shows:

E[ # of documents obtained ]

=
∑
ν

Pr{agent ν is attacked}E[ # of documents obtained |agent ν is attacked ]

=
∑
ν

aν Pr{attack is successful}E[ # of documents obtained |agent ν is attacked successfully ]

=
∑
ν

aν(1− qν)Dν = E( |x| ).

In this derivation, the third equality follows because both aν and 1− qν are Bernoulli random variables.

The utility of the attacker is subsequently described with

Πa =
∑
ν

aν [1− qν ]Dν − ψ(aν). (5.9)

In this research we adopt the following assumption assumption on ψ.
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Assumption 2. (Attacking cost) The cost function ψ : [0, 1] → R+ is assumed to be a two times
continuously differentiable in [0, 1], strictly convex in (0, 1], strictly increasing in (0, 1] and to satisfy the
boundary conditions ψ(0) = 0, ψ′(0) = 0 and ψ′(1) ≥ 1.

Similar as the investment costs, the attacking costs are assumed to be strictly convex and strictly in-
creasing. This set-up presumes the attacker to incur more costs when he or she chooses a more
precise attack. Motivation follows because, by choosing a more precise attack, the attacker requires
more detailed knowledge about the network structure and characteristics of agents. Nevertheless, the
assumption also has a technical motivation as a Nash equilibrium does not always exists when the as-
sumption is violated. In appendix section C an example is showed where, in a network with two agents,
a pure strategy Nash equilibrium and even a mixed strategy Nash equilibrium does not exists when
ψ ≡ 0.

We continue to discuss the strategy of the attacker. Remind that this strategy (globally) maximizes (5.9)
subject to this strategy to remain a probability distribution (see (3.8) in the model description). Kuhn-
Tucker (KT) conditions can be used to solve these optimization problems as they provide first order
necessary conditions for optimization problems with both equality and inequality constraints. In this
problem however, because the objective function in the optimization problem (Πa) is strictly concave29

in a and each constraint is linear, the Kuhn-Tucker conditions are not only necessary conditions, they
also are sufficient for solving (3.8).

To apply Kuhn-Tucker first define

L(q, p) = Πa + λ[
∑
ν∈V

aν − 1] +
∑

ν∈V (A)

κνaν , (5.10)

where λ ∈ R, κν ∈ R+ for each ν and Πa as in (5.9). Consequently, the KT-conditions are

∀ν ∈ G(V ), (5.11)

1.
∂L

∂aν
= [1− qν ]Dν − ψ′(aν) + λ+ κν = 0,

2. κνaν = 0,

3. aν ≥ 0,

4.
∑
ν∈V

aν = 1.

Surely, the solution of these KT-conditions (3n+1 in total) depend on both q, p and the network structure.
By noting that either aν or κν is larger than zero for every ν, the following result is established.

Proposition 5.4. The solution a of the KT-conditions in (5.11) uniquely describes the strategy of the
attacker. When q and Dν are given and ψ satisfies assumption 2, for every ν ∈ V the strategy of the
attacker solves

aν = ψ′−1( max{0, [1− qν ]Dν + λ }). (5.12)

In (5.12), (ψ′)−1 : [0, ψ′(1)]→ [0, 1] is the inverse30 of ψ′ and λ ∈ R solves∑
ν

ψ′−1( max{0, [1− qν ]Dν + λ }) = 1. (5.13)

Proof. First remind that the KT-conditions are both sufficient and necessary for optimization as Πa is
strictly concave and the constraints linear. Next, equation (5.12) follows from the KT-conditions given in

29. This can be seen by noting that the Hessian of Πa only features −ψ′′(aν) on its diagonal. By using assumption 2, H(Πa) is
negative definite and consequently Πa strictly concave in a.
30. A function g : B → A is said to be the inverse of f : A→ B if for all a ∈ A, g(f(a)) = a.

5 THE SECURITY GAME UNDER A STRATEGIC ATTACK Page 42



(5.11). First observe that λ is bounded as for all ν, KT-condition 1. can be written to

λ = ψ′(aν)− (1− qν)Dν − κν
≤ max

ν
[ψ′(aν)− (1− qν)Dν − κν ] ≤ ψ′(1).

Next recognize that if aν > 0 then necessarily κν = 0 from the second KT-condition. From this it follows,
by rewriting 1., that for all ν with aν > 0:

aν = ψ′−1([1− qν ]Dν + λ), (5.14)

where (ψ′)−1 is the inverse of ψ′. By boundedness of λ, input of ψ′−1 in (5.14) is necessarily a subset
of the co-domain of ψ′. By combining this with the result that the inverse of a strictly increasing function
necessarily exists (see lemma A.4 on page 81), it follows that ψ′−1 is well-defined.

As ψ′−1(0) = 0 by assumption 2, equation (5.14) can be easily extended to all agents with aν = 0. This
leads to (5.12) in the proposition. Next, to prove that λ solves (5.13), simply observe that by summing
(5.12) over all agents, KT-condition 4. has to be satisfied.

The following example will shed some light on how to compute the attack vector by using proposition
5.4. Also some insights are obtained on the role of p and ψ on this attack vector.
Example 5.2. Continuing on example 5.1 where p = 0.5. In this situationD0 = 2.5 andD1 = D2 = D3 =

2. Also set ψ = a2 and assume the investment level is q = { 5
8 ,

1
2 ,

1
2 ,

1
2}. By noting that ψ′−1(y) = (1/2)y,

the value of λ can be found by solving

1

2
max{0, 2.5

3

8
+ λ }) +

3

2
max{0, 2

1

2
+ λ }) = 1.

A good approach to find λ is to first consider the case where both max operators are excessive. This
leads to the solution λ = −0.7334. As we later show that λ is unique, it is consequently unnecessary to
consider other cases. By substituting λ = −0.7334 in (5.12) it follows that

a0 = 0.2266 and a1 = a2 = a3 = 0.2578.

Note that the central agent in figure 27 is attacked with a lower probability under the strategic attack than
in the random attack. This follows of course because q0 > q−0, but is not trivial because also D0 > D1;
the middle agent obtains in expectation more documents.

When costs to make a more precise attack are reduced, for instance by setting ψ = 1
3a

3, it turns out
that the attacker prefers a more precise attack on the periphery agents:

a0 = 0.1402 and a1 = a2 = a3 = 0.2866.

This also turns out to be the case when p is increased to 0.8 (and ψ is reset to a2):

a0 = 0.1506 and a1 = a2 = a3 = 0.2831.

This result is no surprise because when p = 0.8, opposed to p = 0.5, the difference between D0 and D1

is reduced; making it more attractive to attack the periphery agents (under the current investment level).

Figure 29 gives a more in-depth view of the probability that agent 1 is attacked. Observe that - intuitively
correct - when q0 is high and q−0 is low, a0 is low (and vice versa). Also observe that the derivative of
a0 to q is constant (or does not exists). This shows to be characteristic for quadratic ψ. Lastly note that
when q−0 = 0, it is more optimal for agent 0 to invest 0.6 than to invest 0.8 as a0 remains 0 is both cases.
This optimization process made by every agent is considered in the security game in the next section.

Although proposition 5.4 provides a way to find the strategy of the attacker, it can be arduous to solve
(5.13) and we cannot give a closed-form solution. Yet, some properties of a can be found by using
proposition 5.4 though. For instance one can deduce that aν is non-increasing in qν and non-decreasing
in every element in q−ν . First however we show that the attack vector is unique for every q.
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Figure 29 – Probability a0 that agent 0 in figure 27 is attacked as function of q0 and q−0 ≡ q1 = q2 = q3.
In this figure p = 0.5 and the cost for the attacker is set to ψ = a2. Note that a0 is bounded below by
zero and bounded above by one.

Proposition 5.5. The attack vector is unique for every given security vector.

Proof. Uniqueness of aν - for every ν - follows from uniqueness of λ. This can be seen from (5.12) as
ψ′−1 and the max operator are both well-defined and continuous under assumption 2.

Remains to show that λ - implicitly defined in (5.13) - is unique for every choice of the security vector.
First observe that ψ′−1 can be ignored as it is strictly increasing and continuous in its argument. Next
by setting 0 ≤ yν ≡ (1 − qν)Dν ≤ n, uniqueness of λ in (5.13) follows from uniqueness of λ implicitly
defined in ∑

ν

max{0, yν + λ} = 1 (5.15)

where yν ∈ R+.

Assume next that for some security vector q∗ there is more than one solution λ of (5.15). Let λ1 and λ2

be two of these solutions. It follows that∑
ν

max{0, yν + λ1} −
∑
ν

max{0, yν + λ2} = 0.

Now let V1, V2 ⊂ V be two subsets for which, for all ν ∈ V1: yν + λ1 > 0 and, for all ν ∈ V2: yν + λ2 > 0.
W.lo.g. assume that λ1 < λ2 and note that due to this necessarily V1 ⊂ V2. Now by rewriting the
expression above: ∑

ν∈V1

yν −
∑
ν∈V2

yν = λ2|V2| − λ1|V1|.

Observe that the LHS of this expression is smaller than zero, while conversely the RHS is larger than
zero. As this leads to a contradiction our assumption that there are several solutions of (5.15)shows to
be false.

Although the attack vector is unique for every choice of q, continuity of a in q is hard to prove. Note
that the implicit function theorem (see lemma A.5) can not be used as (5.15) is not differentiable when
yν + λ = 0 for some ν. Though, later in this research in proposition 5.9, we show that a is continuous in
a vertex-transitive network where all agents - other than one agent - play the same strategy.
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Despite continuity of the attack vector remains - for now - an open question, one can show that the
attack vector may not be differentiable to q in some cases. Specifically, aν is not differentiable when
both aν = 0 and κν = 0 as in the KT-conditions in (5.11). In this situation, inspection of KT-condition 1.
reveals that λ = −[1 − qν ]Dν . When combining this observation with (5.12) one finds that aν is indeed
not differentiable.

Contrary to the cases where aν = 0, when aν is larger than zero then it is differentiable to qν . Additionally
it is differentiable to qµ when aµ > 0. The specific rate of change can be found from the KT-conditions
as showed in the next proposition.
Proposition 5.6. The derivative of aν > 0 to qν and the derivative of aν to qµ for which aµ > 0 are given
by

daν
dqν

=
−Dν

ψ′′(aν)
+

Dν

ψ′′(aν)2Φ
and

daν
dqµ

=
Dµ

ψ′′(aν)ψ′′(aµ)Φ
. (5.16)

In this expression

Φ =
∑

κ|aκ>0

1

ψ′′(aκ)
. (5.17)

Proof. The results follow again from the KT-conditions in (5.11). When aν > 0, and therefore κν = 0, by
differentiating 1. to qν :

daν
dqν

ψ′′(aν) = −Dν +
dλ

qν
. (5.18)

Similar, for all µ 6= ν for which aµ > 0:

daµ
dqν

ψ′′(aµ) =
dλ

dqν
. (5.19)

By combining the observation that ∑
µ∈V

daµ
dqν

=
∑

µ|aµ>0

daµ
dqν

= 0,

by differentiating KT-condition 4. to qν , with (5.18) and (5.19) and noting that division by ψ′′(aµ) > 0 is
allowed:

−Dν

ψ′′(aν)
+
dλ

dqν

∑
µ|aµ>0

1

ψ′′(aµ)
= 0.

When using Φ as in (5.17), it follows that

dλ

dqν
=

Dν

ψ′′(aν)Φ
.

By substituting this result in (5.18) and (5.19) the results in the proposition follow.

Recognize that the equations in (5.16) in fact are differential equations which can be used to set up
a system of differential equations from which a can be solved. Yet, the complexity of these differential
equations do not allow to easily find a solution. This limits the use of (5.16) to find the rate of change of a
when the current level of a is known. The following example applies the proposition to the star network.
Example 5.3. Continuing on example 5.1 and example 5.2. Recognize that ψ′′(a) = 2 when ψ(a) = a2

and remind that D0 = 2.5 and D1 = D2 = D3 = 2 when p = 0.5. In example 5.2 we computed that
a0 = 0.226 > 0 and a−0 = 0.2578 > 0. Consequently, by substituting values in (5.16) one finds for
instance that

da0

dq0
=
−2.5

2
+

2.5

4( 1
2 + · · ·+ 1

2 )
=
−2.5

2
+

2.5

8
= −15

16
and

da0

dq2
=

2

4( 1
2 + · · ·+ 1

2 )
=

1

4
.
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As exact results indicate that

a0 = [−15

16
q0 +

1

4
q1 +

1

4
q2 +

1

4
q3 +

7

8
]+/−,

where [·]+/− is max{0,min{1, ·}}, the result is verified31.

Note from the example above that the derivatives in (5.16) are independent of a when ψ is quadratic. In
this situation derivatives can be significantly simplified. By noting that there is some scalar α for which
ψ′′(a) = α, it follows by rewriting derivatives in (5.16) that

daν
dqν

=
1− n∗

αn∗
Dν and

daν
dqµ

=
1

αn∗
Dµ, (5.20)

where 1 ≤ n∗ ≤ n are the number of agents that have strict positive chance of being attacked. Note
that these expressions imply that aν is non-increasing in qν and aν is non-decreasing in every element
in q−ν (as n∗ ≥ 1). This observation is generally true as the following proposition shows.

Proposition 5.7. The probability that an agent is attacked is non-increasing in an agent’s own security
investments, while it is is non-decreasing in the security investments of other agents.

Proof. Specifically, we proved that aν({qν , q−ν}) is non-increasing in qν and non-decreasing in any
element in q−ν .

First suppose that aν > 0. By using (5.16), daν/dqν is smaller or equal than zero when

Dν

ψ′′(aν)
(−1 +

1

ψ′′(aν)Φ
) ≤ 0.

By rewriting this expression and noting that Dν/ψ
′′(aν) > 0 and hence can be removed, daν/dqν is

smaller than zero when

1

ψ′′(aν)
≤ Φ.

As aν > 0 this expression always hold. We conclude that - indeed - aν is non-increasing in qν . By using
a similar line of argument it follows that aν is non-decreasing in qµ (µ 6= ν) when aµ > 0.

When aν = 0 we have to consider two cases: κν = 0 and κν > 0. First, when κν = 0 the derivative of aν
to qµ does not exists by earlier analysis. When κν > 0, differentiating of KT-condition 2. reveals that

daν
dqµ

κν = −dκν
dqµ

aν . (5.21)

Surely when aν = 0 and κν > 0, daν/dqµ = 0 for all µ. This completes the proof of the proposition.

5.4.2 Attacker’s strategy in vertex-transitive networks

In vertex transitive networks the expected number of documents obtained by each agent is identical,
i.e. Dν ≡ D for every ν. Earlier results are significantly eased by this observation as diversity in the
argument of (5.12) only arise from diversity in q (and no longer from Dν). Note for instance that if all
security investments are identical in a VT-network, then a = 1/n and the attacker is indifferent32.The
next proposition shows some results which hold in VT-networks.

31. As we focus on the security game in vertex-transitive networks in subsequent sections, this example on the star is finished.
Nevertheless in appendix section D on page 84 simulation results are presented which conjecture that results in VT-networks
expand to asymmetric networks like the star.
32. Although a = 1/n, daν/qµ might not be zero and consequently a 6≡ 1/n as in the random attack.
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Proposition 5.8. If the network G is vertex-transitive and ψ satisfies assumption 2,
1. the attacker is indifferent under an automorphism of nodes and the corresponding investment

levels, that is for every φ ∈ Aut(G), aν(q1, ..., qn) = aφ(ν)(qφ(1), ..., qφ(n)),

2. if and only if qν > qµ or qν = qµ for some ν 6= µ ∈ V , then respectively aν < aµ or aν = aµ,

3. if and only if qν = qµ then daν
dqν

=
daµ
dqµ

.

Proof. Result 1. and 2. follow easily from (5.12) and (5.13) as λ is unique and ψ′−1 is strictly increasing.
Result 3. follows by combining (5.16) with 2. in the proposition.

The results in the proposition allow to compute a wide range of characteristics of a. For instance, by us-
ing result 1 . one can focus the analysis on one agent and consequently extend properties to all agents.
Also, despite the simplicity of 3., more results can be deduced from it. For instance, if all elements in
a−ν are identical it follows that33

daν
dqν

=
−1

n− 1

daµ
dqν

(5.22)

for some µ 6= ν.

Later in the security game we use (5.22) to show that a symmetric Nash equilibrium exists. To do this,
we additionally need that a is continuous. This is showed in the following proposition.
Proposition 5.9. In a vertex-transitive network every element in a is continuous at every q = {qν ,q−ν}
where q−ν is symmetric.

Proof. Continuing on the proof of proposition 5.5, every element in a is continuous at q when λ implicitly
defined in (5.15) is continuous at q. Now when q = {qν ,q−ν} where q−ν = q−ν is symmetric (i.e.
identical elements), the exact value of λ can be computed by considering three exclusive events: a)
yν + λ ≤ 0, b) y−ν + λ ≤ 0 and c) both yν + λ ≥ 0 and y−ν + λ ≥ 0. This leads to expressions for λ as
showed in figure 30. Clearly only concern regarding continuity of λ is at the transition lines. However at
the (upper) solid transition line: from above

λ =
1

n− 1
− y−ν =

1

n− 1
− (yν +

1

n− 1
) = −yν

and from below

λ =
1− yν − (n− 1)y−ν

n
=

1− yν − (n− 1)(yν + 1
n−1 )

n
= −yν .

This proofs that λ is continuous at the upper transition line. In a similar way we can show that λ is
continuous at the lower transition line.

5.5 Equilibrium investments in security

In this section the security game is analyzed when agents do not cooperate and the attack is strategic.
Different than under the random attack, under this attack agents can discourage a direct attack by in-
creasing investments. Intuitively, when dependencies between agents are low and therefore the chance
that an agent’s document is lost through another agent is small, the impact of a direct attack is large. In
this scenario an agent has incentives to invest more in security, forcing the attacker to attack someone
else. Contrary, when dependencies are large it might be less beneficial to increase investments. This
follows because the chance that a document is obtained by another agent is much larger; reducing the
stimulus to force the attacker to attack another agent. In this section we analyze this and other incentives
present in the security game.

33. By differentiating both sides of the constraining assumption
∑
ν aν = 1 to qν , it follows that daν

dqν
+

∑
µ6=ν

daµ
dqν

= 0. Conse-
quently by using 3. the result follows.
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Figure 30 – Expressions for λ as function of yν and y−ν . In the figure n is set equal to 5.

Specifically, in this section we focus on proving that a pure strategy Nash equilibrium exists and find-
ing the corresponding investment level. To make the analysis tractable, we assume that dependencies
among agents adopt a vertex-transitive structure. Note that this assumption removes all heterogene-
ity between agents34. Although this assumption quite limits the impact of the results, there is some
evidence that forces present in vertex-transitive networks also subsist to a wider scope of network
structures (see simulation results in appendix section D on page 84).

In this section first some technical results are given that allow to compute the best response of an agent
in vertex-transitive networks. We show that this best response is always interior of an agent’s strategy
space and show that the best response is never such that either aν = 0 or aν = 1. Next we show that
a symmetric pure strategy Nash equilibrium exists when certain conditions on the cost for the attacker
are satisfied. Moreover characteristic equations are given that allow to find the investment level in this
symmetric Nash equilibrium.

5.5.1 Properties of the best response

First remind that the utility of each agent is given by

Πν = 1−
∑
µ

aµ[1− qµ]Dν,µ − c(qν); (5.23)

a function which an agent would like to make as large as possible. As Πν is a function of both qν and q−ν ,
an agent adopts his best response ϕν(q−ν). This best response is an investment level which maximizes
(5.23), given q−ν .

Several properties of ϕν(q−ν) can be deduced. For instance, by the boundary presumptions on c in
assumption 1, ϕν(q−ν) is necessarily interior of [0, 1]. This is showed in the following proposition.
Proposition 5.10. When c satisfies assumption 1 and the network is vertex-transitive, the best response
of each agent is in (0, q∗) where q∗ ≤ 1 solves c(q∗) = 1.

Proof. First note that q∗ exists because c(0) = 0 and c(1) ≤ 1 by assumption 1. The proof is conse-
quently split in two parts. First we show that it is always optimal for an agent to slightly invest more than

34. In fact the security game is symmetric in vertex-transitive networks as the utility functions are permutation-invariance. For-
mally, following Dasgupta and Maskin (1986), a game Γ is symmetric if and only if for every automorphism φ between agents and
their strategic decisions, Πν((q1, . . . , qn)) = Πφ(ν)((qφ(1), . . . , qφ(n))).
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zero. Next we show that the utility of an agent who plays q∗ or more is not higher than his utility when he
or she plays zero. This implies that there must be a 0 < q < q∗ such that U({q, q−ν}) > U({0, q−ν}) ≥
U({q∗, q−ν}).

Note that the derivative of (5.23) to qν is

dΠν

dqν
= aν −

∑
µ

daµ
dqν

[1− qµ]Dν,µ − c′(qν). (5.24)

When agent ν does not invest in security, i.e. qν = 0, it is always optimal to (slightly) increase invest-
ments:

dΠν

dqν
({0, q−ν}) = aν −

∑
µ6=ν

daµ
dqν

[1− qµ]Dν,µ −
daν
dqν

> aν −
∑
µ6=ν

daµ
dqν
− daν
dqν

= aν −
∑
µ6=ν

daµ
dqν

= aν ≥ 0.

The first inequality is strict because when it is an equality then necessarily q = 0. In this situation every
agent adopts an identical strategy and a = 1/n > 0 by 2. in proposition 5.8 (note that the vertex-
transitivity assumption is used here). When a = 1/n this would in turn force the last inequality to be
strict. The third equality follows because ∑

µ

daµ
dqν

= 0

as the elements in a sum to 1.

Next we show that U({0, q−ν}) ≥ U({q∗, q−ν}). By substituting values

Π({0, q−ν}) = 1− aν −
∑
µ6=ν

aµ[1− qν ]Dν,µ ≥ 0

as elements in a sum to one and both 1− qµ ≤ 1 and Dν,µ ≤ 1. Also for all qν ≥ q∗:

Π({qν , q−ν}) = 1−
∑
µ

aµ[1− qν ]Dν,µ − c(qν)

≤ −
∑
µ

aµ[1− qν ]Dν,µ ≤ 0,

and the result follows.

The proposition above allows to conclude that an agent’s best response is not at the boundary of the
strategy space. This in turn implies that the best response necessarily solves the FOC of (5.23) given
q−ν . The FOC is showed in the following proposition.

Proposition 5.11. In a vertex-transitive network where c satisfies assumption 1 and where
q−ν ∈ [0, 1]n−1 is given, if qν = ϕν(q−ν) is an agent’s best response then qν solves

c′(qν) = aν −
∑
µ

daµ
dqν

[1− qµ]Dν,µ. (5.25)

Proof. By proposition 5.10, ϕν(q−ν) ∈ (0, 1). This necessarily means that ϕν(q−ν) solves the FOC of
Πν as showed in (5.25).
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The use of proposition 5.11 is quite small for the moment. First of all the proposition only provides a
necessary condition for optimality and therefore solutions of (5.25) can also be local maxima or minima.
Second, although there necessarily is one solution (because there is not a boundary maximum), (5.25)
can have more than one solution.

Note however that we can further expose the best response by analyzing the daµ/dqν term inside. For
this derivatives in (5.16) can be used. As the next proposition ensures that an agent’s best response is
always such that neither aν = 0 nor aν = 1, the use of these derivatives is allowed.

Proposition 5.12. When c satisfies assumption 1 and the network is vertex-transitive, an agent’s best
response is not such that aν = 0 or aν = 1.

Proof. Note that when ϕν(q−ν) is such that aν = 0 for some agent ν, the utility in (5.23) is reduced to

Πν({ϕν(q−ν),q−ν}) = 1−
∑
µ6=ν

aµ[1− qν ]Dν,µ − c(ϕν(q−ν)).

As ϕν(q−ν) necessarily maximizes Πν and - as a consequence - also the expression above, it follows
that ϕν(q−ν) = 0. This contradicts the result in proposition 5.10 in which we showed that ϕν(q−ν) 6= 0.

Similarly, when ϕν(q−ν) is such that aν = 1 then a−ν = 0. This in turn makes

Πν({ϕν(q−ν),q−ν}) = ϕν(q−ν)− c(ϕν(q−ν)).

Consequently the optimal ϕν(q−ν) is q∗ such that c′(q∗) = 1. Again this contradicts the result in propo-
sition 5.10.

5.5.2 The symmetric pure strategy Nash equilibrium

Although derivatives of a further exposes characteristics of (5.25), the equation is still difficult analyzed
due to the aν terms. A bright approach however is to use proposition 5.8 2. in which we showed that
aν = aµ when qν = qµ in a VT-network. By using this observation, we can prove that a symmetric Nash
equilibrium exists when the cost for the attacker satisfies certain conditions. This result is showed and
proved in the following proposition.

Proposition 5.13. In the security game assume that dependencies between agents adopt a vertex-
transitive structure. If the cost to invest in security satisfies assumption 1, the cost to attack an agent
satisfies assumption 2 and for every a the following condition hold:

B ≤ 2A2

D
+ inf{c′′(q)|q ∈ [0, 1]}A

3

D2
, (5.26)

where
A = ψ′′(aν) +

1

n− 1
ψ′′(

1− aν
n− 1

), (5.27)

and
B = ψ′′′(aν)− 1

(n− 1)2
ψ′′′(

1− aν
n− 1

), (5.28)

then there exists a symmetric pure strategy Nash equilibrium.

Proof. By applying the result of Debreu et al. - as stated in lemma A.2 on page 81 - a pure strategy
Nash equilibrium exists when Πν is quasi-concave in qν and continuous in q−ν . As it is troublesome to
show that Πν is quasi-concave in qν , in this proposition we prove that a symmetric pure strategy Nash
equilibrium exists. For this, assume that all agents other than agent ν are playing q∗, i.e. q−ν = q∗. First
note that Πν is continuous when q = {qν , q∗} because a is by proposition 5.9. Consequently, our main
focus in this proof lies on showing that Π({qν , q∗}) is quasi-concave in qν for every choice of q∗ ∈ [0, 1].
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First note that because every agent µ 6= ν plays q∗, from 3. in proposition 5.8:

daν
dqν

= −(n− 1)
daµ
dqν

. (5.29)

When we substitute this result in (5.24):

dΠν

dqν
= aν −

daν
dqν

(1− qν) +
daν
dqν

1

n− 1
(1− q∗)(D − 1)− c′(qν). (5.30)

Consequently the second derivative of Πν to qν can be found by differentiating (5.30). This procedure
leads to

d2Πν

dq2
ν

= 2
daν
dqν
− d2aν

dq2
ν

(1− qν) +
d2aν
dq2
ν

1

n− 1
(1− q∗)(D − 1)− c′′(qν). (5.31)

To establish that Πν is quasi-concave in qν , we continue by proving that (5.31) is non-positive. For this,
derivatives in (5.16) can be used. This is allowed because by proposition 5.12 an agent’s best response
is always such that aν > 0.

Now, as every agent other than agent ν hold the same strategy, equation (5.16) is reduced to

daν
dqν

= D[− 1

ψ′′(aν)
+

1

ψ′′(aν) + (n−1)ψ′′(aν)2

ψ′′( 1−aν
n−1 )

].

This in turn can be written as
daν
dqν

= −D[
1

ψ′′(aν) + 1
n−1ψ

′′( 1−aν
n−1 )

] (5.32)

and consequently as daν/dqν = −D/A, with A as in (5.27).

The second derivative of aν to qν can be found by differentiating −D/A to qν . It follows that
d2aν/dq

2
ν = DA′/A2 where

A′ =
daν
dqν

[ψ′′′(aν)− 1

(n− 1)2
ψ′′′(

1− aν
n− 1

)].

By substituting (5.32) and B as in (5.28):

d2aν
dq2
ν

= −D
2B

A3
. (5.33)

Now we have a full characterization of the derivatives of aν and (5.32) and (5.33) can be substituted in
(5.31). This leads to

d2Πν

dq2
ν

= −2
D

A
+
D2B

A3
(1− qν)− D2B

A3

1

n− 1
(1− q∗)(D − 1)− c′′(qν)

= −2
D

A
+
D2B

A3
[1− qν −

D − 1

n− 1
[1− q∗]]− c′′(qν).

Consequently Πν is quasi-concave in qν when for all qν ∈ [0, 1] and all q∗ ∈ [0, 1],

D2B

A3
(1− qν −

D − 1

n− 1
(1− q∗)) ≤ 2

D

A
+ c′′(qν).

By noting that (1− qν − D−1
n−1 (1− q∗)) ≤ 1, the inequality above is satisfied when

D2B

A3
≤ 2

D

A
+ c′′(qν)

is satisfied. Additinally, because both A ≥ 0 and D ≥ 1, Πν is quasi-concave if

B ≤ 2A2

D
+ c′′(qν)

A3

D2
,

As this must hold for all qν ∈ [0, 1], we establish (5.26) in the proposition.
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Although the proposition above makes sure that a symmetric Nash equilibrium exists, it does not say
anything about possible asymmetric equilibria35. The impact of an asymmetric equilibrium can be large
as properties which hold in a symmetric equilibrium may not extend to asymmetric equilibria. Making
things worse, the symmetric equilibrium might be unstable when there is an asymmetric equilibrium: a
small permutation in q can lead to a shift from the symmetric equilibrium to the asymmetric equilibrium.
When this is the case the impact of the symmetric equilibrium is small. Yet - in the sequel of this research
- the focus lies on the symmetric equilibrium of the security game. This is motivated because simulation
results in VT-networks conjecture that no asymmetric equilibria exist in a wide range of games36. More-
over, when ψ is quadratic we are able to prove that no asymmetric equilibrium exists (see proposition
5.14). Nevertheless one has to keep in mind the possibility of an asymmetric equilibrium in the sequel
of this report.

Another noticeable feature in proposition 5.13 is the baffling condition (5.26) on the cost for the attacker.
Beforehand it is hard to say which functions satisfy (5.26) other than quadratic cost functions. Figure 31
shows that (5.26) is satisfied when c = 5q2 and ψ = a4, whereas it is not satisfied when c = 2q2 and
ψ = (1/2)a4.

Figure 31 – The LHS and RHS of (5.26) for several combinations of cost functions. For a symmetric
Nash equilibrium to exists, we require that the LHS is larger than the RHS for all a ∈ [0, 1].

To make sure that (at least) a symmetric Nash equilibrium exists in the security game, condition (5.26)
is added to assumption 2. This leads to an extended version of the assumption.

Assumption 2+. (Attacking cost) In addition to assumption 2., presume ψ to satisfy (5.26) for each
a ∈ [0, 1].

A motivation for condition (5.26) can be found in (5.33): if B is ‘large’ (relative to A) also d2aν/dq
2
ν is.

When this is the case, a is changed quite drastically when an element in q is changed. As this means
that the attacker easily focuses his attack on other agents, agents may have incentives to incessantly
(slightly) increase investments to push the attacker to attack someone else (similar as in appendix
section C on page 83). In this situation no Nash equilibrium exists.

To halt possible incessantly increasing of investments, condition (5.26) can be used as it prevents that
B is large. It is no surprise that the second derivative of both c and ψ are included in this condition.

35. One might argue that a symmetric game - like the security game in this research - can not have a asymmetric equilibria as
all agents should behave identically. Literature indicates however that this is not the case. Two examples are given in Fey (2011).
36. These simulation results are based on iteratively determining the best response of each agent in a DISCRETE variant of the
security game. When the procedure converges a Nash equilibrium is found. A sketch of the algorithm is showed in algorithm 2 on
page 84.
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When the cost to invest is sufficiently convex (i.e. c′′ >> 0) then it is too costly for an agent to slightly
increase investments at some point. On the other side, when ψ′′ >> 0 it is too costly for the attacker
to choose d2aν/dq

2
ν to be very high. Note that this is confirmed in figure 31 as, in the first case when

ψ = (1/2)a4 and c = 2q2, both c′′′ and ψ′′ are smaller than in the second case.

The exact investment level in the symmetric Nash equilibrium can be found by considering (5.25) when
all agents hold the same security investment. This procedure leads to the following proposition.
Theorem 5.1. In the security game in a vertex-transitive network where ψ satisfies assumption 2+ and
c satisfies assumption 1, the symmetric pure strategy Nash equilibrium qN solves

c′(qN ) =
1

n
+

[n−D]D

nψ′′( 1
n )

[1− qN ]. (5.34)

This solution qN of (5.34) is unique and continuous in D (and thus in p). Moreover qN is initially increas-
ing in p, till the point where D = n/2 after which qN is decreasing in p.

Proof. First note that by proposition 5.13 a symmetric Nash equilibrium exists. Denote this symmetric
equilibrium as qN . As every agent holds the same security investment in a symmetric investment level,
a = 1/n by 3. in proposition 5.8. By substituting this observation in (5.16)

daν
dqν

= −D n− 1

nψ′′( 1
n )
. (5.35)

As each agent by definition plays his best response in a symmetric Nash equilibrium, equation (5.25)
has to be satisfied. By substituting values and rewriting

c′(qN ) = aν −
∑
µ

daµ
dqν

[1− qµ]Dν,µ

=
1

n
− [1− qN ]

∑
µ6=ν

daµ
dqν

Dν,µ −
daν
dqν

[1− qN ]

=
1

n
+

1− qN

n− 1

daν
dqν

∑
µ6=ν

Dν,µ −
daν
dqν

[1− qN ]

=
1

n
− [1− qN ]

D

nψ′′( 1
n )

∑
µ6=ν

Dν,µ +D
n− 1

nψ′′( 1
n )

[1− qN ]

=
1

n
− [1− qN ]

D

nψ′′( 1
n )

[[D − 1]− [n− 1]],

=
1

n
− [1− qN ]

[D − n]D

nψ′′( 1
n )

,

and the result follows. In this derivation the third equality follows from (5.29).

To prove uniqueness of the symmetric Nash equilibrium, note that the LHS of (5.34) is strictly increasing
in qN by strict convexity of c. By combining this with the observation that the RHS is decreasing in qN ,
there either is one or no solution. To prove that there indeed is one solution, observe that

LHS(0) = c′(0) = 0 ≤ 1

n
+

[D − n]n

nψ′′( 1
n )

= RHS(0) and LHS(1) = c′(1) ≥ 1 >
1

n
= RHS(1),

where LHS(x) and RHS(x) are respectively the LHS and RHS of (5.34) at x. Note that there must be
an intersection of the LHS and the RHS (see lemma A.1 on page 81) and hence (5.34) has a unique
solution.

To prove continuity of qN in p and to find the global maximum of qN , we subsequently compute the
derivative of qN to p by differentiating both sides of (5.34) to p:

dqN

dp
c′′(qN )ψ′′(

1

n
)n = (

dD

dp
n− 2

dD

dp
D)(1− qN )− dqN

dp
(nD −D2).
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By rewriting and combining terms it follows that

dqN

dp
[c′′(qN )ψ′′(

1

n
)n+ nD −D2] =

dD

dp
(n− 2D)(1− qN ).

Note that c′′(qN ) > 0 (remind that qN 6= 0 by proposition 5.12), ψ′′( 1
n ) > 0 and nD −D2 ≥ 0. From this

we conclude that dqN/dp exists for every p. This in turn implies that qN is continuous in p.

Finally note that dqN/dp = 0 for n− 2D = 0, qN = 1 and/or dD/dp = 0. These last two possibilities are
excluded however because respectively qN 6= 1 (again by proposition 5.12) and D is strictly increasing
in p (by proposition 4.9 on 29). Consequently by observe that dqN/dp(0) ≥ 0 and dqN/dp(1) ≤ 1, we
establish that qN attains a global maximum at D = n/2. When D < n/2 or D > n/2 one can easily
show that respectively dqN/dp > 0 and dqN/dp < 0.

Expression (5.34) uniquely determines the symmetric Nash equilibrium of the security game. Several
economic forces present in the security game - under the strategic attack - manifest themselves in the
expression. For instance, since it is pointless for an agent to discourage an attack when p is large, it is
no surprise that qN (as function of p) decreases at some point.

The increase in qN when p is smaller than D/2 is hard to predict a priori from the model. Reason behind
this increase can be found in a second order effect originating from the attacker. When p increases also
the potential gain of an attack increases (as more documents - in expectation - are stored at each agent).
This increase in potential gain causes the attacker to choose a more precise attack (the increase in costs
is compensated by the increased expected gain). As agents are aware of this strategic behavior of the
attacker, they in turn have incentives to invest more as they can more easily ward off an attack. These
forces lead to the initial increase of qN when p increases. Note however that when p continues to grow
it become less and less beneficial to discourage an attack (as it is very likely that an agent’s document
is stored at another agent). This in turn leads to the eventual decrease in qN .

Note however that the exact magnitude of several forces depend on p, the network structure and the cost
functions c and ψ. Later - in section 5.8 - the role of these parameters on qN is analyzed. In appendix
section E a metaphor is given which lightens all the forces present under the strategic attack. From this
metaphor it becomes more clear why qN first increases in p.

Remind that the results in this section - and the discussion above - are based on the symmetric Nash
equilibrium. As it is hard to formally prove that no asymmetric Nash equilibrium exists, we cannot extend
results to the complete security game. Yet, when ψ is quadratic we are able to prove that no asymmetric
Nash equilibrium exists. This results is showed in the next proposition.

Proposition 5.14. When ψ = αa2 with α > 0 and when c satisfies assumption 1, then the symmetric
Nash equilibrium of the security game is the unique Nash equilibrium.

Proof. The result is based on a result by Hefti (2011) stated in lemma A.3 on page 81. When all principal
minors in the negated Jacobian of (dΠ1

dq1
, . . . , dΠn

dqn
) are positive, then the Nash equilibrium in symmetric

games is unique.

To start with, note that when ψ is quadratic, the derivatives of a are showed in (5.20). In these derivatives
n∗ = n as no agent holds a strategy such that aν = 0 by proposition 5.12.

We continue by finding the second order derivatives of Πν when ψ = αa2. By differentiating (5.24) to qν ,

d2Πν

dq2
ν

= 2
daν
dqν
− c′′(qν)

=
2− 2n

αn
D − c′′(qν),
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where the first equality follows because second order derivatives of aν are zero by (5.20). Next, by
differentiating (5.24) to qµ:

d2Πν

dqνdqµ
=
daν
dqµ

+
daµ
dqν

Dν,µ

=
D

αn
(1 +Dν,µ).

Consequently the negated Jacobian becomes

−J =



2n−2
αn D + c′′(q1) − D

αn (1 +D1,2) · · · − D
αn (1 +D1,n)

− D
αn (1 +D2,1) 2n−2

αn D + c′′(q2) · · · − D
αn (1 +D2,n)

...
...

. . .
...

− D
αn (1 +Dn,1) − D

αn (1 +Dn,2) · · · 2n−2
cn D + c′′(qn).


Note that ∑

j 6=i

| − Ji,j | =
∑
j 6=i

D

αn
(1 +Di,j)

=
D(n− 1)

αn
+
D(D − 1)

αn

<
D(n− 1)

αn
+
D(n− 1)

αn

= D
2n− 1

αn
= Ji,i,

From which it follows that −J is diagonally dominant. As −J additionally features positive entries on its
diagonal, we conclude that −J is positive definite and all principal minors are positive. Now that Hefti’s
condition is satisfied we are able to conclude that there is a unique pure strategy Nash equilibrium.

5.6 Optimal trade-off between security and costs

Perfect security is a delusion. Even if it was technically realizable, it would not be desirable as costs may
outweigh security. This trade-off between security and costs is analyzed in this section.

We assume that an optimal trade-off between security and costs is social and such that agents cooper-
ate to maximize their combined utility. Environments in which agents cooperate are quite common and
can include an internal (company/family) network or a network in which an authority is responsible for
security. In these examples an agent does not only invest to protect his own information (or document)
but also invest to protect information of others. Specifically we assume that agents invest such that their
combined utility, given by

S =
∑
ν∈V

Πν

= n−
∑
ν

aν [1− qν ]Dν − c(qν), (5.36)

is (globally) maximized in [0, 1]×· · ·× [0, 1] = [0, 1]n. Remind that the investment level qs for which S(qs)

is maximized is denoted as the social optimum. Although existence of qs follows easily by continuity of
S and compactness of [0, 1]n, in this section focus lies on finding the exact value of qs and proving that
this social optimum is unique.

Specifically, first we show that no element in qs is either 0 or 1. Informally this means that the social
optimum is never such that an agent either invest maximally or invest nothing. This in turn implies that
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the social optimum solves the first order condition for optimality (FOC), which makes it more tractable to
find the social optimum. Next we show that there does not exists an asymmetric investment level which
solves this FOC. Consequently, with this observation in mind, we find a symmetric social optimum and
prove that this (symmetric) optimum is unique.

To start with, the next proposition makes sure that qs solves the FOC.
Proposition 5.15. In a vertex-transitive network where c satisfies assumption 1, the social optimum qs

solves for each agent ν

c′(qsν) = aνD −D
∑
µ

daµ
dqν

[1− qsµ]. (5.37)

Proof. First we prove that no boundary maxima exist of S by showing that ∇(S) does not point outward
at the boundary of [0, 1]n. More specific, we show that ∇(S({0,q−ν)) > 0 and ∇(S({1,q−ν)) < 1

independently of q−ν . This result would indicate that the maximum (or maxima) of S necessarily solve
the FOC of (5.36). This FOC is easily found by differentiating (5.36) and finding it’s roots. This procedure
leads to (5.37). In this derivation, remind that in a vertex-transitive network Dν ≡ D for all ν.

To show that no boundary maxima exist, observe that when 0 ∈ q:

dS

dqν
({0,q−ν}) = aνD −

daν
dqν

D −D
∑
µ6=ν

daµ
dqν

[1− qµ]− c′(0)

≥ aνD −
daν
dqν

D −D
∑
µ6=ν

daµ
dqν

= aνD −D
∑
µ

daµ
dqν

= aνD ≥ 0.

Alternatively when 1 ∈ q:

dS

dqν
({1,q−ν}) = aνD −

∑
µ6=ν

daµ
dqν

[1− qµ]D − c′(1)

≤ −
∑
µ6=ν

daµ
dqν

[1− qµ]D ≤ 0,

where the first inequality follows because aνD − c′(1) ≤ 0. This inequality follows as c′(1) ≥ 1 by
assumption 1 and aν ≤ 1/n because qν = 1 is larger (or equal) than every element in q−ν and 2. in
proposition 5.8 on page 47.

Although proposition 5.15 provides some grasp on the social optimum, the terms relating to the strategy
of the attacker (a) make the solution (or solutions) of (5.37) hard to find. Nevertheless one can prove that
the social optimum is not asymmetric by showing that (5.37) cannot be satisfied when qs is asymmetric.
The following proposition formally proofs this.
Proposition 5.16. In the security game in a vertex-transitive network, under assumption 1 and assump-
tion 2, there does not exists an asymmetric social optimum.

Proof. Let qs be an investment level which maximizes (5.36). Without loss of generality let q1 = maxqs

and q2 = minqs and assume that q1 > q2. Agree subsequently that c′(q1) > c′(q2) by strict convexity of
c and that, by using 2. in proposition 5.8, a2 > a1. Next, as qs solves (5.37) by proposition 5.15:

c′(q1) = a1D −D
da1

dq1
(1− q1)−D

∑
ν 6=1

daν
dq1

(1− qν)

= a1D +D
∑
ν 6=1

daν
dq1

(1− q1)−D
∑
ν 6=1

daν
dq1

(1− qν) (5.38)
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and similarly

c′(q2) = a2D −D
da2

dq2
(1− q2)−D

∑
ν 6=2

daν
dq2

(1− qnu)

= a2D +D
∑
ν 6=2

daν
dq2

(1− q2)−D
∑
ν 6=2

daν
dq2

(1− qν). (5.39)

Next we show that the RHS of (5.39) is larger than the RHS of (5.38). This would contradict the obser-
vation that c′(q1) > c′(q2). Consequently q1 ≯ q2 and hence minqs = maxqs.

To prove that the RHS of (5.39) is larger than the RHS of (5.38), first note that a1D < a2D. Second,
observe that as 0 ≤ 1− q1 < 1− qν and daν/dq1 ≥ 0 for all ν 6= 1:

D
∑
ν 6=1

daν
dq1

(1− q1)−D
∑
ν 6=1

daν
dq1

(1− qν) < 0.

By a similar line of argument

D
∑
ν 6=2

daν
dq2

(1− q2)−D
∑
ν 6=2

daν
dq2

(1− qν) > 0.

The proposition above indicates that it is never socially optimal for an agent to invest more or less than
others. Although this result is not completely unexpected in a vertex-transitive network where all agents
are homogeneous, the result is not intuitive. For instance Bier et al. (2007) and Johnson et al. (2012)
suggest that it might be optimal to leave some agents unprotected; making them sacrificing lambs.
Beforehand one could argue that also in our setting this strategy can be optimal when p is low. This
claim proves to be false however because of the increasing and convex costs for the attacker. Due to
this it is not optimal for the attacker to focus the attack - with high probability - on the sacrificed lamb.

As no asymmetric social optimum exists, this section continues by exploring possible symmetric social
optima. The next result shows that such symmetric social optimum exists and proves that the corre-
sponding investment level is unique.
Theorem 5.2. In a vertex-transitive network where c satisfies assumption 1 and ψ satisfies assumption
2, the social optimum qs solves

c(qs) =
D

n
. (5.40)

The solution qs is the unique social optimum. Moreover qs is continuous and increasing in p.

Proof. Suppose qs is a symmetric social optimal investment level. Note that qs necessarily solves the
FOC in (5.37). Consequently, by substituting values, (5.40) is easily established:

c′(qsν) =
D

n
−D[1− qs]

∑
µ

daµ
dqν

=
D

n
.

The second equation follows because the elements in a sum to one. Uniqueness of qs follows easily by
recognizing that the conditions in lemma A.1 on page 81 are satisfied.

To prove that S attains a maximum at qs opposed to a minimum, remind that∇S does not point outward
at the boundary. When we combine this observation with uniqueness of the solution of the FOC, we are
forced to conclude that S attains a maximum. That is, if S would attain a minimum at qs then either ∇S
points outward at the boundary or there are multiple solutions of the FOC.

Continuity in p follows easily by the implicit function theorem. Finally, as D is increasing in p by proposi-
tion 4.9 on page 29 also qs is.
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The theorem above gives a very strong result. Independently of characteristics of the attacker, there
is a unique social optimum which necessarily solves (5.40). Also note the resemblance with the result
in proposition 5.3 on page 40 for the random attack. Apparently the social optimum under the random
attack and under the strategic attack are equivalent.

5.7 Comparing the cooperative and the non-cooperative security game

Earlier results allow to compare security investments in a cooperative and a non-cooperative envi-
ronment. In this section we focus on this comparison. We intent to determine if under-investments or
over-investments prevail in equilibrium (non-cooperative game) relative to social optimum (cooperative
game). Also benchmarking results under the random attack are included in the analysis. Table 3 gives
a summary of characteristic equations which uniquely determine security investments.

Case Necessary assumptions Security investment solves

Random attack,
Nash equilibrium
in proposition 5.2

Assumption 1 qNν = c′−1( 1
n)

Random attack,
social optimum
in proposition 5.3

Assumption 1 qsν = c′−1(Dν

n )

Strategic attack,
Nash equilibrium,
Symmetric investments
in theorem 5.1

Assumption 1, assumption 2+

and network is vertex-transitive
qN = c′−1( 1

n +
[n−D]D

nψ′′( 1
n )
[1− qN ])

Strategic attack,
social optimum
in theorem 5.2

Assumption 1, assumption 2
and network is vertex-transitive.

qs = c′−1(Dn )

Table 3 – Summary of characteristic equations and necessary assumptions.

We propose the following definition to adequately compare investment levels.
Definition 5. In the security game in a vertex transitive network where c satisfies assumption 1 and ψ
satisfies assumption 2+. Define qNr as the Nash equilibrium under the random attack. Similarly let qNs be
the symmetric Nash equilibrium under the strategic attack. Also set qs as the social optimum investment
level37.
The next proposition gives a complete classification of investment levels as introduced in definition 5.
Theorem 5.3. The security investments outlined in definition 5 satisfy:

1. for all p ∈ [0, 1]

(a) qNr ≤ qs,
(b) qNr ≤ qNs ,

2. there exists a unique p∗ such that
(a) if p = p∗ then qNs = qs,
(b) if p < p∗ then qNs > qs,

37. Note that neither qNr or qNs is a vector and consequently notation is slightly abused when saying that qNr or qNs is a Nash
investment level, which has to be a vector. The notation is allowed here however because the Nash equilibrium is symmetric.
Similarly, this notation is also applied to qs as opposed to the formally correct qs. Lastly note that the notation qsr and qss are
unnecessary as the social optimum investment levels are equivalent under the random and the strategic attack
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(c) if p > p∗ then qNs < qs.
The value of p∗ is the unique solution inside [0, 1] of

ψ′′(
1

n
)
D − 1

D
= [n−D][1− c′−1(

D

n
)]. (5.41)

Proof. The results under 1. follow directly by comparing characteristic equations in table 3 and using
that c and ψ are strictly convex and 1 ≤ D ≤ n. The results under 2. require more explanation. However
when p = 0:

c′(qs) =
D

n
=

1

n
<

1

n
+

n− 1

nψ′′( 1
n )

(1− qN ) = c′(qNs ),

from which we conclude that qNs > qs. Differently when p = 1, then D = n and therefore

c′(qs) =
D

n
= 1 >

1

n
= c′(qNs ),

in turn proving that qNs < qs. By continuity of both qs and qNs in p it follows that there necessarily exists
an intersection of qNs and qs. To prove that this intersection is unique, note that in the intersection p∗ is
such that

D

n
=

1

n
+

[n−D]D

nψ′′( 1
n )

[1− c′−1(
D

n
)].

This expression can subsequently be written as (5.41). Note that the LHS of (5.41) is strictly increasing
in p, while - on the other side - the RHS is strictly decreasing in p. By applying lemma A.1 we conclude
that p∗ is unique.

Theorem 5.3 can be seen as the main result in our research as it allows to compare several situations38.
Most striking observation are the over-investments in Nash equilibrium relative to social optimum when
p is low (see 2.(b)). As discussed earlier, when p is low, investments in security are strategic comple-
mentaries; if one agent invests others will follow (to discourage an attack). Although this may lead to a
more social optimal situation in some situations (e.g. following education), in this situation agents invest
too much, leading to a less social optimal situation (e.g. an arms race).

The expression in (5.41) characterizes the point where over-investments turn into under-investments.
The solution p∗ is denoted as the transition point of the security game in this research. Note that this
transition point is a function of the number of agents n, the expected number of documents obtained by
each agent D (which in turn depends on p and the network structure) and the cost functions for both
the agents and the attacker. In the next section the role of each parameter is analyzed rigorously. First
however the following example illustrates the statements in theorem 5.3.
Example 5.4. Suppose an information network is complete and holds 5 agents who mutually share their
documents. When agents incur a cost of c = (1/2)q2 to hold investment level q and when the attacker
incurs a cost of ψ = (1/2)a2

ν for attacking agent ν with probability aν , figure 32 shows certain investment
levels.

Observe that all statements in theorem 5.3 are illustrated in figure 32. Clearly the presence of a strategic
attacker makes agents to invest more in security. Although this makes the network more secure, when
p is low the network is too secure and benefits of risk-reduction do not compensate the increased costs.

Several things strike from the figure which are not mentioned in theorem 5.3 and in earlier results. First
of all, when p = 0 the social optimum is the same as the equilibrium investments under the random

38. Prudence is called when applying theorem 5.3 to real world cases. As the utility of both agents and the attacker are inde-
pendent of characteristics of the document, p or the network, investment levels can only be compared when the SAME document
is considered. For instance one can cannot (directly) conclude from theorem 5.3 that PIN-codes are better secured than postal
codes as p is lower in the first case.
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Figure 32 – Security investments in K5 where ψ = a2/2 and c = q2/2. As equilibrium investments qNs
under the strategic attack are above equilibrium investments qNr under the random attack, a strategic
attacker forces agents to invest more in security. Agents may even invest too much in security. Specif-
ically, if p < p∗ then qNs features over-investments relative to the social optimum qs. If p > p∗ then qNs
features under-investments relative to qs.

attack. This of course follows mathematically but also economically as there is no external effect for an
agent when p = 0. Consequently it is socially optimal to only protect one’s own document against a
direct attack; a similar incentive as in the random attack. Second observe that when p = 1, equilibrium
investments under the random attack and the strategic attack are identical. This observation is motivated
because when p = 1 an agent shares his document with everybody in the network. This in turn makes
it pointless to discourage an attack, which in turn makes incentives under the strategic and the random
attack equivalent.

Lastly note that also the statements in theorem 5.1 are visible in the figure. For instance qNs initially
increases in p and consequently decreases in p. Also remind that qNs attains its global maximum when
D = n/2 = 2.5. One can show that p ≈ 0.22 in this case. Additionally, by working out (5.41) one can
show that qNs and qs intersect when D ≈ 3.15. The value of p is approximately 0.3 in this case.

5.8 Dependency of investments on the network structure, cost functions and the number of
agents

In this section we analyze the role of certain parameters on investments in security. The analysis com-
bines earlier results in the security game (as summarized in table 3) but also includes results derived
in chapter 4. First we analyze the role of the network structure and prove for instance that the transition
point p∗ in a circulant network always lies between p∗ in a ring and p∗ in a complete network. Next we
analyze the role of certain costs functions on investment levels. Generally, when costs (both for agents
and the attacker) increases, investments will decrease. Nevertheless, different than when the costs for
the attacker increases, when the costs for agents increase the transition point will increase. Finally we
analyze the role of the number of agents n on investments. We show for instance that the social optimum
investment level converges to 0 in a ring and to c′−1(1) is a complete network.

5.8.1 Structure of the network

Investment levels highly depend on D; the expected number of documents obtained by each agent.
In chapter 4 we derived several properties of D and provided a method to determine D exactly for a
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complete and a ring network. When we combine these exact results with characteristic equations in
table 3, investment levels can be derived for a ring and for a complete network. For instance when there
are 6 agents in the security game, investment levels are as in figure 33.

Figure 33 – Security investments in a complete network on 6 nodes K6 and in a ring network on 6 nodes
R6. Note that over-investments in equilibrium qNs relative to social optimum qs prevail for a much wider
space of p in a ring network than in a complete network. In the figure c = (1/2)q2 and ψ = (1/2)a2.

Observe that earlier results derived on investment levels manifest themselves in figure 33. While over-
investments prevail for a low value of p, for larger values of p under-investments prevail in equilibrium.
Additionally observe that when p is low, equilibrium investments under the strategic attack are increasing
in p. Earlier we motivated that this behavior originates because the attacker can do more damage when
p is increasing.

When we compare investment levels in a complete and a ring network, we see that over-investments
prevail for a much wider space of p in the ring network. This is no surprise as dependencies between
agents are much lower in a ring network opposed to a complete network. When dependencies are low,
there is more competition between agents as it is more beneficial to discourage an attack.

Also observe from figure 33 that equilibrium investments in a complete network can be larger than
equilibrium investments in a ring network (solid black line is larger than solid red line when p is low). This
may come as a surprise because one can argue that because dependencies are larger in a complete
network, investments will be lower. Note however that because a strategic attacker can do more damage
in a complete network, it is more beneficial for the attacker to choose a more precise attack vector.
Consequently, as agents anticipate a more precise attack, investments will increase39.

More generally it holds that in any circulant network with structure S ⊃ {1} (see definition 3 on page 31)
there exists a value p where agents invest more than they would in any other circulant network with a
similar number of agents and structure S∗ ⊃ {1}. This is showed, among two other results, in the next
proposition.
Proposition 5.17. Define Cn as the set of all (excluding isomorphisms) circulant networks on n nodes
with structure S ⊃ {1}. For some G ∈ Cn:

1. there exists an interval in p for which qNs in G is strictly larger than qNs in H for every H ∈ Cn \ G,

2. for H ∈ Cn \ G, if and only if H ⊂ G then qs in G is strictly larger than qs in H.

3. for H ∈ Cn \ G, if and only if H ⊂ G then the transition point p∗ in G is strictly smaller then the
transition point p∗ in H.

39. Note that this is a similar argument which was used to motivate the initial increase of equilibrium investments qNs in p.
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Proof. To prove result 1. let p be such that DG = n/2. By theorem 5.1 it follows that qNs is globally
maximized for this value of p. Next coordinates of this maximum can be found by substituting D = n/2

in (5.35) on page 53. It follows that these coordinates are {p, β} where β solves

c′(β) =
1

n
+

n

4ψ′′( 1
n )

(1− β). (5.42)

Note that β is independent of network structure40.

Now suppose that there is some network H ∈ C \G for which equilibrium investments are a) larger or b)
equal than in G when p = p. The case a) is excluded because the global maximum of equilibrium invest-
ment in H is also β. Additionally b) is excluded because it is not possible that equilibrium investments in
H are globally maximized at p. This follows because H is either a supergraph or a subgraph of G, which
implies that D is respectively more or less than n/2 by proposition 4.9 on page 29. Finally the existence
of p can be extended to the existence of an interval (p− ε1, p+ ε2) by continuity of qNs .

Result 2. follows easily by combining proposition 4.9 with the characteristic equation for qs. As D is
larger in G than in H, the result follows by convexity of c.

Finally 3. follows from inspection of (5.41). Remind that the unique solution of this equation is the
transition point p∗. Note that the LHS of this expression is increasing in D, while the RHS is decreasing
in D. Consequently, when D is higher in some network then necessarily the LHS and the RHS intersect
each other for a smaller value of p.

The first result in the proposition confirms earlier observations in the complete and the full network. Fig-
ure 33 indeed shows that there is some interval where equilibrium investment in the complete network
are higher than in a ring network (and vice versa). The result indicates that this holds more generally for
circulant networks (which are a supergraph of a ring). Hereby the result contradicts the initiative hypoth-
esis that there always exists a network in which equilibrium investments are always (for every p) higher
than in some other network. Apparently investments can not be bounded by investments in some other
network41.

Figure 34 – Expected number of documents E(|x|) stolen in a complete network on 6 nodes K6 and
in a ring network on 6 nodes R6 under different investment levels. Note that E(|x|) is always lower in a
ring than in a complete network in equilibrium qNs . Nevertheless E(|x|) can be higher in a ring than in a
complete network in social optimum qs.

40. One can see this for instance in figure 33. Note that the maxima of the solid lines are equal. By solving (5.42) one can show
that β = 2/3.
41. Yet one can show that investments are bounded above by β and bounded below by the minimumof 1) investments in a ring
and 2) investments in a complete network.
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Mind however that result 1. does not imply that there always exists an interval for which a more dense
network is safer42 than a less dense network. One can see this in figure 34: there does not exists an
interval in which the complete network is safer than the ring network in equilibrium (solid black line
upper-bounds the solid red line).

Nevertheless figure 34 also indicates that the expected damage in a complete network can be lower
than in a ring network when agents cooperate (dashed red line upper-bounds black dashed line for high
p). The existence of such interval is hard to prove though and therefore we do not further explore this
property.

Results 2. and 3. in proposition 5.17 may come ‘unannounced’ but are not difficult motivated. Result 2.
implies that the social optimum is always lower than the social optimum in a supergraph. In other words,
if dependencies between agents are stronger then a higher social optimum is required. This implies for
instance that the social optimum of a circulant network (with structure S ⊂ {1}) always lies between the
social optimum in the complete and in the ring network.

Result 3. in proposition 5.17 shows that over-investments prevail for a wider space of p when depen-
dencies are lower. This is in line with the idea that agents in particular compete for security when
dependencies are low. Specifically result 3. implies that the transition point of a circulant network (with
structure S ⊂ {1}) always lies between the transition point in a ring and the transition point in a complete
network.

Summarizing the analysis above. For two circulant networks C1 and C2 which are supergraph of a ring
network, if DC1 > DC2 then,
• over-investments relative to social optimum prevail for a smaller space of p in C1 opposed to C2.
• Nevertheless, there exists an interval in which investments in C1 are larger than in C2.
• Yet, this does not imply that there always exists an interval in which C1 is more secure than C2.

5.8.2 Costs for agents

Also the cost functions play a role on investment in security. In this section we analyze the role of c, the
cost agents incur for adopting security. In the next section we analyze the role of ψ, the cost the attacker
incurs.

Intuitively, when costs to adopt security are higher, agents will invest less in security. This indeed shows
to be the case in the security game.
Proposition 5.18. When costs to invest are lower, investments in equilibrium and in the social optimum
are higher.

Proof. We say that costs to invest are lower when c′′(a) is lower for every a. When using this defini-
tion, c′−1 increases faster when costs are lower. In turn one can easily observe from the characteristic
equations in table 3 that all investment levels will consequently decrease.

Figure 35 confirms the proposition above in a complete network where costs to invest are respectively
(1/2)q2, q2 and 2q2. Note that the solid black line upper-bounds the solid red line, which in turn upper-
bounds the solid blue line. Investments indeed decrease when costs increase.

Another striking observation can be made from figure 35. When costs increase, the transition point
seems to shift to the right (i.e. over-investments prevail for a wider range of p). Although this observation
is easily confirmed by inspection of (5.41), the result does not come intuitively though. When costs
are higher one would expect that over-investments prevail for a smaller space as it is less beneficial
to invest. Yet the result follows because not only equilibrium investments qNs are decreasing when cost
increase, also the social optimum qs is decreasing. As the relative decrease of qs is larger than the
decrease of qNs for large values of p (observe this from figure 35), the intersection p∗ will shift to the
right.

42. In safer network the expected number of stolen documents, formally: E(|x|) = (1− q)D, is lower.
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Figure 35 – Investments in equilibrium qNs and social optimum qs under different cost functions for agents
in a complete network on 5 nodes. Observe that while investments decrease in c′′, the transition point
(intersection of solid and dashed lines) increases in c′′. In the figure ψ = 1

2a
2.

Summarizing the analysis above:
• When costs to invest in security increase, investment levels decrease.
• Nevertheless, when costs increase, agents invest too much in equilibrium relative to the social

optimum for a wider space of p.

5.8.3 Costs for the attacker

Also the costs for the attacker ψ influences behavior of agents. For instance when these costs are lower,
the attacker has more resources to perform a more precise attack. As agents in turn anticipate a more
precise attack, equilibrium investments under the strategic attack will increase. This result is formally
presented in the next proposition.
Proposition 5.19. When costs to attack are lower, equilibrium investments under the strategic attack
are higher.

Proof. Denote q1 as the equilibrium investments when the cost to attack is ψ1 and similarly q2 as the
equilibrium investments when the cost to attack is ψ2. W.l.o.g. assume ψ′′1 > ψ′′2 . Now suppose that
q1 ≥ q2 for some p. We will show that this assumption leads to a contradiction.

By theorem 5.1 on page 53 both q1 and q2 satisfy (5.34). Consequently by convexity of c is must hold
that

1

n
+

(D − n)D

nψ′′2 ( 1
n )

(1− q2) = c′(q2) ≤ c′(q1) =
1

n
+

(D − n)D

nψ′′1 ( 1
n )

(1− q1).

By deleting identical terms it must hold that

1

ψ′′2 ( 1
n )

(1− q1 + x) ≤ 1

ψ′′1 ( 1
n )

(1− q1),

where x ≥ 0 is such that q2 = q1 − x. By rewriting it follows that it must hold that

ψ′′1 (
1

n
)(1− q1 + x) ≤ ψ′′2 (

1

n
)(1− q1),

and finally by rewriting once more

ψ′′1 (
1

n
)− ψ′′2 (

1

n
) ≤ [ψ′′1 (

1

n
)− ψ′′2 (

1

n
)]q1 − ψ′′1 (

1

n
)x.

The expression above can only hold when q1 = 1 (remind that q1 ∈ [0, 1]) and x = 0. Nevertheless by
proposition 5.10 on page 48, q1 can not be 1. This completes the proof (by contradiction).
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The result above is confirmed in figure 36. Note that equilibrium investments under the strategic attack
indeed increase when costs to attack decrease. Additionally observe that the social optimum and the
equilibrium investments under the random attack are unchanged. This follows because characteristic
equations in these cases do not depend on ψ (see table 3). Also note that the black, red and blue lines
attain there maximum at the same value of p. Surely, this necessarily holds as qNs attains its maximum
at a value p∗ where D = n/2. These parameters are unchanged in this situation.

Figure 36 – Investments in equilibrium qNs and social optimum qs in a complete network on 5 nodes
under different costs functions for the attacker. Observe that qNs increases when ψ decreases. Addition-
ally, the transition point (intersection of solid lines and dashed line) increases when ψ decreases. In the
figure c = (1/2)q2.

Finally, also observe from figure 36 that over-investments prevail for a wider space of p when costs for
the attacker decrease (the transition point p∗ moves to the right). This follows as qNs is increasing while
the social optimum is unchanged when costs for the attacker decrease.

Summarizing, in this section we showed:

• when costs for the attacker increase, equilibrium investments under the strategic attack decrease
while other investment levels remain unchanged.

• Additionally, when costs to attack increase, over-investments prevail for a smaller space of p.

5.8.4 Number of agents

Forces present in the security game can be reduced or enlarged when more agents are added to the
network. One way, when there are more agents, the chance that documents are lost through other
agents is generally increased. This leads to reduced incentives to invest in security. The other way, as it
is usually more beneficial for the attacker to perform a more precise attack when there are more agents,
competition increases and hence incentives to invest may also increase.

The exact change of incentive when more agents play the security game is difficult analyzed. Not only
n in the characteristic equations in table 3 and equation (5.41) is changed, also D - as function of n -
is changed. Consequently, to analyze the effect of a change in the number of agents, also knowledge
about the evolution of D, D/n and D(n −D) (as function of n) is required. Although we derived some
exact results for the complete and the ring network in section 4.3.3 on page 32, the complexity forced
us to base the analysis in other (circulant) network on simulation results. We therefore focus on the
complete and the ring network in this section and leave the analysis for other networks as an open
problem.

For a ring and a complete network we are capable of analyzing the (changed) incentives when agents
are added to the network (while the structure remains the same). For the ring network this is showed in
figure 37. Observe from the figure that the social optimum is decreasing in the number of agents. This
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observation, which may come as a surprise as D is strictly increasing in n, follows from proposition 4.15
on page 33. As D/n is converging to 0 when n goes to infinity (the network becomes asymptotically
large), also qs is converging to 0 when n goes to infinity. Additionally observe from the figure that the
transition point p∗ moves to the right; i.e. over-investments prevail for a wider interval of p. As more
agents are competing for security when n increases, this result comes naturally43.

Figure 37 – Social optimum qs and equilibrium qNs investments in ring networks with 5, 6 and 7 agents.
Recognize that while qs decreases in n, qNs might as well increase in n. Additionally note that the tran-
sition point where over-investments of qNs relative to qs pass on to under-investments is also increasing
in n. In the figure c = (1/2)q2 and ψ = (1/2)a2.

Figure 38 features investments in a complete network for n = 5, n = 6 and n = 7. Observe that, opposed
to a ring network, the transition point in a complete network moves to the left when n is increasing.
Apparently a complete network becomes ‘too dense’ when agents are added, which makes it less and
less beneficial to discourage an attack. Note that the behavior in a ring is opposite. A ring becomes
‘too sparsely’ connected when agents are added, which in turn makes it more and more beneficial to
discourage an attack.

Figure 38 – Social optimum qs and equilibrium qNs investments in complete networks with 5, 6 and 7
agents. Note that the transition point where qs and qNs intersect is decreasing in n. This behavior is
opposite to the behavior in a ring as showed in figure 37. In this figure c = (1/2)q2 and ψ = (1/2)a2.

Additionally remind from section 5.8.1 that the transition point in a circulant network always lies between

43. Yet mathematically it is hard to prove that p∗ increases in n from equation (5.41). When we solve (5.41) for D when ψ and c
are quadratic, the solution behaves like n− log(n). This implies for instance that p∗, although close to 1, does not converge to 1.
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the transition point in a ring and a complete network. As these transition points in a complete and a ring
are moving ‘away’ from each other, the space in which the transition point of a circulant network lies
is strictly increasing in n. More research is required to explore the effects of an increase in n on the
transition point in a circulant network.

Finally also observe from figure 38 that the social optimum converges to 1. In fact one can formally
show that qs is converging to 1 in this case; a result which follows easily from from proposition 4.16 on
page 33. As D/n converges to 1, qs necessarily converges to c−1(1) ≤ 1.

In this section we highlighted that

• the effect of a change in the number of agents is hard to analyze as more properties of D are
required.

• However we were able to show that the social optimum converges to 0 in a ring network and
converges to c′−1(1) in a complete network,

• and we conjectured that the transition point in a ring is strictly increasing, while the transition
point in a ring is strictly decreasing.
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6 The security game with several components
In many real world situations the information network consists of several individual networks. For in-
stance a strategic decision often only spreads under employees of a firm or for instance bank-account
information generally only spreads in the network of the specific bank. An attacker can focus his attack
on one network in particular as he or she can write malicious software for a specific platform or can
focus a phishing attack on employees of one bank in particular. In this section we consider this situa-
tion where the attacker can choose between several networks. We will call these individual networks
components.

We focus once more on endogenous security where agents invest in security. Additionally, we introduce
a new attack form: the strategic-random attack. Under this attack, the attacker strategically determines
which component is attacked, but cannot specify which agent inside this component is attacked. In this
chapter we first extend our model to allow such strategic-random attack. Next we establish character-
istic equations from which we can find the Nash equilibrium and the social optimum. Subsequently we
compare these outcomes with result of the (full) strategic and the (full) random attack as derived in the
previous chapter.

6.1 Extension to the model and assumptions

Some small changes are required to the model in chapter 3 to investigate the behavior of agents inside
a component. In this chapter we will investigate the behavior of nm agents in network G. We assume
that the set of agents is partitioned44 in m components such that V (G) = {V1 ∪ · · · ∪ Vm}. A component
is defined as Ci = (Vi, Ai) where Ai is the adjacency matrix of G restricted to the subset Vi. We
assume that each component contains a same number of agents n. Agents inside each component
share information with each other, but do not share information with agents outside the components (i.e.
no edges exist which link two agents who are not in the same component). In this section we assume
that each component attain the same vertex-transitive structure. By a slight extension of proposition
4.11 on page 30, we conclude that network G is vertex-transitive.

An example of a network with 3 components in showed in figure 39. In this figure each component
holds 5 agents and attains a complete structure. Note that information never spreads among agents in
different components.

Figure 39 – A network G = {C1, C2, C3} with 3 components. In this chapter we consider cases where
each component attains the same vertex-transitive structure and holds an identical number of agents.
This implies that network G is vertex-transitive.

Spreading happens - similarly as before - according to bond percolation with probability p. We assume
that this probability p is exogenous and identical in each component. Consequently, as no heterogeneity
exists between agents in different components:

DG ≡ DCi for every i.

Remind that D are the expected number of documents obtained by each agent. As each Ci is vertex-
transitive we - once more - adopt the notation D for DCi .

44. A partition of a set X are sets X1, . . . Xn such that X1 ∪ · · · ∪Xn = X and Xi ∩Xj = ∅ for all combinations of i and j.
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Note that we are still allowed to use the characteristic equations in table 3 on page 58 as the network is
vertex-transitive. Later in this chapter we will use these equations to compare the (full) strategic attack
and the (full) random attack with the strategic-random attack.

Next we present some new notations which we will use. We denote the probability that component i is
attacked by the attacker as bi. Again b = {b1, . . . , bm} is a probability vector and the realization of the
attack is modeled as a random variable drawn from b. We adopt the notation qi to denote the average
security investments in component i. When an agent ν lies in component i, we might as well denote the
component as C(ν).

Through this section we adopt assumption 1 on the cost function c. Remind that agents incur a cost
of c(q) for investing q in security. The attacker, on the other side, will incur a cost of ψ(bi) for attacking
component i with probability bi. In this section we consider quadratic costs for the attacker:

ψ′ = αb,

for some α > 0. Note that ψ satisfies assumption 2+ as in the previous chapter.

6.2 The strategic-random attack

In this section we discuss the strategic-random attack and derive characteristic equations from which
the Nash equilibrium and the social optimum can be solved. As these derivations are generally in line
with those in the previous chapter, the reasoning in this section is not always thorough and we often
refer to similar proofs in chapter 5.

6.2.1 Incentives of the strategic-random attacker

We start the discussion on the attacker who performs a strategic-random attack. Following (3.7), the
utility of the attacker under this attack form becomes:

Ua = E(|x| |q)−
∑
i

ψ(bi)

=

m∑
i

biE(expected number of documents obtained | attack on component i)−
∑
i

ψ(bi)

=

m∑
i=1

bi[
∑
ν∈Ci

D

n
(1− qν)]− ψ(bi)

=

m∑
i=1

bi(1− qi)D − ψ(bi), (6.1)

where qi is known to the attacker45 for all i. Note that the strategy of the attacker follows from the
average investment level in each component.

A clear similarity exists between (5.9), the utility of the attacker in the original security game and (6.1).
Only difference is the diluted effect of an individual action of an agent. Yet, this difference does not
impede that properties of the strategic attacker can be extended to the strategic-random attacker. Most
relevant properties are stated in the next proposition.
Proposition 6.1. Under the strategic-random attack the probability that component i is attacked is

bi = max{0, D

αn
(1− qi) +

λ

α
}, (6.2)

where λ ∈ R is the unique solution of∑
i

max{0, D

αn
(1− qi) +

λ

α
} = 1.

45. Also in this chapter we consider a sequential game where the attacker determines his strategy after agents choose theirs.
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The derivative of bi to qν for ν ∈ Ci and to qµ for µ 6∈ Ci is given respectively by

dbi
dqν

=
1−m∗

αnm∗
D and

dbi
dqµ

=
D

αnm∗
, (6.3)

where m∗ are the number of components that have strict positive probability of being attacked.

Proof. Both (6.2) and (6.3) follow from Kuhn-Tucker conditions. As the required steps are similar as in
proposition 5.4 on page 42 and proposition 5.6 on page 45, we omit a formal proof to economize on
space.

6.2.2 Equilibrium of the non-cooperative game

Now that we have established the strategy of the attacker, we can focus our analysis on the strategy of
agents. Note that the utility of - say agent ν - is given by

Πν = 1− bC(ν)[
∑

µ∈C(ν)

1

n
(1− qµ)Dν,µ]− c(qν), (6.4)

where C(ν) is the component in which ν lies. We assume that each agent plays the best response of
Πν given q−ν . As each agent determines this best response anticipating the strategy of the attacker, we
substitute the solution bi of (6.2) in (6.4). Consequently, a similar approach as in section 5.5 leads us to
the following proposition.

Proposition 6.2. In the security game in network G = {C1 ∪ · · · ∪ Cm} where all Ci attain the same
vertex-transitive structure and each Ci holds n agents. If c satisfies assumption 1 and ψ = αb2, under
the strategic-random attack the symmetric pure strategy Nash equilibrium qN solves

c′(qN ) =
1

nm
+
m− 1

αmn2
D2(1− qN ). (6.5)

The solution qN is unique, continuous and strictly increasing in D (and thus in p).

Proof. The result is established in several steps. These steps are identical as in chapter 5.5 and there-
fore somewhat shortened in this proof. First we prove that a symmetric pure strategy Nash equilibrium
exists by showing that the conditions of Debreu in lemma A.2 on page 81 are satisfied. Next we prove
that this symmetric pure strategy Nash equilibrium solves the FOC of (6.4). This FOC consequently
leads to the characteristic equation in (6.5). Finally we promptly discuss the steps required to show that
qN is unique, continuous and strictly increasing.

We start by proving that a symmetric pure strategy Nash equilibrium exists. For this, suppose that all
agents other than agent ν play strategy q∗. Continuity of Πν in q∗ follows by a similar line of argument
as in proposition 5.9 on page 47. We omit this proof to economize on space. To prove that Πν is quasi-
concave in qν , note that the derivative of (6.4) is given by

dΠν

dqν
=
bC(ν)

n
−
dbC(ν)

dqν
[
∑

µ∈C(ν)

1

n
(1− qµ)Dν,µ]− c′(qν). (6.6)

By differentiating this expression once more, it follows that

d2Πν

dq2
ν

=
2

n

dbC(ν)

dqν
−
d2bC(ν)

dq2
ν

[
∑

µ∈C(ν)

1

n
(1− qµ)Dν,µ]− c′′(qν). (6.7)

By noting from (6.3) that dbC(ν)/dqν ≤ 0 and db2C(ν)/dq
2
ν = 0, it easily follows that d

2Πν
dq2ν
≤ 0. We conclude

that a symmetric pure strategy Nash equilibrium exists.
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Next we prove that an agent’s best response ϕ(q−ν) always solves the FOC of (6.4) given q−ν . By
noting that independently of the strategy of other agents,

dΠν

dqν
(0) > 0

and that Πν(1) < Πν(0), we conclude that the global maximum of Πν necessarily solves the FOC.
Additionally it is easy to show that an agent’s best response is never such that bi = 0 or bi = 1. The
proof is similar as proposition 5.12 on page 50.

Finally we establish equation (6.5). For this, suppose that qN is the symmetric pure strategy Nash
equilibrium. As qN is symmetric it follows from (6.2) that every component is attacked with an identical
probability of 1/m. Consequently by substituting (6.3) in (6.6), the FOC becomes

c′(qN ) =
1

nm
+ [

m− 1

αnm
D][

1

n
(1− qN )D].

The RHS of this expression is readily written as the RHS of (6.5) in the proposition.

By noting that the LHS of (6.5) is strictly increasing while the RHS is strictly decreasing in qN , it follows
that there is a unique solution of (6.5). This in turn implies that qN is the global maximum and that qN

is the unique symmetric Nash equilibrium. Continuity follows from the implicit function theorem and qN

is strictly increasing because one easily checks that the derivative of qN to D is strictly positive.

Note that the proposition above does not say anything about the uniqueness of the Nash equilibrium.
Although the symmetric equilibrium is unique, the equilibrium itself might not be unique. In line with
proposition 5.14 on page 54 we tried to use Hefti (2011) to show that the equilibrium is unique. From
these derivations (not showed in this report) we conclude that the Nash equilibrium under the strategic-
random attack is unique when c′′ is sufficiently large.

6.2.3 Optimal trade-off between security and costs

Next we focus on the social optimum under the strategic-random attack. Remind that the social optimum
is the optimal trade-off between security and costs from a social perspective. Specifically, the social
optimum is an investment level such that the social utility

S =
∑
ν

Πν ,

is maximized in [0, 1]nm. By substituting (6.4), this social utility can be written as

S =
∑
ν

[1− bC(ν)[
∑

µ∈C(ν)

1

n
(1− qµ)Dν,µ]− c(qν)]

= nm−
∑
ν

∑
µ∈C(ν)

bC(ν)

n
(1− qµ)Dν,µ − c(qν)

= nm−
∑
ν

∑
µ

bC(µ)

n
(1− qµ)Dν,µ − c(qν)

= nm−D
∑
µ

bC(µ)

n
(1− qµ)− c(qµ)

= nm−D
∑
i

bi(1− qi)−
∑
µ

c(qµ) (6.8)

where the third equality follows because Dν,µ = 0 for µ 6∈ C(ν). The fourth equality follows by a change
in the order of the summation signs and because Dν,µ = Dµ,ν as our network is undirected.

The next proposition shows that the social optimum is unique, symmetric and solves (6.9).
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Proposition 6.3. In the security game in network G = {C1∪· · ·∪Cm}where allCi attain the same vertex-
transitive structure and each Ci holds n agents, suppose that c satisfies assumption 1 and ψ = αb2.
When the social optimum under the strategic-random attack solves the first order condition of (6.8) then
it is the unique solution of

c′(qs) =
D

nm
. (6.9)

When the conditions are satisfied, the solution qs is the unique social optimum which is strictly increas-
ing and continuous in D (and thus in p).

Proof. First note that we require that the social optimum solves the FOC of (6.8). This technical require-
ment excludes the possibility that a boundary social optimum exists. Although we tried to present this
proposition without this extra assumption, we were unable to do so in a limited amount of time46.

In this proof we first show that the social optimum is not asymmetric, provided that it is not on the
boundary of [0, 1]nm. Next we show that there is a unique symmetric social optimum.

First note that the derivative of S in (6.8) is given by

dS

dqν
=
DbC(ν)

n
−D

∑
µ

dbC(µ)

dqν

1

n
(1− qµ)− c′(qν)

=
DbC(ν)

n
−D2 1−m∗

αnm∗
(1− qi)−

∑
j 6=C(ν)

D2 1

αnm∗
(1− qj)− c′(qν), (6.10)

where m∗ are the number of components that have strict positive probability of being attacked.

Next we easily establish that all agents inside the same component hold an identical strategy. This
follows because all terms in (6.10) are the same for agents inside the same component. Consequently,
agents inside the same component hold an identical strategy equal to qsi .

Consequently we show that qs = {qs1, . . . , qsn} is symmetric. For this, w.l.o.g. suppose that qs1 = min{qs}
and qs2 = max{qs}. We show that the assumption qs1 < qs2 leads to a contradiction. As both qs1 and qs2
solve the root of (6.10), necessarily

c′(qs1) =
Db1
n
−D2 1−m∗

αnm∗
(1− q1)−D2 1

αnm∗
(1− q2)−

∑
j 6={1,2}

D2 1

αnm∗
(1− qj) (6.11)

and

c′(qs2) =
Db2
n
−D2 1−m∗

αnm∗
(1− q2)−D2 1

αnm∗
(1− q1)−

∑
j 6={1,2}

D2 1

αnm∗
(1− qj). (6.12)

Next note that our assumption qs1 < qs2 implies that (1 − q1) > (1 − q2) and that b1 > b2 by (6.2). When
comparing similar terms in (6.11) and (6.12) it follows that the RHS of (6.11) is larger than the RHS of
(6.12). As this contradicts convexity of c, we conclude that qs1 = qs2.

Now that we have established that all agents play the same strategy, we focus on finding a symmetric
root of (6.10). When all agents play the same strategy qs, expression (6.10) is reduced to

dS

dqν
=

D

mn
−D(1− qs)

∑
i

dbi
dqν
− c′(qs)

=
D

mn
− c′(qs), (6.13)

46. We tried two approaches. First, similar as in proposition 5.15, we tried to show that dS/dqν(0) ≥ 0 and dS/dqν(1) ≤ 0. This
approach failed however as the effect of qν = 0 on qC(ν) = 0 is unclear. Second, we tried to show that the Hessian is negative
definite for all values in [0, 1]nm. This showed to be the case if m∗ = m (remind that m∗ are the number of components with
strict positive probability of being attacked). Currently we are unable to show this.
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as one easily shows that
∑
i dbi/dqν = 0.

Clearly the root of (6.13) above is the solution of (6.9). As the LHS of (6.9) is increasing in qs while
the RHS is constant, there is in fact a unique solution of (6.9). Continuity of the solution of (6.9) follows
easily by the implicit function theorem. Finally, qs is strictly increasing in p because D is by proposition
4.9 on page 29.

As a final comment, note that the social optimum under the strategic-random attack is - once more -
equivalent with the social optimum under the strategic and the random attack (see table 3 on page 58).

6.3 Comparison of different attack forms

In this section we compare investment levels under the strategic-random attack with investment under
the strategic and under the random attack. Additionally we present some examples of investment levels
under these different attack forms.

To adequately compare our results, first note that we are (still) allowed to use the characteristic equa-
tions in table 3 on page 58 for the strategic and the random attack. As these equations are in the same
form as (6.5) and (6.9) investment levels are readily compared. Yet, for an efficient comparison we first
propose some small (notational) adjustments.
Definition 6. In the security game in network G = {C1 ∪ · · · ∪Cm} where all Ci attain the same vertex-
transitive structure and each Ci holds n agents. If c satisfies assumption 1 and ψ = αb2 for α > 0, define
qNsr as the symmetric investment level under the strategic-random attack that is a pure strategy Nash
equilibrium. The investment levels qNs , qNr and qs are similarly defined as in definition 5 on page 58 only
with network G = {C1 ∪ · · · ∪ Cm}.
Also remind that we consider behavior of a total of nm agents in this chapter. Consequently n in table 3
is changed to nm in this chapter and D is changed to the expected number of documents obtained by
each agent when there are n agents (remind that there are n agents inside a component).

By comparing all investment levels we derive the following results47.
Proposition 6.4. Under investment levels defined in definition 6:
• for all p ∈ [0, 1], qNr ≤ qNsr < qNs ,
• qNsr, qNs and qs are all increasing in p and increasing in the density of the network.

Proof. The property qNr ≤ qNsr follows easily by comparing (6.5) with the characteristic equation for qNr
in table 3. To prove that qNsr < qNs , suppose that there is a p∗ for which qNsr = qNs . From the characteristic
equations it follows that p∗ is such that

m− 1

αmn2
D2 =

(nm−D)D

αnm

By removing terms, p∗ is such that

m− 1

n
D = nm−D,

which consequently implies that p∗ is such that

D =
n2m

n+m− 1
.

Next we show that such p∗ does not exists because maxp∈[0,1]D = n. For this we have to show that

nm

n+m− 1
> 1.

47. This comparison is not exhaustive and several other interesting comparisons would be possible. Especially a comparison
between equilibrium investments and the social optimum and an investigation on their possible intersections would be interesting.
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As nm ≥ n + m for all n ≥ 2 and m ≥ 2 this expression above clearly holds. Nonexistence of a p∗ for
which qNsr = qNs implies that either qNsr > qNs or qNsr < qNs . As we easily prove that qNsr < qNs when p = 0,
we are consequently allowed to extend this property for all values of p.

To prove the second result in the theorem we start with qNs ; the Nash equilibrium under the strategic
attack. Remind that qNs is increasing in p till the (unique) point where D = nm/2 by theorem 5.1 on page
53. As maxp∈[0,1]D = n and m ≥ 2 in this chapter, we conclude that qNs is increasing in p. Consequently
as D is a strictly increasing function of p, this immediately implies that qNs is increasing in D. Finally
because D in a more dense network is larger for all p then D in a less dense network by proposition 4.9
on page 29, the result follows.

To establish that qNsr is increasing in D, Let G1 and G2 be two networks for which respectively D1 > D2

for all p (other parameters are similar in both networks). We will show that equilibrium investments in G1

are larger than in G2. For this, assume the contrary that there is a p∗ for which qNsr > qNsr where qNsr is the
investment level in G2. By convexity of c is must hold that

m− 1

αmn2
D2

2(1− qNsr) >
m− 1

αmn2
D2

1(1− qNsr).

This expression clearly does not hold as D2
2 < D2

1 and (1− qNsr) < (1− qNsr). Consequently, by contradic-
tion, we proved that equilibrium investments in a denser network are higher for all values of p. Moreover,
as D is a strictly in p, we are allowed to extend the result to p.

The result for qs follows easily by considering equation (6.9). By convexity of c the social optimum
necessarily increases when D does.

The first result in the proposition above is no surprise. The level of competition created under the
strategic-random attack clearly falls between the level of competition created under the random attack
and the strategic attack. Hence also investments under the strategic-random attack fall between the
other two attack forms. This result once again confirms that the introduction of a strategic component in
the attack leads to more investments in security. Yet, note that the exact investment level depends on
the parameters α, c′′, n and m. We do not explore the role of these parameters in this research.

Different than the first result in proposition 6.4, the second result does come as a surprise. Remind that
we derived in the previous chapter that equilibrium investments eventually decrease in p when there is
one component (see figure 32 for instance). This decrease was motivated by the observation that when
p increases - with high probability - all agents obtain the document of an agent. This in turn makes it
pointless to invest to cause the attacker to attack someone else. Contrary, when there is more than
one component there are always agents who do not obtain the document of an agent (remind that
D converges to n opposed to nm when p goes to 1). In this case, agents always have incentives to
discourage an attack.

We end the analysis in this chapter with some examples of investment levels. In the examples Gn,m
represents a network with m components where each component attains the structure of G and holds
n agents.

First, figure 40 shows investments in a network with four complete components all with four agents (solid
lines), and investments in a network with four ring components also with four agents (dashed lines). Note
that investment indeed increase in p and in the density of the network as proved in proposition 6.4. The
increase in p seems to be faster under the random-strategic attack than under the strategic attack48.
Finally also observe from figure 40 that for all values of p over-investments exist under the strategic and
under the strategic-random attack relative to the social optimum. We do not further explore this property
due to a limited amount of time.

48. This is no surprise because under the strategic-random attack the attack inside a component is random and therefore no
competition inside a component exists. If there would be any competition inside a component, then equilibrium investments
eventually decrease in p as it becomes more and more likely that other agents obtain your document.
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Figure 41 shows a possible effect when the number of agents inside a component are reduced. Although
equilibrium investments under the strategic attack decrease, the effect under the strategic-random at-
tack is not so clear: for small and high values of p equilibrium investments increase. This effect is also
observed on the equilibrium investments in figure 42 when we decrease the number of components.
Once more we do not further explore these observations.

Figure 40 – Equilibrium investment levels qNs and qNsr and the social optimum qs as function of p. The
investment levels are defined in definition 6. Note that investments increase in the density of the network
as the complete network K is more dense than the ring network R. Also note that under both the
strategic and the strategic-random attack over-investments prevail relative to the social optimum. In the
figure ψ = a2 and c = q2.
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Figure 41 – Equilibrium investment levels qNs and qNsr and the social optimum qs as function of p. The
investment levels are defined in definition 6. Note that while investments increase in n under the (full)
strategic attack, under the strategic-random attack investments decrease for low and high values of p.
In the figure ψ = a2 and c = q2.

Figure 42 – Equilibrium investment levels qNs and qNsr and the social optimum qs as function of p. The
investment levels are defined in definition 6. Observe that investments increase in m under the (full)
strategic attack. However, under the strategic-random attack investments might as well decrease for
small values of p. In the figure once more ψ = a2 and c = q2.
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7 Discussion
Network connections introduce externalities in adopting security. Although it is generally presumed that
these externalities result in under-investment in security, it has been showed that the introduction of an
intelligent attacker can as well lead to over-investments. In this research we further explored the role
of the intelligent attacker in a new spread model. Although we relied on several assumptions we feel
that our results point to a general theme: agents invest too much in security when they face an intelli-
gent threat. Yet, these over-investments do not prevail when the network is dense and/or information is
shared with a high probability. However, if the network consists of several components and if the attacker
is able to strategically decide which component is attacked, agents still invest too much in security.

As our research has pioneered in systematically analyzing incentives to invest in security, several issues
remain for discussion. First, because we have built a game theoretical model upon a spread model,
we considered spreading of information which is independent of security investments. Although this
is a good model for situations where agents do not limit (or enhance) spread facing the upcoming
attack, in reality alternative security measures are available in which spreading and security decisions
are intertwined. One can think of situations where agents choose their network connections (network
formation model), choose the probability that they diffuse information (endogenous and local values
of p) or adjust behavior when confronted with the actual realization of information spread (dynamic
model). The avid researcher who adopts this research is confronted with a challenging direction. Not
only because the literature on network games that intertwine spreading and decisions is sparse, also
because in our - not too involved - spreading model already several open problems remain.

Second, we challenge researchers to fit decision making of agents and the attacker to more realistic
situations. One can think of a game where several parameters are unknown to the attacker or to agents
(Bayesian game). In reality the attacker might not be completely aware of the (precise) security level
and agents might not have full information about the network structure. Interesting question is if ignorant
agents with incomplete information tend to invest more in security (and follow worst-case scenario’s)
or invest less (when also the attacker has incomplete information we expect the attack to be more
random). Another interesting question is if heterogeneity across agents (e.g. an asymmetric network
and/or varying utility/costs) will provoke investments. In reality the systems of large companies are for
instance attacked with higher probabilities than systems of individuals (Symantec, 2014). Does this lead
to incentives for the large company to increase security investments? Additionally further research can
include the possibility of several (strategic) attacks, include the possibility for the attacker to refrain from
attacking, include the possibility of semi-cooperation among agents (only subsets of agent cooperate)
or allow the attacker to weight documents differently.

Third, as our research contributes to a more general discussion on the economics behind cyber-security,
it is appealing to include additional parameters in the model. Our model can for instance be extended
to a competition model where companies do not only compete for security but also compete for market
share. Do companies have enough incentives to invest in security or will they use their resources to
improve market share till they obtain a dominant position (which provokes more cyber attacks)? Addi-
tionally policy evaluations can be included in the analysis. Should governments obligate shareholders
to invest in security or should they subsidize (or tax) security? To increase investments in network with
small dependencies and to decrease investments in networks with high dependencies, the main policy
recommendation from our results - ignoring all the practical objections - is to subsidize security in the
first case and tax security in the latter case.

Fourth question is if security strategies are changed when agents are faced with the consequences of
past behavior. An agent whose information is exposed multiple times in earlier attacks would for instance
have incentives to increase investments. We consider this evolutionary game as a very promising re-
search direction in the field of security adoptions. Specifically the role of the network structure and the
role of an (intelligent) attacker is worth knowing. Information asymmetries which are generally present
in security decisions (Moore, 2010) can also be adequately modeled in an evolutionary game. The re-
cent paper of Zhang et al. (2014) would provide a good starting point of this research. We challenge
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researchers to extend the model of Zhang to an endogenous security model where multiple agents are
responsible for security. Optionally the role of the strategic attacker can be included in this model.

Finally we would like to highlight some open problems resulting from our model. The most prominent
open question is if the behavior in vertex-transitive networks can be extended to general, asymmetric
networks. Although our simulation results do conjecture this hypothesis, we did not provide a formal
proof. Additionally the distribution of investments over the set of agents in asymmetric networks is of
interest. From simulation results we have the feeling that agents who obtain more documents will invest
more in security. Nevertheless the exact magnitude is unknown. Another open question is if results
still hold when we relax assumptions on cost functions. We for instance did not investigate the effects
when cost functions do not satisfy the boundary conditions in assumption 1 and assumption 2. Finally
we challenge future researchers to further explore our spread model. Several open questions remain
regarding the probability that information is shared. As exact computation is problematic, simulation
results (as in appendix section B) or estimates from random graph theory can be used (like Chung et
al., 2009 and Frieze et al., 2004).
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A Appendices
A Background material

Lemma A.1. Let f : [0, 1] → R and g : [0, 1] → R (f 6≡ g) be two continuous functions for which f − g
is strictly increasing (decreasing). If f(0) ≤ g(0) (f(0) ≥ g(0)) and f(1) ≥ g(1) (f(1) ≤ g(1)) then there
exists a unique c ∈ [0, 1] such that f(c) = g(c).

Proof. Existence of a solution follows easily by the intermediate value theorem. To prove uniqueness
assume that there are two intersections of f and g: c1 and c2 and assume w.lo.g that c1 < c2. Also
assume w.l.o.g. that f(0) ≤ g(0) and f(1) ≥ g(1) and f − g is strictly increasing. However as 0 =

f(c1)− g(c1) < f(c2)− g(c2) = 0 we found a contradictions and hence c1 = c2.

Lemma A.2. (Debreu, Glicksberg, Fan)49 Consider a strategic form game 〈I, (Si)i∈I , (Πi)i∈I〉 where
I is the set of agents, Si is the space of possible strategies of agent i and Πi is the pay-off function of
agent i. If for each i ∈ I:

• Si is compact and convex;
• Πi(si, s−i) is continuous in s−i;
• Πi(si, s−i) is continuous and quasi-concave in si,

then a pure Nash equilibrium exists.

Proof. Sketch: the proof is based on applying Kakutani’s fixed point theorem to the best response of
an agent Bi(s−i). The conditions in the lemma make sure that S =

∏
i Si is compact, convex and

non-empty and Bi is non-empty, convex and a closed graph50.

Lemma A.3. (Hefti) Suppose that in a strategic form game 〈I, (Si)i∈I , (Πi)i∈I〉, d2Πi
dq2ij

exists for every

i, j. Consequently let J be the Jacobian of F = (dΠ1

dq1
, . . . , dΠn

dqn
). If all principal minors −J(q) are positive

for every q ∈ [0, 1]n, then at most one interior equilibrium exists.

Lemma A.4. Let f : [0, 1] → [0, A] be a continuous and strictly increasing function with f(0) = 0 and
f(1) = A. Then there exists a continuous and strictly increasing function g : [0, A] → [0, 1] such that for
all x ∈ [0, 1], g(f(x)) = x.

Proof. Notice that the inverse function g clearly exists as f is bijective. Also g is continuous because
f is continuous. To prove this, notice that for every sequence in the domain, xn → a we have that
f(xn)→ f(a). Consequently, for every sequence f(xn)→ f(a) in the codomain, we have
g(f(xn)) = xn → a = g(f(a)). Hence g is continuous at f(a).

To prove that g is strictly increasing, assume the contrary, then there exist y1 < y2 such that x1 = g(y1) ≥
g(y2) = x2. As f is strictly increasing, y1 = f(x1) ≥ f(x2) = y2, contradicting the assumption.

Lemma A.5. (Implicit Function Theorem) Let X be a subset of Rn, let P be a metric space and let
U : X × P → Rn be continuous. Suppose that the derivative DxU of U with respect to x exists at a
point (x, q) and that Dxf(x, q) is invertible. Set y = f(x, q). Then for any neighborhood U of x, there is
a neighborhood W of q and a function g : W → U such that:

• g(q) = x

• f(g(q), q) = y for all q ∈W
• g is continuous at the point q

49. The theorem is often called the Debreu, Glicksberg, Fan existance theorem and is based on merged work of the authors. A
proof can be found on page 20 in Osborne and Rubinstein (1994).
50. A set-valued function ϕ : X → 2Y is said to have closed graph if the set {(x, y)|y ∈ ϕ(x)} is a closed subset of X × Y .
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B Simulation of information spread

In this section we estimateD, the expected number of documents obtained by each agent. The focus lies
on the relation between D and the number of agents n in the network. In section 4.3.3 we have showed
that D(n) converges in growing ring networks, while D(n) diverges in growing complete networks.
Without any closed form formula for D(n) in general circulant networks with structure S, we are forced to
simulate spreading of information and estimate D(n). In algorithm 1 we present a procedure to estimate
D in circulant networks. The procedure is easily extended to other networks.

Result: D

Input: S,n,p,k1

A = Construct adjacency matrix(S,n);

c(k1) =Max Iterations;

for k2 6= k1 do
while r < Max Iterations do

r=r++;

Ar = Remove edges(A,p);

Check if connected(Ar, k1,k2);

if k1 ∼ k2 then
c(k2) =c(k2)+1;

end

end

end

D = sum(c)/Max Iterations;

Algorithm 1: Algorithm to estimate D. In the algorithm S is the structure S of the network and k1 is an
(arbitrary) agent.

The evolution of D as function of n can be investigated by repeating the procedure in algorithm 1 for
different values of n. In figure 43 on page 86 this evolution is plotted for several circulant networks with
fixed structures (independent of n). Observe that D is higher in networks where k is higher in S = {1, k}.
This is no surprise as these networks are stronger connected. Also observe from the figure that D is
strictly increasing in n for all networks. As this property is also observed in other simulation results (not
showed here), we hold the conjecture that for all circulant networks with S ⊂ {1}, D is strictly increase
in n.

Additionally observe in figure 43 that D seems to converge when S is independent of n. Different
behavior is observed in figure 44. Here the evolution is plotted for circulant networks with an increasing
structure (i.e. increasing in n). Apparently D might even diverge when S increases ’significantly’. As a
full investigation of behavior of D as function of S is outside the scope of this research, we do not further
investigate the relation between D and S. Yet we conjecture that D converges when S is independent
of n and diverges when S increases ’significantly’.

Alternatively we are able to estimate D/n by algorithm 1. This leads to the results in figure 45. Note that
D/n can converge to 0 (like the ring network), converge to 1 (like the complete network) or does not
converge51. The behavior of D/n when S = {1, . . . ,

√
n} and S = {1, 2, 3} is no surprise when consid-

51. Our range of n is somewhat limited to make any presumptions. When we increase n though, computation time of algorithm 1
increases significantly. We encourage to make algorithm 1 more efficient by using for instance the symmetry property of circulant
networks.
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ering the behavior of D for these structures in respectively figure 43 and figure 44. Yet the behavior of
D/n in other (circulant) network remains an open question.

C Nonexistence of Nash equilibrium without attacking cost

Remind that the attacker incurs some cost when choosing the attack vector a. In this section it is showed
that no pure and no mixed Nash equilibrium exist in a two agent network where the attacker does not
incur any cost.

Consider a network with two interconnected agents. Remind that the attacker will maximize (5.9) under
the constraint that the elements in a are non-negative an add up to 1. When ψ ≡ 0, the strategy of the
attacker is easily determined: the attacker will attack the agent with the lowest investments in security.
Hence

a1 = 1− a2 =


1 if q1 < q2,

1/2 if q1 = q2,

0 if q1 > q2.

(A.1)

The utility of the two agents can be expressed as

Π1 = 1− a1(1− q1)− (1− a1)(1− q2)p− c(q1),

Π2 = 1− (1− a1)(1− q2)− a1(1− q1)p− c(q2),

where c satisfies assumption 1. In the following proposition we prove that no pure strategy Nash equi-
librium exists in this situation.

Proposition A.1. In a network with two interconnected agents and under a strategic attack, if ψ ≡ 0

then no pure strategy Nash equilibrium exists.

Proof. Let qN be a pure strategy Nash equilibrium. When qN1 = qN2 an agent always gains by raising
investments slightly. It follows for instance that ϕ1(qN2 ) 6= qN1 , where ϕ is the best response of agent 1.

Next assume that qN1 < qN2 . From proposition 5.11, qN solves the first order condition for optimality. For
agent 1, as a1 = 1 this FOC becomes

c′(q1) = 1− da1

dq1
(1− q1) +

da1

dq1
(1− q2)p, (A.2)

and for agent 2,

c′(q2) =
da1

dq2
(1− q2)− da1

dq2
(1− q1)p

= −da1

dq1
(1− q2) +

da1

dq1
(1− q1)p. (A.3)

Consequently note that our assumption qN1 < qN2 implies that the RHS of (A.2) is larger than the RHS
of (A.3). This in turn contradicts convexity of c as it must hold that c(qN1 ) < c(qN2 ). We conclude that no
pure strategy Nash equilibrium exists.

One can even prove that no mixed strategy Nash equilibrium exists.

Proposition A.2. In a network with two interconnected agents, then under the strategic attack where
ψ ≡ 0, no symmetric mixed strategy Nash equilibrium exists.

Proof. Suppose that both agents play a random response. Now let q2 be a random variable drawn
from some probability space F with support [0, 1]. As the strategy of the attacker is given by (A.1), the
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expected utility of agent 1 becomes

E(Π1) =

∫ q1

0

1− (1− q2)p− c(q1) dF (q2) +

∫ 1

q1

q1 − c(q1) dF (q2)

=

∫ q1

0

dF (q2)−
∫ q1

0

p dF (q2) + p

∫ q1

0

q2 dF (q2) + q1(1− F (q1))− c(q1). (A.4)

Note that agent 1 has to be indifferent under every outcome of F (q2) because if not, then agent 1 holds
a pure response. So it must hold that

dE(Π1)

dq1
= F ′(q1)− pF ′(q1) + pq1F

′(q1) + 1− F (q1)− F ′(q1)q1 − c′(q1) = 0.

By rewriting it follows that

F (q1) = F ′(q1)[1− p+ pq1 − q1] + 1− c′(q1)

= F ′(q1)(1− p)(1− q1) + 1− c′(q1), (A.5)

a differential equation which solution F must satisfy the properties of a cumulative distribution function.
Yet one can show that by substituting q1 = 1 in (A.5):

1 = F (1) = 1− c′(1) < 1,

a contradiction. We conclude that no solution F of (A.5) exists.

D Investments in asymmetric networks

Remind that the results in this report are limited to situations where dependencies between agents adopt
a vertex-transitive structure. This homogeneity assumption is quite restrictive as real world communi-
cation structures may not be symmetric. For instance a hierarchy structure, often seen in companies
or in provider/user relations, may attain a tree structure. In this section some simulation results are
presented that conjecture that several forces present under the strategic attack in a vertex-transitive
network extend to a wider range of (asymmetric) networks.

The simulations in this section are based on the following algorithm.

Result: Best response

Input: Dp, IC, precision1,precision2

Bestres = IC;

while Change of Bestres < precision1 do
for ν=1:n do

for i=0:precision2:1 do
a = Strategy Attacker(i,Bestres,Dp);

U(i) = Compute utility(i,Bestres,a,Dp);

end

Bestres(ν) = argmax(U);

end

end

Algorithm 2: Algorithm to estimate investments in security. In the algorithm ‘Bestres’ is a vector of best
responses, Dp is a matrix of Dν,µ probabilities and IC is the initial conditions of the best responses.
Optionally Dp can be estimated by a small adaption to the procedure in algorithm 1.
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Now suppose that the network is a star on 4 nodes (this continues on example 5.3). The results of the
procedure in algorithm 2 are showed in figure 46. Observe that, similarly as in vertex-transitive networks,
investments in Nash equilibrium are first increasing in p and later decreasing in p. Also note that the
central agent holds a higher security investment than the periphery agents. This follows because the
attacker has a larger stimulus to attack the central agent as this agent - in expectation - obtains more
documents than the periphery agents. This forces the central agent to invest more in security to cause
the attacker to attack someone else.

We observe similar behavior as in the star in other asymmetric networks. For instance in figure 47
simulation results are showed when dependencies adopt network G3 in figure 18 on page 28. In this
network it holds that D0 = D2 ≥ D1 = D3 for small p. The simulation results in figure 47 indicate that
agent 0 and agent 2 invest more in security than agent 1 and agent 3 when p is low.

The results in figure 46 and figure 47 as well as other simulation results lead to the conjecture that forces
present in vertex-transitive networks extend to a wider range of networks. Specifically we conjecture
that a) investments initially increase in p and later decrease in p and that b) agents who obtain more
documents invest more in security than other agents.

E Metaphor for economic forces present in the security game

In proposition 5.1 on page 53 we showed that equilibrium investments first increase in p and later
decrease in p. Although the eventual decrease in p follows intuitively, the increase in p is not directly
clear from the model. In this section we present a metaphor which makes it more clear why investments
initially increase in p.

Consider a pyromaniac who tries to burn down as much (rundown) houses as possible (see figure 48).
When a house is ablaze the fire may spread to surrounding houses. This happens with a probability that
depends on the distance between the houses. For instance when the distance is very large (1 kilometer)
this probability is very small, whereas this probability is very large when the distance is small (1 meter).
The pyromaniac can only attempt to ignite one house (a day). Also the pyromaniac (rationally) finds an
optimal balance between effort (e.g. spying on houses to optimize the attack) and damage.

Now suppose that the owners of the houses can protect against an initial ignition by adopting security
measures like for instance an alarm, fences, cameras or by hiring a guard. When the distance between
houses is large (1 kilometer or 100 meters), an owner has a strong incentive to invest in security to
discourage an attack and push the attacker to attack the other house. Note however that the expected
damage done by an attack is higher when houses are closer to each other. In this situation a pyromaniac
might spend closer. Nevertheless, when houses are too close to each other and the fire spreads with a
high probability, it becomes pointless to invest to push the pyromaniac to attack the other house. In this
situation, investments in security decrease.
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Figure 43 – D(n) plotted for several networks with p = 0.5. Note that D(n) seems to converge when S
is independent of n.

Figure 44 – D(n) plotted for several networks with p = 0.2. Different than in figure 43, D(n) seems to
diverge when S increases significantly.

Figure 45 – Expected fraction of documents obtained when p = 0.2. Observe that D(n)/n seems to
converge to 0 when S is independent of n and seems to converge to 1 when S increases significantly.

A APPENDICES Page 86



Figure 46 – Simulation results in a non-cooperative game, under the strategic attack where dependen-
cies attain a star structure with 4 agents. In this figure c = q2 and ψ = a2. Note that investments first
increase in p and later decrease in p. Additionally note that the central agent invests more in security.

Figure 47 – Simulation results in network A3 in figure 18 on page 28. In this figure c = q2 and ψ = a2.
Note that investments - once more - first increase in p and later decrease in p.
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Figure 48 – Incentives of a pyromaniac and householders who adopt security. Householders spend the
most in security when the houses are 100 meters from each other.
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