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Summary

The goal of this thesis is to find out what role the underlying target motion model plays in
tracking problems with S-turns. The target motion model is a hybrid stochastic dynamic
model taking into account the state of the object and its mode. Furthermore, the observation
process also satisfies a hybrid stochastic dynamic model.

To achieve this goal we derive the exact Bayesian filter recursion for several motion models
and observation processes. We use Particle filtering to evaluate the Bayesian filter equations
numerically.

In this thesis results are given of Monte Carlo simulations for the Hybrid Particle filter and the
IMM filter algorithm for several different target motion models. Results show that all filters
perform relatively well, when the target is switching between acceleration and deceleration.
The results show no effect of the tracking problems caused by S-turns we expected.

For all tested filter scenarios IMM performs better than HPF. In most of the filter scenarios,
IMM and HPF using the target motion model with three modes perform better than IMM
and HPF using the target motion model with two modes.

Furthermore, results of two models with three modes show that the choice for a target motion
model does effect the performance of HPF. We used a target motion model that permits the
target to have a positive acceleration in deceleration mode because the prior deceleration
value is assumed to satisfy a Gaussian distribution. The HPF filter using this model performs
worse than the HPF filter using a model that does not permit the target to have a positive
acceleration in deceleration mode.

We recommend to do further research to make a better target motion model that does not
permit the target to have a positive acceleration in deceleration mode. Future work could be
done to increase the amount of modes in the target motion model. More research could also
be done to decrease the hight of the first peak in position RMS error, by making sure that
the error cannot converge below a certain low value.
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List of abbreviations

Abs HPF HPF using the model with non-Gaussian acceleration noise from section 8.4
ARTAS ATC Radar Tracker and Server
ATC air traffic control
ATSI Air Transport Safety Institute
CKB Chapman-Kolmogorov-Bayes
HPF Hybrid Particle Filter
i.i.d. independent and identically distributed
IMM Interacting Multiple Model
IS importance sampling
MC Monte Carlo
NLR National Aerospace Laboratory NLR
PF Particle Filter
SIR Sampling Importance Resampling
UAV Unmanned Aerial Vehicle

List of symbols

a measurable function
abs absolute value
A1 measurable function
A2 measurable function
B1 measurable function
B2 measurable function
ct constant with respect to (x, η)
C1 measurable function
C2 measurable function
χ 0− 1 indicator
δ Dirac delta-function
exp Exponential function
η ∈M parameter
F ∈ Rn×n constant
fY (y) probability density function of Y = y
fX,Y (x, y) joint probability density function of (X,Y ) = (x, y)
fX|Y (x|y) conditional probability density of X = x given Y = y

g measurable function

G ∈ Rm×m′ measurable function
h measurable function
H ∈ Rn×m measurable function
i ∈ N parameter
I(fk) expectation of fk
∞ infinity
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j ∈ N parameter
k ∈ N parameter
K ∈ R constant
Kk measurable function
L ∈ Rn×n constant
m dimension of yk
m′ dimension of the measurement noise
M ∈ N constant
M set of M discrete modes
µ ∈ Rn mean of the process {xk = x|Yk}
µθ,j0 initial weight of particle j in mode θ
n dimension of xk
n′ dimension of the acceleration noise
Np number of particles
Neff effective sample size
Nthres threshold sample size
NE,V Gaussian distribution on Rn with parameters E and V

νθ,ji i.i.d. standard Gaussian variables of dimension one, independent of θ, j
pxk(x) probability density function of xk = x
pXk(X) probability density function of Xk = X
pxk|Yk(xk) conditional density of xk = x given Yk
pxk+1,xk|Yk(x, x′) joint conditional probability density function of (xk+1, xk) = (x, x′) given Yk
pyk+1|xk+1

(yk+1|x) conditional likelihood of the realization yk+1 ∈ Rm of the process {yk}
at moment k + 1 given xk+1 = x ∈ Rn

pk measurable function
pθ0 initial mode probability of mode θ
p{X = x} probability that X = x
πθη probability that the process {θk} at moment k + 1 equals η, i.e. θk+1 = η,

given that at moment k the process {θk} equals θ, i.e. θk = θ
Π transition probability matrix with components πθη
q ∈ R constant
Q ∈ Rn×n covariance matrix of the process {wk}
Qk measurable function
r ∈ Rn constant
r1 ∈ R constant
r2 ∈ R constant
rn amount of simulation runs
Rk measurable function
R set of real numbers
S ∈ Rn×n constant
σa standard deviation of the acceleration noise
σm standard deviation of the measurement error
Σ ∈ Rn×n variance of the process {xk = x|Yk}
T ∈ N constant
θ ∈M parameter
{θk} discrete valued Markov process with transition probability matrix Π
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{vk} sequence of i.i.d. standard Gaussian variables of dimension m,
independent of {wk}

{wk} zero mean Gaussian white noise process with covariance Q
x ∈ Rn parameter
x′ ∈ Rn parameter
X ∈ Rn random vector
x0 exact initial state

xθ,j0 initial state of particle j in mode θ
{xk} Euclidean valued stochastic process
x̂k,i filter estimation of xk in run i at moment k
x̂HPFk output of the HPF cycle
Xk = {xs; s ≤ k} the realization of the process {xk} up to and including moment k
{yk} observation process which observes the state xk
Y ∈ Rn random vector
Yk = {ys; s ≤ k} the realization of the process {yk} up to and including moment k
zk measurable function
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1 Introduction

In air traffic control (ATC), ARTAS (ATC Radar Tracker and Server) forms a critical link
between the radars and the air traffic controller. ARTAS is a system designed to establish an
accurate air situation picture of all traffic over a well-defined geographical area (e.g. the Euro-
pean Civil Aviation Conference), and to distribute the relevant surveillance information to a
community of user systems. Amongst other techniques, ARTAS makes use of the Interacting
Multiple Model (IMM) filter algorithm and a heuristic such that S-turns of objects are well
processed. The question is; is this heuristic necessary because the IMM is an approximation
or is this heuristic necessary because the underlying model causes a problem?

The goal of this research is to find out what role the underlying model plays in tracking prob-
lems with S-turns. The type of underlying model considered is as follows. For an aircraft a
motion model is assumed. This motion model is a hybrid stochastic dynamic model taking
into account the state (x-coordinate, y-coordinate, velocity, etc.) of the aircraft and its mode
(turn left, straight ahead or turn right). Furthermore, the observation process also satisfies a
hybrid stochastic dynamic model.

Rather than continuing with an approximate filter, in this study we use an exact Bayesian
filter for the motion model and the observation process. Then we will use particle filtering to
evaluate the Bayesian filter equations numerically. If we then find the same phenomenon, we
know that the nature of the problem lies in the motion model and observation process.

Thus, this thesis is about the influence of the motion model on the exact Bayesian filter
equations. The research question is: ’How does the choice for a certain motion model affect
the exact Bayesian filter equations?’

The outline of this thesis will be as follows. First we will derive exact Bayesian filter recur-
sions for several models. Section 2 presents an exact filter recursion for an Euclidean valued
state model. In section 3 the exact Bayesian filer recursion for a hidden Markov model is
derived. In section 4 we derive the exact Bayesian filter recursion for a hidden Markov model
with observer.
To evaluate the exact Bayesian filter equations numerically, we will use particle filtering. Sec-
tion 5 will address particle filters and their convergence. In section 6 we discuss particle filters
for a system with state depending on the mode values at two different moments in time.
Section 7 will address the generalized IMM algorithm. Section 8 presents one-dimensional
target motion models. In section 9 results are given of MC simulations for the Hybrid Par-
ticle filter and the IMM filter algorithm for the models given in section 8. Conclusions and
recommendations are presented in section 10.
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2 Exact filter recursion for Euclidean state model

Consider the Euclidean valued stochastic process {xk}. The system considered satisfies a
stochastic dynamical model of the form:

xk+1 = Fxk + wk (1)

with {wk} is a zero mean, Gaussian white noise process with covariance Q. Furthermore,
xk ∈ Rn, wk ∈ Rn′ and constant F ∈ Rn×n.

Consider the process {yk} which observes the state xk. {yk} satisfies the following equation:

yk = h(xk) + g(xk)vk (2)

where {vk} is a sequence of i.i.d. (independent and identically distributed) standard Gaussian
variables and independent of wk. Further, yk ∈ Rm, vk ∈ Rm′ , and h and g are measurable
mappings of Rn into Rm.

The filtering problem is to estimate the conditional density pxk|Yk(x), x ∈ Rn, of xk given
Yk = {ys; s ≤ k}, i.e. Yk denotes the realization of the process {yk} up to and including
moment k. Following [Blom & Bar-Shalom, 2009], we develop the exact recursive equations for
pxk|Yk(x). The characterization of this conditional density consists of two steps. In those two
steps, we make use of Bayes’ rule [Bagchi, 1993]. Bayes’ rule states that for two random vectors
X = [X1, ..., Xn]T and Y = [Y1, ..., Yn]T , with joint probability density function fX,Y (x, y)
and fY (y) 6= 0, the conditional probability density of X given Y is defined by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
(3)

The first step is a Chapman-Kolmogorov equation [Bagchi, 1993] for the evolution of xk from k
to k+1, i.e. the characterization of pxk+1|Yk(x) as a function of pxk|Yk(x). Let pxk+1,xk|Yk(x, x′)
denote the conditional density of xk+1 = x and xk = x′ given the realization Yk:

pxk+1|Yk(x) =

∫
x′∈Rn

pxk+1,xk|Yk(x, x′)dx′

=

∫
x′∈Rn

pxk+1|xk,Yk(x| x′)pxk|Yk(x′)dx′

=

∫
x′∈Rn

pxk+1|xk(x| x′)pxk|Yk(x′)dx′ (4)

Note that equation (4) uses the transition density pxk+1|xk(x| x′). This transition density can
be expressed as follows. Since xk = x′ is given, the expression Fx′ is deterministic. Now wk
is zero mean Gaussian white noise with covariance Q, thus xk+1 given xk = x′ is a Gaussian
process with mean Fx′ and covariance Q. This leads to the following multivariate normal
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distribution for xk+1 given xk = x′:

pxk+1|xk(x| x′) =
exp

{
−1

2 [x− Fx′]TQ−1[x− Fx′]
}

Det {2πQ}1/2
(5)

Substituting this in (4) yields:

pxk+1|Yk(x) =

∫
x′∈Rn

exp
{
−1

2 [x− Fx′]TQ−1[x− Fx′]
}

Det {2πQ}1/2
pxk|Yk(x′)dx′ (6)

The second step is the Bayes measurement update, i.e. the characterization of pxk+1|Yk+1
(x)

as a function of pxk+1|Yk(x). In the evaluation of this step, we use Bayes’ rule.

pxk+1|Yk+1
(x) =

pxk+1,yk+1|Yk(x, yk+1)

pyk+1|Yk(yk+1)

=
pyk+1|xk+1,Yk(yk+1|x)pxk+1|Yk(x)

pyk+1|Yk(yk+1)

=
pyk+1|xk+1

(yk+1|x)pxk+1|Yk(x)

pyk+1|Yk(yk+1)
(7)

Now {vk} in (2) is a sequence of i.i.d. standard Gaussian variables. Thus the mean of vk
equals zero and the variance of vk equals the m′ ×m′ identity matrix. For given xk = x, the
expression h(xk) in (2) is deterministic. This means that {yk|xk = x} is a Gaussian process
with mean h(x) and variance g(x)g(x)T . This leads to the following multivariate normal
distribution for yk given xk = x:

pyk|xk(y|x) =
exp

{
−1

2 [y − h(x)]T [g(x)g(x)T ]−1[y − h(x)]
}

Det {2πg(x)g(x)T }1/2
(8)

The conditional likelihood pyk+1|xk+1
(yk+1, x) of the realization yk+1 ∈ Rm of the process {yk}

at moment k + 1 given xk+1 = x, is in this case a function of x;

pyk+1|xk+1
(yk+1|x) =

exp
{
−1

2 [yk+1 − h(x)]T [g(x)g(x)T ]−1[yk+1 − h(x)]
}

Det {2πg(x)g(x)T }1/2
(9)

Further the conditional likelihood pyk+1|Yk(yk+1) of the realization yk+1 ∈ Rm of the process
{yk} at moment k + 1 given Yk = {ys; s ≤ k}, is x-invariant. This constant with respect to
x can be found for example through normalization of the conditional density pxk|Yk(x). We
denote the conditional likelihood pyk+1|Yk(yk+1) by ct, because the likelihood could depend on
other variables e.g. time. Thus,

pyk+1|Yk(yk+1) = ct (10)

Now substituting (9) into (7) yields:

pxk+1|Yk+1
(x) =

exp
{
−1

2 [yk+1 − h(x)]T [g(x)g(x)T ]−1[yk+1 − h(x)]
}

ctDet {2πg(x)g(x)T }1/2
pxk+1|Yk(x) (11)

4



Substituting (6) into (11) yields:

pxk+1|Yk+1
(x)

=
exp

{
−1

2 [yk+1 − h(x)]T [g(x)g(x)T ]−1[yk+1 − h(x)]
}

ctDet {2πg(x)g(x)T }1/2

·
∫

x′∈Rn

exp
{
−1

2 [x− Fx′]TQ−1[x− Fx′]
}

Det {2πQ}1/2
pxk|Yk(x′)dx′ (12)

This is a recursive equation for pxk|Yk(x).

Note that if h(x) = Hx and g(x) = G, the system is linear and we can use the Kalman
filter to estimate the state xk from the observations Yk = {ys; s ≤ k} [Bagchi, 1993]. We
choose to use the recursive equation for the conditional density pxk|Yk(x), because we want to
investigate the exact filter equations.

2.1 Further evaluation

In general analytical reduction of (12) is not feasible. An exceptional case however is when
h(x) = Hx and g(x) = G and the conditional density pxk|Yk(x) is Gaussian with mean µ and
variance Σ. In that case we can further evaluate recursive equation (12);

pxk+1|Yk+1
(x)

=
exp

{
−1

2 [yk+1 −Hx]T [GGT ]−1[yk+1 −Hx]
}

ctDet {2πGGT }1/2

·
∫

x′∈Rn

exp
{
−1

2 [x− Fx′]TQ−1[x− Fx′]
}

Det {2πQ}1/2
exp

{
−1

2(x′ − µ)TΣ−1(x′ − µ)
}

Det {2πΣ}1/2
dx′

(13)

The integral in equation (13) can be written as:∫
x′∈Rn

exp
{
−1

2 [x− Fx′]TQ−1[x− Fx′]
}

Det {2πQ}1/2
exp

{
−1

2(x′ − µ)TΣ−1(x′ − µ)
}

Det {2πΣ}1/2
dx′

=

∫
x′∈Rn

exp

{
−1

2
[x′ − p]TS[x′ − p]

}
exp

{
−1

2q
}

Det {2πQ}1/2 Det {2πΣ}1/2
dx′ (14)

with

S = F TQ−1F + Σ−1 (15)

p = S−1(F TQ−1x+ Σ−1µ) (16)

q = xTQ−1x+ µTΣ−1µ− pTSp (17)
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Note that the inverse of S does exist because S is positive definite since F TQ−1F ≥ 0 and
Σ−1 > 0. Now equation (14) yields:∫

x′∈Rn

exp

{
−1

2
[x′ − p]TS[x′ − p]

}
exp

{
−1

2q
}

Det {2πQ}1/2 Det {2πΣ}1/2
dx′

=
exp

{
−1

2q
}

Det {2πQ}1/2 Det {2πΣ}1/2
·Det

{
2πS−1

}1/2
(18)

and equation (13) yields:

pxk+1|Yk+1
(x)

=
exp

{
−1

2 [yk+1 −Hx]T [GGT ]−1[yk+1 −Hx]
}

ctDet {2πGGT }1/2
exp

{
−1

2q
}

Det
{

2πS−1
}1/2

Det {2πQ}1/2 Det {2πΣ}1/2

= K · exp

{
−1

2
[x− r]TL[x− r]

}
(19)

with

S = F TQ−1F + Σ−1

L = Q−1 −Q−1FS−1F TQ−1 +HT (GGT )−1H (20)

r = L−1[Q−1FS−1Σ−1µ+HT (GGT )−1yk+1] (21)

K =
exp

{
−1

2

[
µTΣ−1µ− µTΣ−1S−1Σ−1µ+ yTk+1(GGT )−1yk+1 − rTLr

]}
Det

{
2πS−1

}1/2

ct Det {2πGGT }1/2 Det {2πQ}1/2 Det {2πΣ}1/2

(22)

Note that the inverse of L does exist because L is positive definite sinceQ−1 > 0, Q−1FS−1F TQ−1 ≥
0 and HT (GGT )−1H ≥ 0. We can rewrite L as (see Appendix A.1):

L = [FΣF T +Q]−1 +HT (GGT )−1H (23)

Because (see Appendix A.2):

Q−1FS−1Σ−1µ = [FΣF T +Q]−1Fµ (24)

We can rewrite r as:

r = L−1[Q−1FS−1Σ−1µ+HT (GGT )−1yk+1]

=
(
[FΣF T +Q]−1 +HT (GGT )−1H

)−1 (
[FΣF T +Q]−1Fµ+HT (GGT )−1yk+1

)
(25)

Because pxk+1|Yk+1
(x) is a density, the integral over this density should equal 1. Thus K can

also be found by normalizing the density. That is K should be equal to Det{2πL−1}−1/2.
And ct can be found in two ways, by using K or by evaluating pyk+1|Yk(yk+1). If we look at
the expression for the new mean r, we see that it uses the previous mean µ, the previous

6



variance Σ and the measurement yk+1.

From equation (19) we see that pxk+1|Yk+1
(x) is a Gaussian distribution with mean r and

variance L−1. Thus when pxk|Yk(x) is Gaussian this leads to pxk+1|Yk+1
(x) being Gaussian.
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3 Exact Bayesian filter recursion for a hidden Markov model

Consider a two-component Markov process {xk, θk}, with {xk} an Euclidean valued stochastic
process and {θk} a discrete valued process. The system considered satisfies a hybrid stochastic
dynamical model of the form:

xk+1 = a(θk+1, xk) + b(θk+1)wk (26)

where wk is a zero mean, Gaussian white noise process with covariance Q. Further, {θk}
is an M-valued Markov chain with transition probability matrix Π with components πθη =
p{θk+1 = η| θk = θ}.

The filtering problem is to estimate the conditional density pθk|Xk(θ) with θ ∈M of θk given
Xk = {xs; s ≤ k}, i.e. the realization of the process {xk} up to and including moment k.
Following [Blom & Bar-Shalom, 2009], we develop the exact recursive equations for pθk|Xk(θ).
The characterization of this conditional density consists of two steps.

The first step is to characterize the Chapman-Kolmogorov equation for the evolution of xk
from k to k + 1, i.e. the characterization of pθk+1|Xk(θ) as a function of pθk|Xk(θ):

pθk+1|Xk(η) =
∑
θ∈M

pθk+1,θk|Xk(η, θ) =
∑
θ∈M

pθk+1|θk,Xk(η| θ)pθk|Xk(θ) =
∑
θ∈M

πθηpθk|Xk(θ) (27)

The second step is the Bayes measurement update, i.e. the characterization of pθk+1|Xk+1
(θ)

as a function of pθk+1|Xk(θ). Using Bayes’ rule we have

pθk+1|Xk+1
(η) =

pθk+1,xk+1|Xk(η, xk+1)

pxk+1|Xk(xk+1)

=
pxk+1|θk+1,Xk(xk+1|η)pθk+1|Xk(η)

pxk+1|Xk(xk+1)

=
pxk+1|θk+1,xk(xk+1|η, xk)pθk+1|Xk(η)

pxk+1|Xk(xk+1)
(28)

Note that equation (28) uses the conditional density pxk+1|θk+1,xk(x|η, x′). Given the pair
(θk+1 = η, xk = x′) the expression a(η, x′) is deterministic and wk is a zero mean Gaussian
white noise process with covariance Q. Therefore, the process {xk+1|θk+1 = η, xk = x′} is a
Gaussian process with mean a(η, x′) and covariance b(η)Qb(η)T . Now the conditional density
pxk+1|θk+1,xk(x|η, x′) can be expressed as follows:

pxk+1|θk+1,xk(x|η, x′) =
exp

{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det{2πb(η)Qb(η)T }1/2
(29)
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The conditional likelihood pxk+1| θk+1,xk(xk+1|η, xk) of the realization of xk+1 ∈ Rn of the
process {xk} at moment k + 1, given the realization of xk ∈ Rn of the process {xk} at
moment k, and θk+1 = η, is in this case a function of η:

pxk+1|θk+1,xk(xk+1|η, xk) =
exp

{
−1

2 [xk+1 − a(η, xk)]
T (b(η)Qb(η)T )−1[xk+1 − a(η, xk)]

}
Det{2πb(η)Qb(η)T }1/2

(30)

Further, the conditional likelihood pxk+1|Xk(xk+1) of the realization xk+1 ∈ Rn of the process
{xk} at moment k + 1, given Xk = {xs; s ≤ k}, is (x, η)-invariant. This constant with
respect to (x, η) can be found for example through normalization of the conditional density
pθk|Xk(θ). We denote the conditional likelihood pxk+1|Xk(xk+1) by ct, because the likelihood
could depend on other variables e.g. time. Thus,

pxk+1|Xk(xk+1) = ct (31)

Now substituting (30) and (31) into (28) yields:

pθk+1|Xk+1
(η) =

exp
{
−1

2 [xk+1 − a(η, xk)]
T (b(η)Qb(η)T )−1[xk+1 − a(η, xk)]

}
ct Det{2πb(η)Qb(η)T }1/2

pθk+1|Xk(η)

(32)
Substituting (27) into (32) yields:

pθk+1|Xk+1
(η) =

exp
{
−1

2 [xk+1 − a(η, xk)]
T (b(η)Qb(η)T )−1[xk+1 − a(η, xk)]

}
ct Det{2πb(η)Qb(η)T }1/2

∑
θ∈M

πθηpθk|Xk(θ)

(33)

This is a recursive equation for pθk|Xk(θ).
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4 Exact Bayesian filter recursion for a hidden Markov model
with observer

Consider a two-component Markov process {xk, θk} with {xk} an Euclidean valued stochastic
process and {θk} a discrete valued process. The system considered satisfies a hybrid stochastic
dynamical model of the form:

xk+1 = a(θk+1, xk) + b(θk+1)wk (34)

where wk is a zero mean, Gaussian white noise process with covariance Q. Further, {θk}
is an M-valued Markov chain with transition probability matrix Π with components πθη =
p{θk+1 = η| θk = θ}.

Consider the process {yk} which observes the state xk. {yk} satisfies the following equation:

yk = h(θk, xk) + g(θk, xk)vk (35)

where {vk} is a sequence of i.i.d. standard Gaussian variables of dimension m′ and indepen-
dent of wk.

The filtering problem is to estimate the joint conditional density pxk,θk|Yk(x, θ), x ∈ Rn, θ ∈M,
of the pair (xk, θk) given Yk = {ys; s ≤ k}, i.e. the realization of the process {yk} up to and
including moment k. Following [Blom & Bar-Shalom, 2009], we develop the exact recursive
equations for pxk,θk|Yk(x, θ). The characterization of this conditional density consists of two
steps.

The first step is to characterize the Chapman-Kolmogorov equation for the evolution of the
pair (xk, θk) from k to k + 1, i.e. the characterization of pxk+1,θk+1|Yk(x, θ) as a function of
pxk,θk|Yk(θ):

pxk+1,θk+1|Yk(x, η) =

∫
x′∈Rn

pxk+1,xk,θk+1|Yk(x, x′, η)dx′

=

∫
x′∈Rn

pxk+1,θk+1|xk,Yk(x, η|x′)pxk|Yk(x′)dx′

=

∫
x′∈Rn

∑
θ∈M

pxk+1,θk+1,θk|xk,Yk(x, η, θ|x′)pxk|Yk(x′)dx′

=

∫
x′∈Rn

∑
θ∈M

pxk+1,θk+1|xk,θk,Yk(x, η|x′, θ)pθk|Yk(θ)pxk|Yk(x′)dx′

=

∫
x′∈Rn

∑
θ∈M

pxk+1,θk+1|xk,θk(x, η|x′, θ)pxk,θk|Yk(x′, θ)dx′ (36)
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Note that equation (36) uses the transition density pxk+1,θk+1|xk,θk(x, η|x′, θ). This transition
density can be expressed as follows:

pxk+1,θk+1|xk,θk(x, η|x′, θ) = pxk+1|θk+1,xk,θk(x|η, x′, θ)pθk+1|xk,θk(η|x′, θ)
= pxk+1|θk+1,xk(x|η, x′)pθk+1|θk(η|θ)
= pxk+1|θk+1,xk(x|η, x′)πθ,η (37)

For a given (θk+1 = η, xk = x′), the expression a(η, x′) is deterministic. Now wk is zero mean
Gaussian white noise with covariance Q. Thus {xk+1|θk+1 = η, xk = x′} is a Gaussian process
with mean a(η, x′) and covariance b(η)Qb(η)T . This leads to the following multivariate normal
distribution for xk+1 given (θk+1 = η, xk = x′):

pxk+1|θk+1,xk(x|η, x′) =
exp

{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det{2πb(η)Qb(η)T }1/2
(38)

This leads to the following expression for pxk+1,θk+1|xk,θk(x, η|x′, θ):

pxk+1,θk+1| xk,θk(x, η| x′, θ) = pxk+1|θk+1,xk(x|η, x′)pθk+1|θk(η|θ)

=
exp

{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det{2πb(η)Qb(η)T }1/2
πθη

(39)

Substituting this into (36) yields:

pxk+1,θk+1|Yk(x, η)

=

∫
x′∈Rn

∑
θ∈M

exp
{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det(2πb(η)Qb(η)T )1/2
πθη pxk,θk|Yk(x′, θ)dx′

=

∫
x′∈Rn

exp
{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det(2πb(η)Qb(η)T )1/2

∑
θ∈M

πθη pxk,θk|Yk(x′, θ)dx′

(40)

The second step is the Bayes measurement update, i.e. the characterization of pxk+1,θk+1|Yk+1
(x, θ)

as a function of pxk+1,θk+1|Yk . Using Bayes’ rule we have

pxk+1,θk+1|Yk+1
(x, η) =

pyk+1|xk+1,θk+1
(yk+1|x, η)pxk+1,θk+1|Yk(x, η)

pyk+1|Yk(yk+1)
(41)

Now {vk} in (83) is a sequence of i.i.d. standard Gaussian variables. Thus the mean of vk
equals zero and the variance of vk equals the m′×m′ identity matrix. For a given pair (xk, θk),
the expression h(θk, xk) in (83) is known. This means that {yk+1|xk+1 = x, θk+1 = η} is a
Gaussian process with mean h(η, x) and variance g(η, x)g(η, x)T . This leads to the following
multivariate normal distribution for yk+1 given the pair (xk+1 = x, θk+1 = η):

pyk+1|xk+1,θk+1
(y|x, η) =

exp
{
−1

2 [y − h(η, x)]T (g(η, x)g(η, x)T )−1[y − h(η, x)]
}

Det {2πg(x, η)g(x, η)T }1/2
(42)
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pyk+1|xk+1,θk+1
(yk+1|x, η) is the conditional likelihood of the realization of yk+1 ∈ Rm of the

process {yk} at moment k + 1, given xk+1 = x and θk+1 = η. The conditional likelihood
pyk+1|xk+1,θk+1

(yk+1|x, η) is in this case a function of x and η:

pyk+1|xk+1,θk+1
(yk+1|x, η) =

exp
{
−1

2 [yk+1 − h(η, x)]T (g(η, x)g(η, x)T )−1[yk+1 − h(η, x)]
}

Det {2πg(x, η)g(x, η)T }1/2
(43)

Further, the conditional likelihood pyk+1|Yk(yk+1) of the realization yk+1 ∈ Rm of the process
{yk} at moment k+1, given Yk = {ys; s ≤ k}, is a (x, η)-invariant. This constant with respect
to (x, η) can be found for example through normalization of the conditional density pxk,θk|Yk .
We denote the conditional likelihood pyk+1|Yk(yk+1) by ct, because the likelihood could depend
on other variables e.g. time. Thus,

pyk+1|Yk(yk+1) = ct (44)

Now substituting (43) into (41) yields:

pxk+1,θk+1|Yk+1
(x, η)

=
exp

{
−1

2 [yk+1 − h(η, x)]T (g(η, x)g(η, x)T )−1[yk+1 − h(η, x)]
}

ct Det{2πg(x, η)g(x, η)T }1/2
pxk+1,θk+1|Yk(x, η)

(45)

Substituting (40) into (45) yields:

pxk+1,θk+1|Yk+1
(x, η)

=
exp

{
−1

2 [yk+1 − h(η, x)]T (g(η, x)g(η, x)T )−1[yk+1 − h(η, x)]
}

ct Det {2πg(x, η)g(x, η)T }1/2

·
∫

x′∈Rn

exp
{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det {2πb(η)Qb(η)T }1/2
∑
θ∈M

πθη pxk,θk|Yk(x′, θ)dx′

(46)

This is a recursive equation for pxk+1,θk+1|Yk+1
(x, η). We can rewrite this equation as follows

(see Appendix A.3):

pxk+1,θk+1|Yk+1
(x, η)

=

∫
x′∈Rn

exp
{
−1

2 (r1 + r2)
}

ct (Det {2πg(x, η)g(x, η)T }Det {2πb(η)Qb(η)T })1/2

∑
θ∈M

πθη pxk,θk|Yk(x′, θ)dx′

(47)

where

r1 = [yk+1 − h(η, x)]T (g(η, x)g(η, x)T )−1[yk+1 − h(η, x)] (48)

r2 = [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)] (49)
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5 Particle filter

5.1 Introduction

To investigate the influence of a target motion model on the exact Bayesian filter equations,
we may simulate this filtering process with a particle filter. Since their introduction in 1993
[Gordon et al., 1993], particle filters have become a very popular class of numerical methods
for the solution of optimal estimation problems in non-linear non-Gaussian scenarios. In 1993
the particle filter was known as the bootstrap filter. Particle methods are a subset of the
class of methods known as Sequential Monte Carlo methods. In comparison with the stan-
dard approximation methods, such as the Extended Kalman Filter, the principal advantage
of particle methods is that they do not rely on any local liberalization technique or any func-
tional approximation.

According to the strong law of large numbers, the approximation density almost sure converges
to the exact conditional density if the number of particles used in the approximation is going
to infinity [van der Merwe et al., 2000]. This is why a particle filter has been selected to
investigate the influence of a target motion model on the exact conditional density. As many
particles as necessary for a good enough approximation of the joint conditional density will
be used. The purpose is not to decrease the number of particles but to investigate the joint
conditional density with a particle filter as an arbitrary accurate numerical approximation
technique.

5.2 The filtering problem

Following [Blom & Bloem, 2007], let {xk, θk} be a hybrid state process, with xk assuming
values in Rn and θk assuming values in a finite set M of possible modes, be a hidden state pro-
cess to be estimated from noisy observations {yk}, with yk assuming values in Rm. Consider
the following system of stochastic difference equations, on [0, T ], T <∞,

xk = a(θk, xk−1, wk) (50)

θk = c(θk−1, xk−1, uk) (51)

yk = h(θk, xk, vk) (52)

where the pair (xk, θk) represents the hybrid system state, and yk represents the observation at
moment k, {wk} and {vk} are independent sequences of i.i.d. standard Gaussian variables of
dimension n′ and m′ respectively, {uk} is an {wk, vk}-independent sequence of i.i.d. standard
uniform random variables, {wk, vk, uk} is independent of the Rn ×M valued initial condition
(x0, θ0), with M a set of M discrete modes. Furthermore, a and h are measurable mappings
of M × Rn × Rn′ into Rn and M × Rn × Rm′ into Rm respectively, and c is a measurable
mapping of M×Rn× [0, 1] into M. The mappings a, c and h are time-invariant for notational
simplicity only.

The filtering problem is to estimate the joint conditional density-probability pxk,θk|Yk(x, θ),
x ∈ Rn, θ ∈M, of the pair (xk, θk) given the sequence of observations Yk = {ys; s ≤ k}.
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5.3 SIR particle filter

A common particle filter used in nonlinear filtering studies is the Sampling Importance Resam-
pling (SIR) particle filter. It has shown to form an elegant and general approach towards the
numerical evaluation of the conditional density of the Chapman-Kolmogorov-Bayes (CKB)
filter recursion. The SIR particle filter is also capable in approximating the CKB equations of
a stochastic hybrid Markov process {xk, θk}, with xk assuming values in Rn, and θk assuming
values in a finite set M of possible modes. Therefore the SIR particle filter shall be used.
The SIR particle filter uses Np particles. Each particle j has two-components (xjk, θ

j
k) at

moment k, with xjk assuming an Euclidean value and θjk assuming a discrete value.

Now we will present the SIR particle filter cycle applied to the model given in section 5.2.
Each SIR particle filter cycle from k − 1 to k consists of three steps [Blom & Bloem, 2007]:

� Evolution. For each of the Np particles at moment k − 1, draw a new hybrid particle

(x̄jk, θ̄
j
k) according to the Chapman-Kolmogorov transition kernel. That is for each

particle sample a state at moment k given the state of that particle at moment k − 1,
the transition probability matrix Π for the M-valued Markov chain {θk} and the hybrid
stochastic dynamical model for the process {xk}.

� Correction. For each of the Np particles evaluate µ̄jk as the likelihood of the measure-

ment at moment k, given (x̄jk, θ̄
j
k) and normalize the resulting µ̄jk’s. In this way, each

particle is given a weight on the basis of the measurement and the sampled state of the
particle.

� Resampling. Draw Np independently identically distributed (i.i.d.) hybrid particle

values (xjk, θ
j
k), from the sum of µ̄jk weighted Dirac measures at (x̄jk, θ̄

j
k). That is we

draw Np new particles and each particle (x̄jk, θ̄
j
k) is drawn with probability µ̄jk.

Table 1 gives an overview of the SIR particle filter cycle for the filter problem setting of
equations (50)-(52). In this table, χ(θ, θjk−1) is a 0 − 1 indicator with χ(θ, θjk−1) = 1 if

θ = θjk−1. Note that pyk|xk,θk(yk|x̄jk, θ̄
j
k) is the likelihood of the measurement at moment k

given (x̄jk, θ̄
j
k). The table without step (3) resampling, i.e. Ntres = 0, is given by [Blom &

Bloem, 2007]. Step (3) resampling is given by [Doucet, 1998] and shall be discussed further
on in this section.
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Table 1: SIR Particle Filter (SIR PF) cycle

SIR p̃xk−1,θk−1|Yk−1
→ p̃xk,θk|Yk

(1) Particles
{
µjk−1 ∈ [0, 1], θjk−1 ∈M, xjk−1 ∈ Rn; j = 1, ..., Np

}
p̃xk−1,θk−1|Yk−1

(x, θ) =
Np∑
j=1

µjk−1χ(θ, θjk−1)δ(x− xjk−1)

(2) For j = 1, ..., Np:

(a) Generate wjk and ujk i.i.d. from pwk(w) and puk(u)

(b) Evolution:

θ̄jk = c(θjk−1, x
j
k−1, u

j
k)

x̄jk = a(θ̄jk, x
j
k−1, w

j
k)

(c) Correction:

µ̄jk = µjk−1 · pyk|xk,θk(yk|x̄jk, θ̄
j
k)/ct

with ct such that
Np∑
j=1

µ̄jk = 1

(3) Resampling:

Evaluate N̂eff :

N̂eff = 1∑Np
j=1(µ̄jk)2

If N̂eff ≥ Ntres

µjk = µ̄jk

(xjk, θ
j
k) = (x̄jk, θ̄

j
k)

Else i.e. N̂eff < Ntres

µjk = 1/Np

(xjk, θ
j
k) ∼

Np∑
j=1

µ̄jkχ(θ, θ̄jk)δ(x− x̄
j
k)
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5.4 Convergence of a particle filter

This subsection explains from a theoretical point of view why the SIR particle filter gives a
good estimation of the exact Bayesian filter equations.

5.4.1 Problem statement

Following [Doucet, 1998], we estimate recursively in time the distribution pXk,Θk|Yk(X,Θ),

where Xk = {x0, ..., xk}, Θk = {θ0, ..., θk} and Yk = {y0, ..., yk}, and with X ∈ R(k+1)×n,
Θ ∈ Mk+1. Why we use this approach will be shown further on. From pXk,Θk|Yk(X,Θ) we
obtain pxk,θk|Yk(x, θ) by marginalizing over the variables that are not of interest. Thus, for
pXk,Θk|Yk(X,Θ) = pXk−1,xk,Θk−1,θk|Yk(X ′, x,Θ′, θ):

pxk,θk|Yk(x, θ) =
∑

Θ′∈Mk

∫
X′∈Rk×n

pXk−1,xk,Θk−1,θk|Yk(X ′, x,Θ′, θ)dX ′ (53)

This implies that we can estimate recursively in time the distribution pxk,θk|Yk(x, θ) from
marginalizing the estimation of pXk,Θk|Yk(X,Θ).

Further, the filtering problem is also to estimate the expectation

I(fk) , EpXk,Θk|Yk (X,Θ)(fk(X,Θ)) =
∑

Θ∈Mk+1

∫
X∈R(k+1)×n

fk(X,Θ)pXk,Θk|Yk(X,Θ)dX (54)

for any pXk,Θk|Yk(X,Θ)-integrable fk : R(n+1)×nx ×Mk+1 → R. In other words, for every

function fk : R(n+1)×nx ×Mk+1 → R for which the integral of fk(X,Θ)pXk,Θk|Yk(X,Θ) with
respect to X exists.

The reason why we use pXk,Θk|Yk(X,Θ) instead of pxk,θk|Yk(x, θ) is because pXk,Θk|Yk(X,Θ)
can be expressed by a recursive formula. In the derivation of this recursive formula, we will
use the following:

pA|B(a, b) =
pA,B(a, b)

pB(b)
=
pB|A(b|a)pA(a)

pB(b)
(55)

Using this, pXk,Θk|Yk(X,Θ) can be expressed as follows:

pXk+1,Θk+1|Yk+1
(X,Θ) =

pYk+1|Xk+1,Θk+1
(Yk+1|X,Θ)pXk+1,Θk+1

(X,Θ)

pYk+1
(Yk+1)

(56)

Due to the stochastic differential equations (50), (51) and (52) of the system, pXk+1,Θk+1
(X,Θ)

yields:
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pXk+1,Θk+1
(X,Θ) = pxk+1,θk+1,Xk,Θk(x, η,X ′,Θ′)

= pxk+1,θk+1|Xk,Θk(x, η|X ′,Θ′)pXk,Θk(X ′,Θ′)

= pxk+1,θk+1|xk,θk(x, η|x′, θ)pXk,Θk(X ′,Θ′) (57)

Further, pYk+1|Xk+1,Θk+1
(Yk+1|X,Θ) can be expressed as:

pYk+1|Xk+1,Θk+1
(Yk+1|X,Θ) = pyk+1,Yk|Xk+1,Θk+1

(yk+1, Yk|X,Θ)

= pyk+1|Yk,Xk+1,Θk+1
(yk+1|Yk, X,Θ)pYk|Xk+1,Θk+1

(Yk|X,Θ)

= pyk+1|xk+1,θk+1
(yk+1|x, η)pYk|Xk,Θk(Yk|X ′,Θ′) (58)

pYk+1
(Yk+1) satisfies:

pYk+1
(Yk+1) = pyk+1,Yk(yk+1, Yk) = pyk+1|Yk(yk+1|Yk)pYk(Yk) (59)

Using (56), (57), (58) and (59) we have:

pXk+1,Θk+1|Yk+1
(X,Θ)

=
pYk+1|Xk+1,Θk+1

(Yk+1|X,Θ)pXk+1,Θk+1
(X,Θ)

pYk+1
(Yk+1)

=
pXk,Θk(X ′,Θ′)pXk,Θk(X ′,Θ′)

pYk(Yk)

pxk+1,θk+1|xk,θk(x, η|x′, θ)pxk+1,θk+1|xk,θk(x, η|x′, θ)
pyk+1|Yk(yk+1|Yk)

= pXk,Θk|Yk(X ′,Θ′)
pyk+1|xk+1,θk+1

(yk+1|x, θ)pxk+1,θk+1|xk,θk(x, η|x′, θ)
pyk+1|Yk(yk+1|Yk)

(60)

5.4.2 Approximation of a density through particles

Let us assume that we are able to simulate Np i.i.d. random samples {(Xj
k,Θ

j
k); j = 1, ..., Np}

according to pXk,Θk|Yk(X,Θ). An approximation p̃Xk,Θk|Yk(X,Θ) of pXk,Θk|Yk(X,Θ) is given
by:

p̃Xk,Θk|Yk(X,Θ) =
1

Np

Np∑
j=1

χ(Θ,Θj
k)δ(X −X

j
k) (61)

where χ(Θ,Θj
k) is a 0 − 1 indicator with χ(Θ,Θj

k) = 1 if Θ = Θj
k and with δ(.) the Dirac

δ-function. Given the approximated distribution function in (61), one obtains the following
approximation of I(fk):

19



ĨNp(fk) =
∑

Θ∈Mk+1

∫
X∈R(k+1)×n

fk(X,Θ)p̂Xk,Θk|Yk(X,Θ)dX =
1

Np

Np∑
j=1

fk(X
j
k,Θ

j
k) (62)

From the strong law of large numbers [Ross, 1996],

P

{
lim

Np→∞
INp(fk) = I(fk)

}
= 1 (63)

i.e. INp(fk) converges almost sure to I(fk) when Np →∞.

A problem arises when pXk,Θk|Yk(X,Θ) is unknown, because then we cannot sample from
pXk,Θk|Yk(X,Θ). In that case we may use importance sampling (IS). The basic idea of IS
is to choose a so-called importance function πk(X,Θ), which is a probability distribution
from which one can easily sample. Further, the importance function πk(X,Θ) should satisfy
πk(X,Θ) > 0 whenever pXk,Θk|Yk(X,Θ) > 0. Now we can write:

I(fk) =
∑

Θ∈Mk+1

∫
X∈R(k+1)×n

fk(X,Θ)
pXk,Θk|Yk(X,Θ)

πk(X,Θ)
πk(X,Θ)dX (64)

= Eπk(X,Θ)[fk(X,Θ)w∗k(X,Θ)] (65)

where

w∗k(X,Θ) =
pXk,Θk|Yk(X,Θ)

πk(X,Θ)
(66)

Thus if we simulate Np i.i.d. samples {(Xj
k,Θ

j
k); j = 1, ..., Np} according to πk(X,Θ), an

approximation of I(fk) is:

Î∗Np(fk) =
1

Np

Np∑
j=1

fk(X
j
k,Θ

j
k)w

∗(j)
k (67)

where the importance weights {w∗(j)k , j = 1, ..., Np} are equal to:

w
∗(j)
k = w∗k(X

(j)
k ,Θ

(j)
k ) =

pXk,Θk|Yk(X
(j)
k ,Θ

(j)
k )

πk(X
(j)
k ,Θ

(j)
k )

=
pYk|Xk,Θk(Yk|X

(j)
k ,Θ

(j)
k )pXk,Θk(X

(j)
k ,Θ

(j)
k )

pYk(Yk)πk(X
(j)
k ,Θ

(j)
k )

(68)
The estimate Î∗Np(fk) is unbiased, i.e. E[Î∗Np(fk)|I(fk)] = I(fk) [Ross, 1996], and converges

almost sure according to the strong law of large numbers toward I(fk) when Np →∞ [Doucet,
1998].

Note that pYk(Yk) is (X,Θ)-invariant and therefore it can be found by normalization. Let

w
(j)
k be defined as follows:

w
(j)
k , pYk(Yk)w

∗(j)
k (69)

Then substitution of (68) yields
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w
(j)
k =

pYk|Xk,Θk(Yk|X
(j)
k ,Θ

(j)
k )pXk,Θk(X

(j)
k ,Θ

(j)
k )

πk(X
(j)
k ,Θ

(j)
k )

(70)

Using w
(j)
k rather than w

∗(j)
k , then an estimate of I(fk) becomes:

ÎNp(fk) =
1

ck

Np∑
j=1

fk(X
j
k,Θ

j
k)w

(j)
k (71)

with

ck = pYk(Yk) (72)

Assumption 1

-
{

(X
(j)
k ,Θ

(j)
k ); j = 1, ..., Np

}
is a set of i.i.d. vectors distributed according to πk(X,Θ).

- πk(X,Θ) > 0 for all (X,Θ) ∈ (R(k+1)×n,Mk+1) for which pXk,Θk|Yk(X,Θ) > 0.

- I(fk) exists and is finite.

For Np finite, ÎNp(fk) is biased, but under assumption 1, asymptotically the strong law of
large numbers yields:

P

{
lim

Np→∞
ÎNp(fk) = I(fk)

}
= 1 (73)

i.e. ÎNp(fk) converges almost sure to I(fk) when Np →∞ [Doucet, 1998].

In order to get the SIR particle filter, we choose the following importance function:

πk(X,Θ) = pXk,Θk(X,Θ) (74)

Note that pXk,Θk(X,Θ) should satisfy assumption 1.

Now w
(j)
k satisfies:

w
(j)
k = pYk|Xk,Θk(Yk|X

(j)
k ,Θ

(j)
k ) (75)

Using (58), w
(j)
k+1 can be expressed as:

w
(j)
k+1 = pYk+1|Xk+1,Θk+1

(Yk+1|X
(j)
k+1,Θ

(j)
k+1)

= pYk|Xk,Θk(Yk|X
(j)
k ,Θ

(j)
k )pyk+1|xk+1,θk+1

(yk+1|x
(j)
k+1, θ

(j)
k+1)

= w
(j)
k pyk+1|xk+1,θk+1

(yk+1|x
(j)
k+1, θ

(j)
k+1) (76)
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5.4.3 Algorithm

The algorithm in table 1 without the resampling step follows from recursive equation (60) in
section 5.4.1 and from the approximation of a density through particles in section 5.4.2. We
show this in more detail below.

First we sample Np particles according to the importance function π0(x, θ) = px0,θ0(x, θ).
This is step 1 in table 1.

Then we start the SIR particle filter cycle. During the evolution step, we sample (x̄
(j)
k , θ̄

(j)
k ) ac-

cording to the importance function πk(xk, θk|Xk−1,Θk−1) = pxk,θk|Xk−1,Θk−1
(x, η|X(j)

k−1,Θ
(j)
k−1)

for j = 1, ..., Np, equation (74). These are step 2a and step 2b in table 1.

During the correction step, we evaluate the weights for the particles using equation (76). That

is, w
(j)
k+1 = w

(j)
k pyk+1|xk+1,θk+1

(yk+1|x̄
(j)
k+1, θ̄

(j)
k+1)/cNp with cNp such that

Np∑
j=1

w
(j)
k+1 = 1. This is

step 2c in table 1.

After each cycle, at time k we have the following approximation for pXk,Θk|Yk(X,Θ):

p̂Xk,Θk|Yk(X,Θ) =

Np∑
j=1

w
(j)
k χ(Θ,Θj

k)δ(X −X
j
k) (77)

The approximation for pxk,θk|Yk(x, θ) can be obtained by marginalizing p̂Xk,Θk|Yk(X,Θ) over
the variables that are not of interest. Note that:

p̂Xk,Θk|Yk(X,Θ) = p̂Xk−1,xk,Θk−1,θk|Yk(X ′, x,Θ′, θ)

=

Np∑
j=1

w
(j)
k χ(Θ′,Θj

k−1)χ(θ, θjk)δ(X
′ −Xj

k−1)δ(x− xjk) (78)

Marginalizing over all Xk−1 and Θk−1 yields:

p̂xk,θk|Yk(x, θ) =
∑

Θ′∈Mk

∫
X′∈Rk×n

p̂Xk−1,xk,Θk−1,θk|Yk(X ′, x,Θ′, θ)dX ′

=
∑

Θ′∈Mk

∫
X′∈Rk×n

Np∑
j=1

w
(j)
k χ(Θ′,Θj

k−1)χ(θ, θjk)δ(X
′ −Xj

k−1)δ(x− xjk)dX
′

=

Np∑
j=1

w
(j)
k χ(θ, θjk)δ(x− x

j
k)
∑

Θ′∈Mk

χ(Θ′,Θj
k−1)

∫
X′∈Rk×n

δ(X ′ −Xj
k−1)dX ′

=

Np∑
j=1

w
(j)
k χ(θ, θjk)δ(x− x

j
k) (79)
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5.4.4 Resampling

The basic idea of resampling methods consists of eliminating the trajectories which have weak
normalized importance weights and to multiply trajectories with strong importance weights
[Doucet, 1998]. Without resampling, at some point some particles will have very small weights
while others will have very large weights. Those particles with large weight will have a big
influence. This leads to degeneracy of the algorithm. We adopt as a measure of degeneracy
of the algorithm the effective sample size Neff . When the estimation of the effective sample

size N̂eff is below a fixed threshold Nthres, we use a resampling procedure. The most popular
resampling scheme is the SIR algorithm. This scheme is based on two steps: a first step is an
IS step, the second step is a sampling step based on the obtained discrete distribution. That
is if N̂eff < Nthres then, for j = 1, ..., Np sample an index i(j) distributed according to the

discrete distribution with Np elements satisfying P{i(j) = l} = w
(l)
k for l = 1, ..., Np. Thus

we sample Np values from a discrete distribution that approximates the exact distribution
pXk,Θk|Yk(X,Θ). It seems plausible that for Np → ∞ the obtained discrete distribution ap-
proximates the exact distribution pXk,Θk|Yk(X,Θ) as well.

An estimate N̂eff of Neff is given by [Doucet, 1998]:

N̂eff =
1∑Np

j=1

(
w̃

(j)
k

)2 (80)

When the resampling step is applied at each iteration, i.e. for Nthres very big, a central limit
theorem for the estimate of I(fk) has been established [Berzuini et al., 1997]. This is step 3
in table 1.
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6 Particle filters for a system with state depending on θk−1

and θk

6.1 The filtering problem

Let {xk, θk} be a hybrid state process, with xk assuming values in Rn and θk assuming
values in a finite set M of possible modes, be a hidden state process to be estimated from
noisy observations {yk}, with yk assuming values in Rm. Consider the following system of
stochastic difference equations, on [0, T ], T <∞,

xk = a(θk, θk−1, xk−1, wk)

θk = c(θk−1, xk−1, uk)

yk = h(θk, xk, vk) (81)

where the pair (xk, θk) represents the hybrid system state, and yk represents the observation at
moment k, {wk} and {vk} are independent sequences of i.i.d. standard Gaussian variables of
dimension n′ and m′ respectively, {uk} is an {wk, vk}-independent sequence of i.i.d. standard
uniform random variables, {wk, vk, uk} is independent of the Rn ×M valued initial condition
(x0, θ0), with M a set of M discrete modes. Furthermore, a and h are measurable mappings
of M × Rn × Rn′ into Rn and M × Rn × Rm′ into Rm respectively, and c is a measurable
mapping of M×Rn× [0, 1] into M. The mappings a, c and h are time-invariant for notational
simplicity only.

Thus the difference between this model and the model studied in section 5 is that the stochas-
tic difference equation for the state is now also dependant on θk−1.

The filtering problem is to estimate the joint conditional density-probability pxk,θk|Yk(x, θ),
x ∈ Rn, θ ∈M, of the pair (xk, θk) given the sequence of observations Yk = {ys; s ≤ k}.

6.2 The SIR particle filter for a system with state depending on θk−1 and
θk

Table 2 gives an overview of the SIR particle filter cycle for the model in section 6.1. This
table is based on table 1 in section 5. Only the evolution step in table 2 is different from
the evolution step in table 1. In table 2, χ(θ, θjk−1) is a 0 − 1 indicator with χ(θ, θjk−1) = 1

if θ = θjk−1. Note that pyk|xk,θk(yk|x̄jk, θ̄
j
k) is the likelihood of the measurement at moment k

given (x̄jk, θ̄
j
k).
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Table 2: SIR Particle Filter (SIR PF) cycle; state dependant on θk−1 and θk.

SIR p̃xk−1,θk−1|Yk−1
→ p̃xk,θk|Yk

(1) Particles
{
µjk−1 ∈ [0, 1], θjk−1 ∈M, xjk−1 ∈ Rn; j = 1, ..., Np

}
p̃xk−1,θk−1|Yk−1

(x, θ) =
Np∑
j=1

µjk−1χ(θ, θjk−1)δ(x− xjk−1)

(2) For j = 1, ..., Np:

(a) Generate wjk and ujk i.i.d. from pwk(w) and puk(u)

(b) Evolution:

θ̄jk = c(θjk−1, x
j
k−1, u

j
k)

x̄jk = a(θ̄jk, θ
j
k−1, x

j
k−1, w

j
k)

(c) Correction:

µ̄jk = µjk−1 · pyk|xk,θk(yk|x̄jk, θ̄
j
k)/ct

with ct such that
Np∑
j=1

µ̄jk = 1

(3) Resampling:

Evaluate N̂eff :

N̂eff = 1∑Np
j=1(µ̄jk)2

If N̂eff ≥ Ntres

µjk = µ̄jk

(xjk, θ
j
k) = (x̄jk, θ̄

j
k)

Else if N̂eff < Ntres

µjk = 1/Np

(xjk, θ
j
k) ∼

Np∑
j=1

µ̄jkχ(θ, θ̄jk)δ(x− x̄
j
k)
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6.3 Hybrid Particle filter for a system with state depending on θk−1 and θk

The Hybrid Particle filter (HPF) uses Np/M particles per mode, thus the amount of particles
per mode stays the same [Blom & Bloem, 2007; Blom & Bar-Shalom, 2009]. Whereas SIR
particle filter could have very few particles in one mode at a certain time, when that mode has
very few weight. For the investigation of the conditional densities per mode it is convenient
if there are enough particles in every mode at every time step to get a good estimation of the
conditional density.

The HPF is an extension of the SIR particle filter with a modified set of particles. That is,
the total amount of particles per mode is constant. It seems plausible that for Np → ∞ the
HPF particle filter and the SIR particle filter are the same. The HPF cycle for the model in
section 6.1 is given in table 3 [Blom & Bloem, 2007]. Note that the resampling step is applied
at each iteration, i.e. Nthres is very big.
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Table 3: Hybrid Particle Filter (HPF) cycle; state dependant on θk and θk+1.

HPF p̃xk−1,θk−1|Yk−1
→ p̃xk,θk|Yk

(1) Particles
{
µθ,jk−1 ∈ [0, 1], xθ,jk−1 ∈ Rn, θ ∈M, ; j = 1, ..., Np/M

}
p̃xk−1,θk−1|Yk−1

(x, θ) =
Np/M∑
j=1

µθ,jk−1δ(x− x
θ,j
k−1)

(2a) Mode switching:

uθ,jk−1 ∼ puk(u)

θ̄θ,jk = c(θ, xθ,jk−1, u
θ,j
k )

(2b) Prediction:

wθ,jk ∼ pwk(w) i.i.d., θ ∈M, j ∈ {1, ..., Np/M}

x̄θ,jk = a(θ̄θ,jk , xθ,jk−1, w
θ,j
k )

(2c) Correction:

µθ,jk = µθ,jk−1 · pyk|xk,θk(yk|x̄θ,jk , θ̄θ,jk )/ct

with ct such that
Np/M∑
j=1

∑
θ∈M

µjk = 1

(3) Resampling:

γk(θ) =
Np/M∑
j=1

∑
η∈M

µθ,jk χ(θ̄η,jk , θ)

µθ,jk = γk(θ)M/Np

xθ,jk ∼
Np/M∑
j=1

∑
η∈M

µθ,jk χ(θ, θ̄η,jk )δ(x− x̄θ,jk )/γk(θ)

i.i.d for (θ, j) ∈M× {1, ..., Np/M} if γk(θ) > 0
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7 Generalized Interacting Multiple Model (IMM) algorithm

7.1 The filtering problem

Following [Blom, 1985; 1986] the filtering problem considered addresses jump linear systems
with jumps1 in x which occur simultaneously with and due to jumps in θ. Let {xk, θk} be a
two-component Markov process, with {xk} an Euclidean valued stochastic process and {θk} a
discrete valued process. The system considered satisfies a hybrid stochastic dynamical model
of the form:

xk = A(θk, θk−1)xk−1 +B(θk, θk−1)wk + C(θk, θk−1) (82)

where {wk} is a zero mean, Gaussian white noise process with covariance Q. Further,
{θk} is an M-valued Markov chain with transition probability matrix Π with components
πθη = p{θk+1 = η| θk = θ}. Let x ∈ Rn, θ ∈M and w ∈ Rn′ .

Consider the process {yk} which observes the process {xk}, according to the following equa-
tion:

yk = H(θk)xk +G(θk)vk (83)

where {vk} is a sequence of i.i.d. standard Gaussian variables of dimension m′ and indepen-
dent of wk and y ∈ Rm.

The filtering problem is to estimate the joint conditional density pxk,θk|Yk(x, θ), x ∈ Rn, θ ∈M,
of the pair (xk, θk) given Yk = {ys; s ≤ k}, i.e. the realization of the process {yk} up to and
including moment k.

7.2 Generalized IMM algorithm for jump linear system with hybrid jumps

Following Blom [1986] it is assumed that for all j ∈ M the matrices A, B and C permit the
following representation,

A(i, j) = A1(i)A2(i, j) (84)

B(i, j) =
[
A1(i)B2(i, j) B1(i)

]
(85)

C(i, j) =
[
A1(i)C2(i, j) C1(i)

]
(86)

such that for all i ∈M A2(i, j), B1(i, j)B1(i, j)T and C1(i, j)C1(i, j)T are diagonal matrices.

Using (84), (85) and (86), equation (82) can be decomposed in two equations [Blom, 1986]:

xk = A1(θk)zk−1 +B1(θk)w
′′
k + C1(θk) (87)

zk−1 = A2(θk, θk−1)xk−1 +B2(θk, θk−1)w′k + C2(θk, θk−1) (88)

1[Blom, 1990] (page 74) refers to these jumps as Hybrid jumps.
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and
[
w′k w′′k

]T
= wk.

The generalized IMM algorithm for the filtering problem in section 7.1, with C = 0 is described
in [Blom, 1986] and [Blom, 1985]. This generalized IMM algorithm for the filtering problem
in section 7.1 consists of time extrapolation equations between k− 1 and k and measurement
update equations on moment k. These equations are for the scalars pk(i), the n dimensional
vectors x̂k(i) and the n× n dimensional matrices Rk(i), which are for all i ∈M the statistics
of approximations of pθk|Yk(i) and pxk|θk,Yk(x|i) in the following way:

pθk|Yk(i) ∼= p̂k(i) (89)

pxk|θk,Yk(x|i) ∼=
∫

x∈Rn

Nx̂k(i),R̂k(i)(x)dx (90)

where NE,V is a Gaussian distribution on Rn with parameters E and V .

The time extrapolation equations from k − 1 to k are:

Step I. Jump extrapolation equations for all i ∈M follow from (88).

ẑk−1(i, j) = A2(i, j)x̂k−1(j) + C2(i, j) (91)

Ẑk−1(i, j) = A2(i, j)R̂k−1(j)AT2 (i, j) +B2(i, j)BT
2 (i, j) (92)

p̄k(i) =
∑
j∈M

πjip̂k−1(j) (93)

z̄k−1(i) =
∑
j∈M

πjip̂k−1(j)ẑk−1(i, j)/p̄k(i) (94)

Z̄k−1(i) =
∑
j∈M

πjip̂k−1(j){Ẑk−1(i, j) + [ẑk−1(i, j)− z̄k−1(i)].[ẑk−1(i, j)− z̄k−1(i)]T }/p̄k(i)

(95)

Step II. Kalman time extrapolation equations for all i ∈M follows from equation (87).

x̄k(i) = A1(i)z̄k−1(i) + C1(i) (96)

R̄k(i) = A1(i)Z̄k−1(i)AT1 (i) +B1(i)B1(i)T (97)
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Step III. Measurement update equations for all i ∈M at moment k.

vk(i) = yk −H(i)x̄k(i) (98)

Qk(i) = H(i)R̄k(i)H(i)T +G(i)G(i)T (99)

Kk(i) = R̄k(i)H(i)TQk(i)
−1 (100)

x̂k(i) = x̄k(i) +Kk(i)vk(i) (101)

R̂k(i) = R̄k(i)−Kk(i)H(i)R̄k(i) (102)

p̂k(i) = ckp̄k(i) ‖ Qk(i) ‖−
1
2 exp{−1

2
vTk (i)Qk(i)

−1vk(i)} (103)

with ck a constant such that
∑
i∈M

p̂k(i) = 1.

31



32



8 Target motion models

8.1 Target motion model with two modes

We look at a target motion model for one axis of motion. This model describes the dynamics
of an object moving on a straight line, i.e. a one-dimensional space. The object’s possible
movements are considered to be constant speed and acceleration. The acceleration in this
case can be positive or negative. The model and parametrization is from [Blom & Bloem,
2007].

Consider the following one-dimensional motion model:

x =
[
sx ṡx s̈x

]T
(104)

with sx the target position, ṡx the groundspeed and s̈x the target acceleration.

Consider also a two-component Markov process {xk, θk} with {xk} an Euclidean valued
stochastic process and {θk} a discrete valued process.

The system considered satisfies a hybrid stochastic dynamical model of the form:

xk+1 = A(θk+1)xk +B(θk+1)wk (105)

where wk is a sequence of i.i.d. standard Gaussian variables of dimension one.

The process of switching between the different movements is represented by an M-valued
Markov chain {θk}. M is the set of discrete modes. In this case M = {0, 1}. With θk = 0
representing the object moves with constant speed and with θk = 1 representing the object
is accelerating (or decelerating). The Markov chain {θk} has transition probability matrix Π
with components πθη = p{θk+1 = η|θk = θ}. The following transition probability matrix Π
will be used for the Markov chain {θk}:

Π =

1− ts
τ1

ts
τ1

ts
τ2

1− ts
τ2

 (106)

For A(θ) we have:

A(0) =

1 ts 0
0 1 0
0 0 0

 A(1) =

1 ts
1
2 t

2
s

0 1 ts
0 0 α

 (107)

where ts is the sampling time interval and the parameter α ∈ (0, 1] allows the acceleration
in mode θ = 1 to vary randomly in time. More information about A(θ) can be found in
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appendix B.

For B(θ) we have:

B(0) = σa

0
0
1

 B(1) = σa
√

1− α2

0
0
1

 (108)

where σa represents the standard deviation of the acceleration noise.

Consider the process {yk} which observes the state xk. The process {yk} satisfies the following
equation:

yk = Hxk + σmvk (109)

where H =
[
1 0 0

]
and vk is a sequence of i.i.d. standard Gaussian variables of dimension

one independent of wk. σm represents the standard deviation of the measurement error.

8.2 Target motion model with three modes

We look at a target motion model for one axis of motion. This model describes the dynamics
of an object moving on a straight line, i.e. a one-dimensional space. The objects possible
movements are considered to be constant speed, positive acceleration and negative accelera-
tion. The model is a three modes version of the two modes example in [Blom & Bloem, 2007].
Note that this model makes a distinction between positive and negative acceleration whereas
the model in section 8.1 considers positive and negative acceleration as one mode.

Consider the following one-dimensional motion model:

x =
[
sx ṡx s̈x

]T
(110)

with sx the target position, ṡx the groundspeed and s̈x the target acceleration.

Consider also a two-component Markov process {xk, θk} with {xk} an Euclidean valued
stochastic process and {θk} a discrete valued process.

The system considered satisfies a hybrid stochastic dynamical model of the form:

xk+1 = A(θk+1, θk)xk +B(θk+1, θk)wk + C(θk+1, θk) (111)

where wk is a sequence of i.i.d. standard Gaussian variables of dimension one.

The process of switching between the different movements is represented by an M-valued
Markov chain {θk}. M is the set of discrete modes. In this case M = {−1, 0, 1}. With θk = 0
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representing the object moves with constant speed, with θk = 1 representing the object is
accelerating and with θk = −1 representing the object is decelerating. The Markov chain
{θk} has transition probability matrix Π with components πθη = p{θk+1 = η|θk = θ}. The
following transition probability matrix Π will be used for the Markov chain {θk}:

Π =


1− ts

τ2
ts

2τ2
ts

2τ2

ts
2τ1

1− ts
τ1

ts
2τ1

ts
2τ2

ts
2τ2

1− ts
τ2

 (112)

For A(θk+1, θk) we have:

A(0, 0) = A(1, 0) = A(−1, 0) = A(0, 1) = A(0,−1) = A(1,−1) = A(−1, 1)

=

1 ts 0
0 1 0
0 0 0

 (113)

A(1, 1) = A(−1,−1) =

1 ts α1
2 t

2
s

0 1 αts
0 0 α

 (114)

where ts is the sampling time interval and the parameter α ∈ (0, 1] allows the acceleration in
mode -1 and 1 to vary randomly in time.

For B(θk+1, θk) we have:

B(0, 0) = B(0, 1) = B(0,−1) =

0
0
0

 (115)

B(1, 0) = B(1,−1) = B(−1, 0) = B(−1, 1) =
1

2
σa

1
2 t

2
s

ts
1

 (116)

B(1, 1) = B(−1,−1) =
1

2
σa
√

1− α2

1
2 t

2
s

ts
1

 (117)

where σa represents the standard deviation of acceleration noise.

For C(θk+1, θk) we have:
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C(0, 0) = C(0, 1) = C(0,−1) = C(1, 1) = C(−1,−1) =

0
0
0

 (118)

C(1, 0) = C(1,−1) = σa

1
2 t

2
s

ts
1

 (119)

C(−1, 0) = C(−1, 1) = −σa

1
2 t

2
s

ts
1

 (120)

After convergence this means

Cov(ρk+1) =
1

4
σ2
a (121)

where ρ = s̈x.

Cov(ρk+1) satisfies:

Cov(ρk+1)

=


1
4σ

2
aCov(wk) if (θk+1, θk) = (1, 0), (1,−1), (−1, 0) or (−1, 1)

α2Cov(ρk) + 1
4σ

2
a(1− α2)Cov(wk) if (θk+1, θk) = (1, 1) or (−1,−1)

0 if (θk+1, θk) = (0, 0), (0, 1) or (0,−1)

(122)

Since Cov(wk) = 1 evaluation of (122) yields:

Cov(ρk+1) =

{
1
4σ

2
a if θk+1 = 1 or − 1

0 if θk+1 = 0
(123)

The conditional mean acceleration (or deceleration) of ρk+1 given ρk satisfies:

E(ρk+1|ρk) =



σa if (θk+1, θk) = (1, 0) or (1,−1)

−σa if (θk+1, θk) = (−1, 0) or (−1, 1)

αρk if (θk+1, θk) = (1, 1)

αρk if (θk+1, θk) = (−1,−1)

0 if θk+1 = 0

(124)
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Consider the process {yk} which observes the state xk. The process {yk} satisfies the following
equation:

yk = Hxk + σmvk (125)

where H =
[
1 0 0

]
and vk is a sequence of i.i.d. standard Gaussian variables of dimension

one independent of wk. σm represents the standard deviation of the measurement error.

8.3 Representation of the model like representation (84)-(86)

The model in section 8.2 satisfies the following representation:

A(η, θ) = A1A2(η, θ) (126)

where

A1 =

1 ts
1
2 t

2
s

0 1 ts
0 0 1

 (127)

and

A2(η, θ) =



1 0 0

0 1 0

0 0 α

 if η = θ 6= 0

1 0 0

0 1 0

0 0 0

 otherwise

(128)

Note that for all η, θ ∈M×M A2(η, θ) is a diagonal matrix.

Further,

B(η, θ) = A1B2(η, θ) (129)

where

B2(η, θ) =



[
0 0 0

]T
if (η, θ) = (0, 0), (0, 1) or (0,−1)[

0 0 1
2σa

]T
if (η, θ) = (1, 0), (1,−1), (−1, 0) or (−1, 1)[

0 0 1
2σa
√

1− α2
]T

if (η, θ) = (1, 1) or (−1,−1)

(130)

Finally,

C(η, θ) = A1C2(η, θ) (131)
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with

C2(η, θ) =



[
0 0 0

]T
if (η, θ) = (0, 0), (0, 1), (0,−1), (1, 1) or (−1,−1)[

0 0 σa

]T
if (η, θ) = (1, 0) or (1,−1)[

0 0 −σa
]T

if (η, θ) = (−1, 0) or (−1, 1)

(132)

Following Blom [1986] the model in equation 111 can now be decomposed as follows:

xk = A1zk−1 (133)

zk−1 = A2(θk, θk−1)xk +B2(θk, θk−1)wk + C2(θk, θk−1) (134)

8.4 One-dimensional target motion with non-Gaussian acceleration noise

The Model in section 8.2 permits the target to have a negative value for s̈x while being in
acceleration mode θ = 1, and permits the target to have a positive value for s̈x while being
in deceleration mode θ = −1. This is caused by the acceleration noise wk which is standard
Gaussian. The following model does not permit negative values for s̈x while the target is in
acceleration mode θ = 1 or the other way around.

The system considered satisfies a hybrid stochastic dynamical model of the form:

xk+1 = A(θk+1, θk)xk + θk+1 · abs
(
B(θk+1, θk)wk + C(θk+1, θk)

)
(135)

with xk, wk, A(θk+1, θk), B(θk+1, θk) and C(θk+1, θk) given earlier in this section.
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9 Monte Carlo Simulations

In this section some Monte Carlo (MC) simulation results are given for HPF and the IMM
algorithm. The simulations primarily aim at gaining insight in the behavior and performance
of the filters in case of S-turns.

9.1 HPF cycle for the target motion model with M=2 in section 8.1

In this subsection we will discuss how we use the HPF cycle for the model with two modes
in section 8.1 in the MC simulations.

At each time step k the output x̂HPFk of the HPF cycle is given by

x̂HPFk =

Np/M∑
j=1

∑
θ∈M

µθ,jk xθ,jk (136)

where µθ,jk and xθ,jk are taken after resampling.

The initial mean and covariance of the HPF state estimate x̂HPF0 are given by the initial state
and initial weight of the particles. Similar to [Blom & Bloem, 2007] we start the simulations
with initial state of the particles as follows:

xθ,j0 = x0 +
1

3

[
σaν

θ,j
1 σmν

θ,j
2 σmν

θ,j
3

]T
∀θ, j (137)

where x0 is the exact initial state and νθ,ji , i = 1, 2, 3 are i.i.d. standard Gaussian variables
of dimension one and independent of θ, j. As initial weight we have

µθ,j0 =
Mpθ0
Np

∀θ, j (138)

where
∑
θ∈M

pθ0 = 1 and pθ0 is the initial mode probability of mode θ. We use the following p0:

pθ0 =

{
0.9999 for θ = 0

0.0001 for θ = 1
(139)

In this way the initial mean equals the exact initial state probabilities. Since the same initial
conditions were used in simulations in [Blom & Bloem, 2007], we can compare results.
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In the correction step (2c), we use the following

µθ,jk = µθ,jk−1 · pyk|xk,θk(yk|x̄jk, θ̄
j
k)/ct

= µθ,jk−1

exp
{
−1

2 [yk − h(θ̄jk, x̄
j
k)]

T (g(θ̄jk, x̄
j
k)g(θ̄jk, x̄

j
k)
T )−1[yk − h(θ̄jk, x̄

j
k)]
}

ct Det
{

2πg(θ̄jk, x̄
j
k)g(θ̄jk, x̄

j
k)
T
}1/2

= µθ,jk−1

exp
{
−1

2 [yk −Hx̄jk]
T (σ2

m)−1[yk −Hx̄jk]
}

ct Det {2πσ2
m}

1/2

= exp

{
ln
(
µθ,jk−1

)
− 1

2
[yk −Hx̄jk]

T (σ2
m)−1[yk −Hx̄jk]

}(
ct Det

{
2πσ2

m

}1/2
)−1

(140)

where
(
ct Det

{
2πσ2

m

}1/2
)−1

can be found by normalization. We use equation (140) because

the computer rounds off exp {−c} to zero when c is very large. In this way, round off errors

are smaller since ln
(
µθ,jk−1

)
can compensate relatively large 1

2 [yk −Hx̄jk]
T (σ2

m)−1[yk −Hx̄jk].

The HPF cycle in table 3 is adapted for the one-dimensional target motion model in section
8.1 in table 4.
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Table 4: Hybrid Particle Filter (HPF) cycle adapted from table 3 for one-dimensional target
motion model in section 8.1

HPF p̃xk−1,θk−1|Yk−1
→ p̃xk,θk|Yk

Initiate: xθ,j0 = x0 + σmν
θ,j ∀θ, j

where x0 is the exact initial state and νθ,j ∼ N (0, 1) i.i.d., θ ∈M, j ∈ {1, ..., Np/2}
µθ,j0 =

2pθ0
Np

∀θ, j with pθ0 the given initial mode distribution.

For k = 1 until k = kend

(1) Particles
{
µθ,jk−1 ∈ [0, 1], xθ,jk−1 ∈ Rn, θ ∈M, ; j = 1, ..., Np/2

}
p̃xk−1,θk−1|Yk−1

(x, θ) =
Np/2∑
j=1

µθ,jk−1δ(x− x
θ,j
k−1)

(2a) Mode switching:

uθ,jk−1 ∼ U(0, 1) i.i.d., θ ∈M, j ∈ {1, ..., Np/2}

θ̄θ,jk =

{
0 if uθ,jk ≤ πθ,0
1 if uθ,jk > πθ,0

(2b) Prediction:

wθ,jk ∼ N (0, 1) i.i.d., θ ∈M, j ∈ {1, ..., Np/2}

x̄θ,jk = A(θ̄θ,jk , θ)xθ,jk−1 +B(θ̄θ,jk , θ)wθ,jk + C(θ̄θ,jk , θ)

(2c) Correction:

µθ,jk = exp
{

ln
(
µθ,jk−1

)
− 1

2 [yk −Hx̄jk]
T (σ2

m)−1[yk −Hx̄jk]
}(

ct Det
{

2πσ2
m

}1/2
)−1

with ct such that
Np/2∑
j=1

∑
θ∈M

µθ,jk = 1

(3) Resampling: γk(θ) =
Np/2∑
j=1

∑
η∈M

µθ,jk χ(θ̄η,jk , θ) µθ,jk = γk(θ)2/Np

xθ,jk ∼
Np/2∑
j=1

∑
η∈M

µθ,jk χ(θ, θ̄η,jk )δ(x− x̄θ,jk )/γk(θ)

i.i.d for (θ, j) ∈M× {1, ..., Np/2} if γk(θ) > 0

Output: x̂HPFk =
Np/2∑
j=1

∑
θ∈M

µθ,jk xθ,jk
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9.2 IMM cycle for the target motion model with M=2 in section 8.1

This subsection will show how we use the IMM cycle for the model with two modes in section
8.1 in the MC simulations.

The initial mean and covariance of the IMM state estimate x̂IMM
0 are given by the initial state

estimate x̂0(i), the initial covariance estimate R̂0(i) and initial mode probability estimate p̂0(i)
per mode i ∈M. Similar to [Blom & Bloem, 2007] we start the simulations with:

x̂0(i) = x0 ∀i ∈M (141)

R̂0(i) =
1

9

σ2
m 0 0
0 σ2

a 0
0 0 σ2

a

 ∀i ∈M (142)

p̂0(i) = pi0 ∀i ∈M (143)

where x0 is the exact initial state and pi0 is the initial mode probability of mode i given in
equation (139). We choose to use these initial conditions because the same initial conditions
are used in [Blom & Bloem, 2007].

The IMM time extrapolation equations from k− 1 to k for the one-dimensional target model
in section 8.2 are as follows:

Step I. Jump extrapolation equations for all i ∈M are given by (91)-(95) with A2(i, j) = I,
B2(i, j) = 0 and C2(i, j) = 0.

ẑk−1(i, j) = x̂k−1(j) (144)

Ẑk−1(i, j) = R̂k−1(j) (145)

p̄k(i) =
∑
j∈M

πjip̂k−1(j) (146)

z̄k−1(i) =
∑
j∈M

πjip̂k−1(j)ẑk−1(i, j)/p̄k(i) (147)

Z̄k−1(i) =
∑
j∈M

πjip̂k−1(j){Ẑk−1(i, j) + [ẑk−1(i, j)− z̄k−1(i)].[ẑk−1(i, j)− z̄k−1(i)]T }/p̄k(i)

(148)

Step II. Kalman time extrapolation equations for all i ∈ M are given by (96)-(97) with
A1(i) = A(i), B1(i) = B(i) and C1(i) = 0.
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x̄k(i) = A(i)z̄k−1(i) (149)

R̄k(i) = A(i)Z̄k−1(i)A(i)T +B(i)B(i)T (150)

Step III. Measurement update equations for all i ∈M at moment k are given by (98)-(103)
with G(i) = σm.

vk(i) = yk −Hx̄k(i) (151)

Qk(i) = HR̄k(i)H
T + σ2

m (152)

Kk(i) = R̄k(i)H
TQk(i)

−1 (153)

x̂k(i) = x̄k(i) +Kk(i)vk(i) (154)

R̂k(i) = R̄k(i)−Kk(i)R̄k(i) (155)

p̂k(i) = ckp̄k(i) ‖ Qk(i) ‖−
1
2 exp{−1

2
vTk (i)Qk(i)

−1vk(i)} (156)

with ck a constant such that
∑
i∈M

p̂k(i) = 1.

9.3 HPF cycle for the one-dimensional target motion model with three
modes in section 8.2

In this subsection we will discuss how we use the HPF cycle for the model with three modes
in section 8.2 in the MC simulations.

At each time step k the output x̂HPFk of the HPF cycle is again given by equation (136).

We start the simulations with initial state of the particles with xθ,j0 and µθ,j0 given by equations
(137) and (138). We use the following p0:

pθ0 =


0.00005 for θ = −1

0.9999 for θ = 0

0.00005 for θ = 1

(157)

In this way the initial mean equals the exact initial state probabilities. Similar initial con-
ditions were used in simulations in [Blom & Bloem, 2007]. Thus we can compare results in
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[Blom & Bloem, 2007] with our simulation results.

Furthermore, we use again equation (140) in the correction step (2c).

The HPF cycle in table 3 is adapted for the one-dimensional target motion model in section
8.2 in table 5.
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Table 5: Hybrid Particle Filter (HPF) cycle adapted from table 3 for one-dimensional target
motion model in section 8.2

HPF p̃xk−1,θk−1|Yk−1
→ p̃xk,θk|Yk

Initiate: xθ,j0 = x0 + σmν
θ,j ∀θ, j

where x0 is the exact initial state and νθ,j ∼ N (0, 1) i.i.d., θ ∈M, j ∈ {1, ..., Np/3}
µθ,j0 =

3pθ0
Np

∀θ, j with pθ0 the given initial mode distribution.

For k = 1 until k = kend

(1) Particles
{
µθ,jk−1 ∈ [0, 1], xθ,jk−1 ∈ Rn, θ ∈M, ; j = 1, ..., Np/3

}
p̃xk−1,θk−1|Yk−1

(x, θ) =
Np/3∑
j=1

µθ,jk−1δ(x− x
θ,j
k−1)

(2a) Mode switching:

uθ,jk−1 ∼ U(0, 1) i.i.d., θ ∈M, j ∈ {1, ..., Np/3}

θ̄θ,jk =


−1 if uθ,jk ≤ πθ,−1

0 if πθ,−1 < uθ,jk ≤ πθ,−1 + πθ,0

1 if uθ,jk > πθ,−1 + πθ,0
(2b) Prediction:

wθ,jk ∼ N (0, 1) i.i.d., θ ∈M, j ∈ {1, ..., Np/3}

x̄θ,jk = A(θ̄θ,jk , θ)xθ,jk−1 +B(θ̄θ,jk , θ)wθ,jk + C(θ̄θ,jk , θ)

(2c) Correction:

µθ,jk = exp
{

ln
(
µθ,jk−1

)
− 1

2 [yk −Hx̄jk]
T (σ2

m)−1[yk −Hx̄jk]
}(

ct Det
{

2πσ2
m

}1/2
)−1

with ct such that
Np/3∑
j=1

∑
θ∈M

µθ,jk = 1

(3) Resampling: γk(θ) =
Np/3∑
j=1

∑
η∈M

µθ,jk χ(θ̄η,jk , θ) µθ,jk = γk(θ)3/Np

xθ,jk ∼
Np/3∑
j=1

∑
η∈M

µθ,jk χ(θ, θ̄η,jk )δ(x− x̄θ,jk )/γk(θ)

i.i.d for (θ, j) ∈M× {1, ..., Np/3} if γk(θ) > 0

Output: x̂HPFk =
Np/3∑
j=1

∑
θ∈M

µθ,jk xθ,jk
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9.4 IMM cycle for the target model with M=3 in section 8.2

This subsection will show how we use the IMM cycle for the model with three modes in
section 8.2 in the MC simulations.

The initial mean and covariance of the IMM state estimate x̂IMM
0 are given by the initial state

estimate x̂0(i), the initial covariance estimate R̂0(i) and initial mode probability estimate p̂0(i)
per mode i ∈M. We start the simulations with

x̂0(i) = x0 ∀i ∈M (158)

R̂0(i) =
1

9

σ2
m 0 0
0 σ2

a 0
0 0 σ2

a

 ∀i ∈M (159)

p̂0(i) = pi0 ∀i ∈M (160)

where x0 is the exact initial state and pi0 is the initial mode probability of mode i given in
equation (157). We choose to use these initial conditions because similar initial conditions
are used in [Blom & Bloem, 2007].

The IMM time extrapolation equations from k− 1 to k for the one-dimensional target model
in section 8.2 are as follows:

Step I. Jump extrapolation equations for all i ∈M are given by (91)-(95).

ẑk−1(i, j) = A2(i, j)x̂k−1(j) + C2(i, j) (161)

Ẑk−1(i, j) = A2(i, j)R̂k−1(j)AT2 (i, j) +B2(i, j)BT
2 (i, j) (162)

p̄k(i) =
∑
j∈M

πjip̂k−1(j) (163)

z̄k−1(i) =
∑
j∈M

πjip̂k−1(j)ẑk−1(i, j)/p̄k(i) (164)

Z̄k−1(i) =
∑
j∈M

πjip̂k−1(j){Ẑk−1(i, j) + [ẑk−1(i, j)− z̄k−1(i)].[ẑk−1(i, j)− z̄k−1(i)]T }/p̄k(i)

(165)

Step II. Kalman time extrapolation equations for all i ∈ M are given by (96)-(97) with
B1(i) = 0 and C1(i) = 0.
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x̄k(i) = A1z̄k−1(i) (166)

R̄k(i) = A1Z̄k−1(i)AT1 (167)

Step III. Measurement update equations for all i ∈M at moment k are given by (98)-(103)
with G(i) = σm.

vk(i) = yk −Hx̄k(i) (168)

Qk(i) = HR̄k(i)H
T + σ2

m (169)

Kk(i) = R̄k(i)H
TQk(i)

−1 (170)

x̂k(i) = x̄k(i) +Kk(i)vk(i) (171)

R̂k(i) = R̄k(i)−Kk(i)R̄k(i) (172)

p̂k(i) = ckp̄k(i) ‖ Qk(i) ‖−
1
2 exp{−1

2
vTk (i)Qk(i)

−1vk(i)} (173)

with ck a constant such that
∑
i∈M

p̂k(i) = 1.

9.5 Filter parameters and target scenarios

The results of the particle filtering simulation for accelerating and decelerating scenarios are
shown in this section. The filter parameter values are parameter values used for the filters in
MC simulations in [Blom & Bloem, 2007]. Table 6 gives the filter parameter values that are
being used for the MC simulations.

In the target scenarios considered the target starts at speed zero and accelerates with σa
between 40s and 60s. Then decelerates with σa between 60s and 80s and accelerates again
with σa between 80s and 100s. Figures 1-3 show the position, speed and acceleration of the
target in time for the filter scenarios 1-3. Figures 4-6 show the position, speed and acceleration
of the target in time for the filter scenarios 4 and 5
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Table 6: Parameter values for the filters

Filter α σa σm τ1 τ2 ts

Scenario m/s2 m s s s

1 0.9 50 30 50 5 1

2 0.9 50 30 50 50 1

3 0.9 50 30 5000 5 1

4 0.9 1 30 50 5 1

5 0.9 1 30 5000 500 1

Figure 1: Target position as function of time in the target scenario considered for filter
scenarios 1− 3

Figure 2: Target speed as function of time in the target scenario considered for filter scenarios
1− 3
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Figure 3: Target acceleration as function of time in the target scenario considered for filter
scenarios 1− 3

Figure 4: Target position as function of time in the target scenario considered for filter
scenarios 4 and 5

Figure 5: Target speed as function of time in the target scenario considered for filter scenarios
4 and 5
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Figure 6: Target acceleration as function of time in the target scenario considered for filter
scenarios 4 and 5

To make the comparison between the filters more meaningful, for all filters the same random
number streams were used. That is for each target scenario the observation process {yk} per
MC simulation run is the same for all filters.

The Root Mean Square (RMS) error of the target position is used to compare the filters. The
RMS error of the target position is defined by:

position RMS error =

√√√√ rn∑
i=1

(x̂k,i − xk)2/rn (174)

where rn is the amount of simulation runs and x̂k,i is the filter estimation of xk in run i at
moment k.
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9.6 Filter scenario I

The particle filter parameters2 are σa = 5g, α = 0.9, σm = 30m/s2, τ1 = 50s and τ2 = 5s.

First we determine how many particles we should use in the MC simulations. Therefore MC
simulations containing 100 runs have been performed for the HPF using the model with two
modes (M=2) and three modes (M=3). The number of particles used in these simulations are
Np = 103, Np = 2 · 103, Np = 5 · 103 and Np = 104. The following figures show the measured
RMS error of the target position in time.

Figure 7: Filter scenario I, 100 MC runs, with Np = 103

25g means 5 g-force. 1g is equal to 9.80665m/s2, meters per second squared
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Figure 8: Filter scenario I, 100 MC runs, with Np = 2 · 103

Figure 9: Filter scenario I, 100 MC runs, with Np = 5 · 103
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Figure 10: Filter scenario I, 100 MC runs, with Np = ·104

Based on figures 7, 8, 9 and 10 we choose to use Np = 5 · 103 particles in the MC simulations.

Then we determine how many runs we should use in the MC simulations. Therefore, MC
simulations containing 100, 200 and 500 runs have been performed for the IMM filters using
the models with M = 2 and M = 3. The following figures show the Root Mean Square (RMS)
error of the target position in time.

Figure 11: Filter scenario I, 100 MC runs
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Figure 12: Filter scenario I, 200 MC runs

Figure 13: Filter scenario I, 500 MC runs

Based on figures 11, 12 and 13 we choose to use 200 runs in the MC simulations.
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MC simulations containing 200 runs have been performed for the IMM filters and the HPF
filters using the models with M = 2 and M = 3. Np = 5 · 103 particles are used in these MC
simulations for the HPF filters.

Figure 14 shows the target position RMS error in time for HPF with M = 2 and M = 3.
The filters perform equally well except when the target is switching between acceleration and
deceleration. This happens after 60 seconds and after 80 seconds. Then the peak RMS error
at the start of deceleration is for HPF with M = 2 significantly larger than it is for HPF with
M = 3. However, the peaks of HPF with M = 2 after 60 and 80 seconds are significantly
smaller than the peak after 40 seconds. Furthermore, HPF with M = 3 does not seem to give
any significant peak when the target is switching between acceleration and deceleration.

Figure 14: Filter scenario I, 200 MC runs, Np = 5 · 103

Figure 15 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 2. HPF converges to a lower value during uniform motion than IMM does. As a
side effect, the peak RMS error at the start of acceleration is for HPF slightly higher than it
is for IMM. The filters perform equally well when the target is switching between acceleration
and deceleration. This happens after 60 seconds and after 80 seconds. Both IMM and HPF
peak at this point.

Figure 16 shows the target position RMS error in time for the IMM and the HPF with M = 3.
Again the HPF converges to a lower value during uniform motion than IMM does. As a side
effect, the peak RMS error at the start of acceleration is for HPF slightly higher than it is
for IMM. The filters perform equally well when the target is switching between acceleration
and deceleration. This happens after 60 seconds and after 80 seconds. Both IMM and HPF
do not seem to give any significant peak at this point.
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Figure 15: Filter scenario I, 200 MC runs, Np = 5 · 103

Figure 16: Filter scenario I, 200 MC runs, Np = 5 · 103
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The HPF filter enables us to make a histogram of the distribution of the particles per time
step. A histogram of the position errors xjerror = xjt − xt, j = 1, ..., Np based on an empirical
distribution in one Monte Carlo (MC) simulation run of the particles per mode at a specific
moment in time, t = 46 is shown in figure 17. The mode θ = 1 has the most weight and the
histogram of θ = 1 has a Gaussian shape.

Figure 17: Example of a position histogram based on an empirical density of the particles in
one MC simulation run with HPF M=3 at time t=46

A histogram of the speed errors vjerror = vjt − vt, j = 1, ..., Np with v = ṡx, based on an
empirical distribution in one Monte Carlo (MC) simulation run of the particles per mode at a
specific moment in time, t = 46 is shown in figure 18. The histogram of θ = −1 lies the most
to the left, the histogram of θ = 1 lies the most to the right and the histogram of θ = 0 lies
in between. The horizontal position of a histogram relative to the horizontal position of the
other histograms is consistent with the mode value. A particle in mode θ = 1 is accelerating
and its speed should therefore increase.

A histogram of the accelerations ρjt , j = 1, ..., Np with ρ = s̈x, based on an empirical dis-
tribution in one MC simulation run of the particles per mode at a specific moment in time,
t = 46 is shown in figure 19. In figure 19 we see that some particles in deceleration mode
θ = −1 have a positive value for s̈x. Thus, while they are in deceleration mode, they are
accelerating. This is a contradiction that is caused by the target motion model. The target
motion model permits the target to have a positive acceleration in deceleration mode because
the prior deceleration value is assumed to satisfy a Gaussian distribution.
The horizontal position of a histogram relative to the horizontal position of the other his-
tograms is consistent with the mode value. Furthermore, the histogram of the mode θ = 0 is
just one bar around zero. Due to the target motion model all particles in mode θ = 0 have
zero acceleration.
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Figure 18: Example of a velocity histogram based on an empirical density of the particles in
one MC simulation run with HPF M=3 at time t=46

Figure 19: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=46
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Figure 20 shows the target position RMS error in time for the HPF filter with M = 3 and the
HPF filter using the model with non-Gaussian acceleration noise from section 8.4 (denoted
by ’Abs HPF M=3’). The filters perform equally well and do not seem to differ significantly
from each other at any moment in time.

Figure 20: Filter scenario I, 200 MC runs, Np = 5 · 103

Figure 21 shows the mode distribution in time for HPF with M = 2 in one MC simulation
run. The mode distribution seems more stable before the fist switch after 40s.

Figure 21: Filter scenario I, HPF M = 2, 1 MC run, Np = 5 · 103
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Figure 22 shows the mode distribution in time for HPF with M = 3 in one MC simulation
run. The mode distribution seems more stable before the fist switch after 40s. Furthermore,
the mode distribution of HPF with M = 3 seems more stable than the mode distribution of
HPF with M = 2.

Figure 22: Filter scenario I, HPF M = 3, 1 MC run, Np = 5 · 103

Figure 23 shows the mode distribution in time for Abs HPF with M = 3 in one MC simulation
run. The mode distribution seems more stable before the fist switch after 40s. The mode
distribution for HPF with M = 3 seems more stable than the mode distribution for Abs HPF.

Figure 23: Filter scenario I, Abs HPF M = 3, 1 MC run, Np = 5 · 103
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9.7 Filter scenario II

The particle filter parameters are σa = 5g, α = 0.9, σm = 30m/s2, τ1 = 50 and τ2 = 50.
MC simulations containing 200 runs have been performed for the IMM filters and the HPF
filters using the models with M = 2 and M = 3. Np = 5 · 103 particles are used in these MC
simulations for the HPF filters.

Figure 24 shows the target position RMS error in time for the HPF filter with M = 2 and
M = 3. The RMS position error peak after 40s is as high as the peak after 40s in scenario
I. Where in scenario I HPF with M = 3 gave no significant peak after 60s and after 80s, in
scenario II both filters peak after 60s and 80s. However, the peaks after 60 and 80 seconds
are still significantly smaller than the peak after 40 seconds.

Figure 24: Filter scenario II, 200 MC runs, Np = 5 · 103

Figure 25 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 2. The peaks after 60s and 80s of IMM seems to be slightly smaller than the peaks
of HPF. Furthermore, the peak after 40s of IMM is slightly higher then the peak after 40s of
IMM with M = 2 in scenario I.

Figure 26 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 3. Both filters seem to perform equally well after 60s and 80s.
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Figure 25: Filter scenario II, 200 MC runs, Np = 5 · 103

Figure 26: Filter scenario II, 200 MC runs, Np = 5 · 103
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A histogram of the position errors xjerror = xjt − xt, j = 1, ..., Np based on an empirical
distribution in one Monte Carlo (MC) simulation run of the particles per mode at a specific
moment in time, t = 46 is shown in figure 27. The Gaussian shape we saw in figure 17 is less
visible in figure 27.

Figure 27: Example of a position histogram based on an empirical density of the particles in
one MC simulation run with HPF M=3 at time t=46, Np = 5 · 103

A histogram of the speed errors vjerror = vjt − vt, j = 1, ..., Np with v = ṡx, based on an
empirical distribution in one Monte Carlo (MC) simulation run of the particles per mode at a
specific moment in time, t = 46 is shown in figure 28. The horizontal position of a histogram
relative to the horizontal position of the other histograms is consistent with the mode value.

A histogram of the accelerations ρjt , j = 1, ..., Np with ρ = s̈x, based on an empirical distribu-
tion in one MC simulation run of the particles per mode at a specific moment in time, t = 46
is shown in figure 29. What we saw in figure 19 we see also in figure 29; some particles in
deceleration mode θ = −1 have a positive value for s̈x.
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Figure 28: Example of a velocity histogram based on an empirical density of the particles in
one MC simulation run with HPF M=3 at time t=46, Np = 5 · 103

Figure 29: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=46, Np = 5 · 103
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The figures 30-32 show histograms of the position, speed and acceleration based on an em-
pirical distribution in one MC simulation run, using the HPF M=3 filter, of the particles per
mode at a specific moment in time, t = 46. Np = 5 · 104 particles are used in this simulation.
The Gaussian shape we saw in figure 17 is visible in figure 30. In figure 31 the horizontal
position of a histogram is relative to the horizontal position of the other histograms consis-
tent with the mode value. In figure (32) the histogram at mode θ = −1 shows a peak around
ρ = 50. Thus the mode for deceleration tends to follow the acceleration mode. But the peak
around ρ = −40 is larger than the one around ρ = 50.

Figure 30: Example of a position histogram based on an empirical density of the particles in
one MC simulation run with HPF M=3 at time t=46, Np = 5 · 104

Figure 31: Example of a velocity histogram based on an empirical density of the particles in
one MC simulation run with HPF M=3 at time t=46, Np = 5 · 104
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Figure 32: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=46, Np = 5 · 104
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Let us look at the histograms just after the mode switch after 60s. The following figures
show histograms of the accelerations ρjt , j = 1, ..., Np with ρ = s̈x, based on an empirical
distribution in one MC simulation run of the particles per mode at some specific moments
in time, t = 60, t = 61, t = 62, t = 63 and t = 64. Np = 5 · 104 particles are used in this
simulation.

Figure 33: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=60, Np = 5 · 104

Figure 34: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=61, Np = 5 · 104
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Figure 35: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=62, Np = 5 · 104

Figure 36: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=63, Np = 5 · 104
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Figure 37: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with HPF M=3 at time t=64, Np = 5 · 104

In figures 33-37 we see how the histograms change as time progresses. At t = 60 the histogram
for the mode θ = −1 is shaped by two peaks. One with negative values and one with positive
values. But the weight of mode θ = 1 is much larger than the weight of mode θ = −1. As time
progresses, first the peak in the histogram for mode θ = −1 with positive values disappears
and the histogram of mode θ = 1 shifts to the left. Then the weight shifts to mode θ = −1
and the histogram of mode θ = 1 shifts more to the left. Finally, the histogram of mode θ = 1
shifts back to the right and we end with two histograms shaped by one peak. The histogram
of mode θ = −1 with negative values and the histogram of mode θ = 1 with positive values.
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Figure 38 shows the target position RMS error in time for the HPF filter with M = 3 and the
HPF filter using the model with non-Gaussian acceleration noise from section 8.4 (denoted
by ’Abs HPF M=3’). The filters perform equally well, except when the target is switching
between acceleration and deceleration. The peaks after 60s and 80s of Abs HPF seem to be
slightly earlier then the peaks of HPF. Further, the peak after 80s of Abs HPF is slightly
smaller than the peak of HPF after 80s.

Figure 38: Filter scenario II, 200 MC runs, Np = 5 · 103

Figures 39-41 show histograms of the position, speed and acceleration based on an empirical
distribution in one MC simulation run using the Abs HPF M=3 filter, of the particles per
mode at a specific moment in time, t = 46. Np = 5 · 104 particles are used in this simulation.
The Gaussian shape we saw in figure 17 and 30 is visible in figure 39. Furthermore, the
horizontal position of the histogram of mode θ = 1 in figure 39 seems more to the right than
the histogram of mode θ = −1. In figure 40 we see again that the horizontal position of a
histogram relative to the horizontal position of the other histograms is consistent with the
mode value.
The target motion model does not permit the target to have a positive acceleration value in
deceleration mode. In figure 41 we see no particles in deceleration mode θ = −1 that have a
positive value for s̈x.
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Figure 39: Example of a position histogram based on an empirical density of the particles in
one MC simulation run with Abs HPF M=3 at time t=46, Np = 5 · 104

Figure 40: Example of a velocity histogram based on an empirical density of the particles in
one MC simulation run with Abs HPF M=3 at time t=46, Np = 5 · 104
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Figure 41: Example of an acceleration histogram based on an empirical density of the particles
in one MC simulation run with Abs HPF M=3 at time t=46, Np = 5 · 104

Figure 42 shows the mode distribution in time for the HPF with M = 2 in one MC simulation
run. The mode distribution seems more stable than the mode distribution in scenario I figure
21.

Figure 42: Filter scenario II, HPF M = 2, 1 MC run, Np = 5 · 103

Figure 43 shows the mode distribution in time for the HPF with M = 3 in one MC simulation
run. The mode distribution of figure 43 seems more stable than the mode distribution in
scenario I figure 21. Furthermore, the mode distribution of HPF with M = 3 in figure 43
seems more stable than the mode distribution of HPF with M = 2 in figure 42.
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Figure 43: Filter scenario II, HPF M = 3, 1 MC run, Np = 5 · 103

Figure 44 shows the mode distribution in time for the Abs HPF with M = 3 in one MC
simulation run. The mode distribution for the HPF M = 3 seems more stable than the mode
distribution for the Abs HPF. But, the mode distribution of Abs HPF in figure 44 seems
more stable than the mode distribution of Abs HPF in scenario II figure 23.

Figure 44: Filter scenario II, Abs HPF M = 3, 1 MC run, Np = 5 · 103
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9.8 Filter scenario III

The particle filter parameters are σa = 5g, α = 0.9, σm = 30m/s2, τ1 = 5000 and τ2 = 5.
MC simulations containing 200 runs have been performed for the IMM filters and the HPF
filters using the models with M = 2 and M = 3. Np = 5 · 103 particles are used in these MC
simulations for the HPF filters.

Figure 45 shows the target position RMS error in time for the HPF filter with M = 2 and
M = 3. The RMS position error peak after 40s is higher than the peak after 40s in scenarios
I and II. Unlike in scenarios I and II, in scenario III HPF with M = 2 seems to perform worse
than HPF with M = 3. Furthermore, HPF with M = 3 does not seem to give any significant
peak when the target is switching between acceleration and deceleration. Figure 45 shows
the target position RMS error in time for the HPF filter with M = 2 and M = 3.

Figure 45: Filter scenario III, 200 MC runs, Np = 5 · 103

Figure 46 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 2. IMM seems to be more stable than HPF. Furthermore, the peak after 40s of
IMM is higher than the peak after 40s of IMM with M = 2 in scenarios I and II. IMM with
M = 2 peaks when the target is switching between acceleration and deceleration. The peaks
in scenario III are slightly higher than in scenarios I and II.

Figure 47 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 3. Both filters seem to perform equally well. IMM gives a higher peak after 40s
than HPF.
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Figure 46: Filter scenario III, 200 MC runs, Np = 5 · 103

Figure 47: Filter scenario III, 200 MC runs, Np = 5 · 103

75



Figure 48 shows the target position RMS error in time for the IMM filter with M = 2 and
M = 3. IMM with M = 3 performs better than IMM with M = 2.

Figure 48: Filter scenario V, 200 MC runs, Np = 5 · 103

Figure 49 shows the target position RMS error in time for the HPF filter with M = 3 and the
HPF filter using the model with non-Gaussian acceleration noise from section 8.4 (denoted
by ’Abs HPF M=3’). Both filters perform equally well.

Figure 49: Filter scenario III, 200 MC runs, Np = 5 · 103
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9.9 Filter scenario IV

The particle filter parameters are σa = 0.1g, α = 0.9, σm = 30m/s2, τ1 = 50 and τ2 = 5.
MC simulations containing 200 runs have been performed for the IMM filters and the HPF
filters using the models with M = 2 and M = 3. Np = 5 · 103 particles are used in these MC
simulations for the HPF filters.

Figure 50 shows the target position RMS error in time for HPF with M = 2 and M = 3. Both
filters seem to perform equally well, but when the target is switching between acceleration
and deceleration HPF with M = 3 seems to perform slightly better than HPF with M = 2.

Figure 50: Filter scenario IV, 200 MC runs, Np = 5 · 103

Figure 51 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 2. The peaks of IMM seem to be later than the peaks of HPF. Furthermore, HPF
converges to a lower value during uniform motion than IMM does.

Figure 52 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 3. The first peak after 40s of IMM is later than the first peak of HPF. When the
target is switching between acceleration and deceleration the filters seem to perform equally
well. HPF converges to a lower value during uniform motion than IMM does.
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Figure 51: Filter scenario IV, 200 MC runs, Np = 5 · 103

Figure 52: Filter scenario IV, 200 MC runs, Np = 5 · 103
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Figure 53 shows the target position RMS error in time for the IMM filter with M = 2 and
M = 3. IMM with M = 3 performs better than IMM with M = 2. Both filters peak at the
same moments in time.

Figure 53: Filter scenario IV, 200 MC runs, Np = 5 · 103
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Figure 54 shows the target position RMS error in time for the HPF filter with M = 3 and the
HPF filter using the model with non-Gaussian acceleration noise from section 8.4 (denoted
by ’Abs HPF M=3’). When the target is switching between acceleration and deceleration,
Abs HPF seems more stable than HPF. The position RMS peaks of Abs HPF are smaller but
Abs HPF converges less when the target is switching between acceleration and deceleration.

Figure 54: Filter scenario IV, 200 MC runs, Np = 5 · 103
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9.10 Filter scenario V

The particle filter parameters are σa = 0.1g, α = 0.9, σm = 30m/s2, τ1 = 5000 and τ2 = 500.
MC simulations containing 200 runs have been performed for the IMM filters and the HPF
filters using the models with M = 2 and M = 3. Np = 5 · 103 particles are used in these MC
simulations for the HPF filters.

Figure 55 shows the target position RMS error in time for HPF with M = 2 and M = 3.
Both filters show an equally large peak after 40s. When the target is switching between
acceleration and deceleration, HPF with M = 2 seems more stable than HPF with M = 3.

Figure 55: Filter scenario V, 200 MC runs, Np = 5 · 103

Figure 56 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 2. Both filters seem to perform equally well.

Figure 57 shows the target position RMS error in time for the IMM filter and the HPF filter
with M = 3. IMM seems to perform better than HPF. When the target is switching between
acceleration and deceleration IMM shows smaller peaks than HPF.
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Figure 56: Filter scenario V, 200 MC runs, Np = 5 · 103

Figure 57: Filter scenario V, 200 MC runs, Np = 5 · 103
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Figure 58 shows the target position RMS error in time for the IMM filter with M = 2 and
M = 3. When the target is switching between acceleration and deceleration IMM with M = 2
seems more stable than IMM with M = 3.

Figure 58: Filter scenario V, 200 MC runs, Np = 5 · 103
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Figure 59 shows the target position RMS error in time for the HPF filter with M = 3 and the
HPF filter using the model with non-Gaussian acceleration noise from section 8.4 (denoted
by ’Abs HPF M=3’). HPF seems to perform much better than Abs HPF. Furthermore, when
the target is switching between acceleration and deceleration Abs HPF peaks when HPF has
a low point and HPF peaks when Abs HPF has a low point.

Figure 59: Filter scenario V, 200 MC runs, Np = 5 · 103
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10 Conclusions and recommendations

In this thesis we investigated the influence of a target motion model on the exact Bayesian
filter recursion. The research question is; ’How does the choice for a certain motion model
affect the exact Bayesian filter equations?’

10.1 Conclusions

In this thesis we derived the exact Bayesian filter recursions for several target motion models.
We used particle filtering to evaluate the Bayesian filter equations numerically. The results of
MC simulations were compared with results of IMM MC simulations. In the MC simulations
we used several target motion models, several target scenarios and several filter scenarios.

All filters perform relatively well when the target is switching between acceleration and de-
celeration. That is, the largest peak in position RMS error of all filters in all filter scenarios
appears after the target switches from uniform mode to acceleration. The results show no
effects of the tracking problems caused by S-turns which we expected.

For all five filter scenarios IMM performs better than HPF. In the first four target scenarios
IMM and HPF using the target motion model with three modes perform better than IMM
and HPF using the target motion model with two modes. Furthermore, with frequent mode
switching and relatively large target acceleration noise (filter scenario I and III), the filters
using the model with three modes gave no significant peak in position RMS error when the
target was switching between acceleration and deceleration. However, with infrequent mode
switching and relatively few target acceleration noise (filter scenario V), the filters using the
model with two modes perform better than the filters using the model with three modes.

Then, we showed histograms of accelerations based on an empirical distribution in one Monte
Carlo (MC) simulation run with HPF using the model with three modes, of the particles per
mode at a specific moment in time. These histograms showed that some particles in deceler-
ation mode have a positive acceleration value. The target motion model permits the target
to have a positive acceleration in deceleration mode because the prior deceleration value is
assumed to satisfy a Gaussian distribution. Therefore, we tested the HPF filter with another
model. This model does not permit the target to have a positive acceleration in deceleration
mode (section 8.4). We compared the results of MC simulations of the HPF filter using these
two models. In the first four target scenarios the HPF filter using the model of section 8.4 (Abs
HPF) performs better than HPF. However, in scenario V Abs HPF performs worse than HPF.
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10.2 Recommendations

In this project we used a simple target motion model of three modes that does not permit
the target to have a positive acceleration in deceleration mode. We recommend to do further
research to make a better target motion model that does not permit the target to have a
positive acceleration in deceleration mode.

This project showed that a filter using the target motion model with three modes performs
better than a filter using the target motion model with two modes. Future work could be
done to increase the amount of modes in the target motion model to increase the performance
of the filters.

All scenarios showed the largest peak in position RMS error after 40s. More research could
be done to decrease the hight of this peak. For example by making sure that the position
RMS error cannot converge below a certain low value. This could decrease the peak after
40s.
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A Appendix

A.1 Derivation of the formula in equation (23)

L = Q−1 −Q−1FS−1F TQ−1 +HT (GGT )−1H

= Q−1 −Q−1F [F TQ−1F + Σ−1]−1F TQ−1 +HT (GGT )−1H

= Q−1 −Q−1FΣ[F TQ−1FΣ + I]−1F TQ−1 +HT (GGT )−1H

= Q−1 −Q−1FΣF TQ−1[FΣF TQ−1 + I]−1 +HT (GGT )−1H

=
(
Q−1[FΣF TQ−1 + I]−Q−1FΣF TQ−1

)
[FΣF TQ−1 + I]−1 +HT (GGT )−1H

= Q−1[FΣF TQ−1 + I]−1 +HT (GGT )−1H

= [FΣF T +Q]−1 +HT (GGT )−1H (175)

A.2 Derivation of the formula in equation (24)

Q−1FS−1Σ−1µ = Q−1F [F TQ−1F + Σ−1]−1Σ−1µ

= Q−1FΣ[F TQ−1FΣ + I]−1Σ−1µ

= Q−1[FΣF TQ−1 + I]−1Fµ

= [FΣF T +Q]−1Fµ (176)

A.3 Derivation of the recursive formula in equation (47)

pxk+1,θk+1|Yk+1
(x, η)

=
exp

{
−1

2 [yk+1 − h(η, x)]T (g(η, x)g(η, x)T )−1[yk+1 − h(η, x)]
}

ct Det {2πg(x, η)g(x, η)T }1/2

·
∫

x′∈R4

exp
{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det {2πb(η)Qb(η)T }1/2
∑
θ∈M

πθη pxk,θk|Yk(x′, θ)dx′

=

∫
x′∈R4

exp
{
−1

2 [yk+1 − h(η, x)]T (g(η, x)g(η, x)T )−1[yk+1 − h(η, x)]
}

ct Det {2πg(x, η)g(x, η)T }1/2

·
exp

{
−1

2 [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)]
}

Det {2πb(η)Qb(η)T }1/2
∑
θ∈M

πθη pxk,θk|Yk(x′, θ)dx′

=

∫
x′∈R4

exp
{
−1

2 (r1 + r2)
}

ct (Det {2πg(x, η)g(x, η)T }Det {2πb(η)Qb(η)T })1/2

∑
θ∈M

πθη pxk,θk|Yk(x′, θ)dx′

(177)
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where

r1 = [yk+1 − h(η, x)]T (g(η, x)g(η, x)T )−1[yk+1 − h(η, x)] (178)

r2 = [x− a(η, x′)]T (b(η)Qb(η)T )−1[x− a(η, x′)] (179)
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B One-dimensional target motion model

Consider the following one-dimensional motion model:

x =
[
sx ṡx s̈x

]T
(180)

with sx the target position, ṡx the groundspeed and s̈x the target acceleration.

The model will presume that the target moves with (nearly) constant acceleration. Thus
s̈x = ρ and

...
s x = 0.

When we assume that acceleration s̈x is time-invariant, then

ẋ =
[
ṡx s̈x 0

]T
=

0 1 0
0 0 1
0 0 0

x (181)

In the discrete-time setting we have:

xk =
[
sx(kts) ṡx(kts) s̈x(kts)

]
(182)

with ts the sampling time interval. Now xk+1 satisfies:

xk+1 = xk +

(k+1)ts∫
kts

ẋdt (183)

Since s̈x(t) = ρ, ṡx satisfies ṡx(t) = ṡx(t0) + (t− t0)ρ.

The difference between xk and xk+1 equals:

xk+1 − xk =

(k+1)ts∫
kts

ẋ(t)dt

=

(k+1)ts∫
kts

tsṡx(t0) + (t− t0)ρ
ρ
0

 dt
=

tsṡx(kts) + 1
2 t

2
sρ

tsρ
0


=

tsṡx(kts) + 1
2 t

2
s s̈x(kts)

tss̈x(kts)
0


=

0 ts
1
2 t

2
s

0 0 ts
0 0 0

xk (184)
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Now (183) yields:

xk+1 = xk +

0 ts
1
2 t

2
s

0 0 ts
0 0 0

xk (185)

which we can write as:

xk+1 =

1 ts
1
2 t

2
s

0 1 ts
0 0 1

xk (186)

Define A as:

A =

1 ts
1
2 t

2
s

0 1 ts
0 0 1

 (187)

xk+1 can now be written as:

xk+1 = Axk (188)

In order to represent influence of wind and other uncertainties we add noise. We write
s̈x(kts) = ρk.

ρk+1 = αρk +
1

2
σa
√

1− α2wk (189)

where wk is a sequence of i.i.d. standard Gaussian variables of dimension one.

In this way for the mean and covariance of ρk+1 holds:

E(ρk+1) = αE(ρk) (190)

Cov(ρk+1) = α2Cov(ρk) + σ2
a(1− α2)Cov(wk) (191)
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