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Abstract We study automated parameter searches on
single neurons and two cell networks. In order to get
round the effects of unknown initial conditions we fo-
cus on methods that are based on synchronization of the
dynamical system to observed time series. The param-
eters are estimated with a slow dynamic equation that
converges to the best value of the parameter. As this im-
plementation does not require restarts parameters can
be estimated real-time. For single cells it is possible to
identify conductances of different channels, even when
the observed series have a lower resolution than the in-
tegration step. Synchronization becomes problematic in
two cell networks with a single unidirectional connec-
tion, because the sending neuron cannot not be syn-
chronized to a desired state. A new method is developed
that is, contrary to other synchronization-based meth-
ods, able to estimate network parameters. This method
temporarily slows down or speeds up a neuron in order
to get the spike timing correct. We show that conver-
gence will not occur because this new method because
it has chaotic dynamics. However, we are still able to
identify proper values of the parameters as the chaotic
attractor has basins of attraction around the optimal
parameter values.

1 Introduction

Models of neurons and neuronal networks can provide
new physiological insights in the workings of the brain
and several brain disorders. A major challenge in com-
putational neuroscience is the correct identification of
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the various parameters used in these models. An ex-
ample is epilepsy: some seizures could be induced by
changing a single parameter only [10]. Such seizures
may be predicted successfully if this parameter can be
identified from an EEG. Estimating such parameters
requires a detailed model of the neurons and networks
that generate the behavior.

Many models exist for single neurons, some are re-
alistic in the sense that they model the flow of ions
through the cell membrane whereas others are reduced
models, matching only the observable behavior of neu-
rons. The behavior of both model classes is strongly
related to the parameters of the models and it is often
hard to predict the behavior of a model for a given set
of parameters. The inverse problem, finding parameters
for a specific type of behavior, is generally even harder.
Even though the reduced models have fewer parame-
ters than the conductance-based models, the parame-
ters often lose their physical interpretation, making it
hard to compare the parameters with physiological val-
ues obtained by experiments. It is therefore desirable to
automate parameter searches: an algorithm that would
find a set of parameters corresponding to a specific type
of behavior. This enables one to distinguish different
types of neurons in a better way: instead of compar-
ing the behavior of the cell, the values underlying this
behavior can be compared. These concepts of parame-
ter searches, as described above, and some implemen-
tations are discussed in [11,9,1].

As neurons are the building blocks of the brain,
a proper understanding of their dynamics is required.
However, analysis of brain rhythms and related dis-
orders is only possible when networks of neurons are
considered, rather than single cells. In this case more
parameters appear in the model, e.g. the parameters
of the connections between the cells. Physiological val-
ues are generally hard to determine with experiments,
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because the number of connections onto a cell is large
and the contribution of a single connection can be little.
Hence, the parameters required by the model to simu-
late these connections are hard to identify. To gain a
better understanding of the structure of neuronal net-
works, these parameters are of great interest because
they largely determine the rhythms of the network [8,
2]. A goal of this paper is to develop an algorithm that
is able to determine values for some of these parameters
in small networks, under the condition that limited ob-
servations are present: a small number of neurons and
for limited time.

A general problem with parameter searches in dy-
namical systems is that the initial conditions of the
system are unknown. Often, this is solved by defining
additional parameters that represent these initial con-
ditions. This approach can become problematic when
the system is chaotic, because the system is sensitive to
the initial conditions, or if the system is large, because
the number of initial conditions can easily exceed the
number of interesting parameters. A common solution
to these problems is to couple the dynamical system to
the observed time-series, such that the model is forced
to show similar behavior as the observations [5,4,3].
Due to this synchronization, the model becomes inde-
pendent of its own initial conditions and arbitrary ini-
tial conditions can be chosen. As this concept is shown
to be effective for estimating parameters of dynamical
systems, it will provide a starting point for the methods
developed in this article.

2 Methods

2.1 Single cell

To illustrate the implementation and effectiveness of
synchronization-based parameter estimation, a single
cell consisting of a single compartment is considered
first. The results and conditions obtained from this test
will be used to expand the concepts of this method to
small neuronal networks.

2.1.1 Model decription

A model of a STN cell as developed in [8] is used be-
cause it fires intrinsically at a few Hertz without exter-

nal applied currents. This model is given by:

CmV̇ = −Ileak − IK − INa − IT − ICa − IAHP, (1a)

IL = gL(V − EL), (1b)

IK = gKn
4(V − EK), (1c)

INa = gNam
3
∞(V )h(V − ENa), (1d)

IT = gTa
3
∞(V )b2∞(r)(V − ECa), (1e)

ICa = gCas
2
∞(V )(V − ECa), (1f)

IAHP =
(V − EK)[Ca]

[Ca] + k
, (1g)

with membrane potential V , leak current IL, potassium
current IK, sodium current INa, low-threshold T-type
Ca2+ current IT, high threshold Ca2+ current ICa and
a voltage independent afterhyperpolarization current
IAHP. Furthermore, the membrane capacity is given by
Cm and the specific conductances and reversal poten-
tials for each current are given by g and E respectively.
This dynamical system has state variables V , n, h, r
and [Ca].

2.1.2 Parameter estimation

The method of dynamic parameter estimation as de-
scribed in [3] is implemented on this system. We con-
sider the problem in which we want to estimate two
parameters of the model (1). For sake of simplicity, two
parameters are chosen that appear linearly in the equa-
tion of the observed quantity V : the conductances gL
and gNa.

The DPE for this problem takes the following form:

CmV̇ = −Ileak − IK − INa − IT − ICa

−IAHP + k(Vref(t)− V ),
(2a)

ġL = δL(Vref(t)− V )
−IL
gL

, (2b)

ġNa = δNa(Vref(t)− V )
−INa

gNa
, (2c)

with k > 0 the coupling strength that couples the model
with the observed data Vref(t) and δL and δNa positive
constants. The term k(Vref − V ) that appears in (2a)
in addition to (1a) forces V to the observed series Vref.
If this force is strong enough, the model will synchro-
nize with the reference series as desired. The choice of
the constants δL, δNa and k will determine whether the
parameters converge or not and if so, what the rate of
convergence is. If convergence is possible higher values
of k are required, but if k is too large, the rate of conver-
gence of the system decreases [3] Therefore, k is chosen
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N1 N2

Fig. 1 Visual representation of the considered network

as a slow monotone increasing variable with an ODE of
the form:

k̇ = γ (Vref(t)− V )2 , (3)

with γ a positive constant. The coupling depends on
the error: whenever the error decreases, due to stronger
coupling or better parameters, the coupling term in-
creases slowly in order to allow faster convergence of
the parameters than for large k.

All parameters of this system are identical to those
used to generate reference series Vref, except the pa-
rameters gL and gNa that have to be estimated. Note
that other conductances of the cell can be estimated
simultaneously with additional equations analogous to
(2b).

Even though only the membrane potential of the cell
is coupled to the reference series, all state variables of
this neuron will synchronize with the unobserved state
variables underlying the reference series whenever all
conditional Lyapunov exponents (CLEs) are negative
[3]. This is due to the fact that the coupling of the mem-
brane potential has an indirect effect on the equations
of the other state variables as their equations depend
on this quantity. A precise definition of synchronization
and the relation with conditional Lyapunov exponents
are given in Appendix B. From these definitions follow
that synchronization is required in order to guarantee
convergence of the parameters: if Vref−V 9 0 as t→∞
then generically ġL 9 0 and the limit limt→∞ gL does
not exist.

2.2 Two cells

Consider two neurons (N1 and N2) without connec-
tions. Then their activity is uncorrelated, hence it will
be impossible to estimate the parameters of the first
neuron with observations of the second neuron only.

Now assume that a single connection between these
two neurons is present: N1 fires excitatorily on N2 (see
Figure 1). Then a cell recording of N1 contains no in-
formation of N2 and only parameters of N1 can be de-
termined. If, on the other hand, a recording of N2 is
present then it contains some information of N1 because
N1 fires on N2. Even though this additional information
is limited, since the recorded postsynaptic potentials do

not contain information related to the shape of the ac-
tion potentials, global firing properties of N1 can still
be derived.

2.2.1 Synaptic coupling

Next we give the mathematical description of the con-
nection from N1 to N2. As N2 receives synaptic input
from N1, an additional current should be modeled on
this neuron, called Is:

Is = gssN1(VN2 − Esyn), (4a)

in which sN1 represents the synaptic activity of the first
neuron given by:

ṡN1 = αN1(1− sN1)H∞(VN1 − θN1)− βN1sN1, (4b)

with αN1 and βN1 positive constants and H∞ a smooth
approximation to the Heaviside step function.

2.2.2 Parameter estimation for two cells

Even if it is assumed that all other parameters are
known (also those of N1), one can conclude that this
is troublesome because of the fact that synchronizing
N2 with an observed series will have no influence on
N1. Hence, the state of N1 remains unknown and it will
therefore be unclear when this neuron fires an action po-
tential on N2. Generally the state of the simulated N1
will be different than the one underlying the reference
series of N1. As long as these states differ, convergence
of the dynamic parameter to its original value is not
possible because Vref − VN2 9 0 and therefore ġs 9 0.
To be able to succesfully apply DPE to this problem,
an algorithm has to be found that adjusts the state of
N1 such that it approaches the state of the unobserved
neuron.

The model (1) fires periodically with a few Hertz
for given parameters[8]. Whereas the parameters deter-
mine the frequency of the neuron, the initial conditions
determine the phase. Hence, by changing the initial con-
ditions, the phase of N1 can be adjusted until it matches
the unobserved neuron underlying the reference series.
This method would require the system to restart sev-
eral times until the initial conditions corresponding to
the correct phase are found. Remark that not just a
single number representing the phase has to be found,
but values for all state variables have to be identified. If
the network is expanded to three or more neurons, the
estimation of initial conditions will probably start dom-
inating the problem of finding parameter values. The
restarts required for this method are also undesirable,
because the system has to be evaluated several times
to find proper initial conditions. The simulated time of
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these simulations has to be long enough allowing N2 to
synchronize to the reference series.

Another way to match the phase of N1 with the un-
observed neuron, is to shift the reference series in time.
This would require only the identification of a single
parameters, i.e. the time shift, rather than the initial
conditions of all state variables. However, restarts are
still necessary because the reference series cannot be
shifted during simulations as gaps may occur whenever
the reference series are shifted forward too fast. Fur-
thermore, the variable representing the time shift of
the reference series is discrete, because the time series
are a discrete-time signal. As it generally is harder to
solve discrete optimization problems than continuous
problems, this method will not be investigated further.

2.2.3 Temporal scaling

A third way to get the phases right is by temporarily
modifying the firing rate of N1. During this period the
neuron may fire faster or slower and eventually firing
in phase with the unobserved neuron of the reference
series. At this moment, the firing rate is set back to
its orginal value in order to maintain the synchrony.
Adjustments to the firing rate can be made in several
ways: either by adjusting the parameters responsible
for the firing rate or by modifying the time. As it is
unclear which parameters are represent the firing rate
and in what manner, the latter approach is chosen. This
concept is expanded below.

First, two timelines are introduced: t represents the
real (unmodified) time as experienced by N2 and the
reference series and let t̂ represent the pseudotime that
N1 experiences. Chose a function τ > 0 such that the
pseudo-time is evaluated as follows:

t̂(t) =
∫ t

0

τ(u) du. (5)

Then t̂(t) is a continuous strictly monotone increasing
function, hence time cannot stop or be inverted. The
fundamental theorem of calculus yields:

dt̂

dt
= τ(t). (6)

So for a dynamical system x ∈ Rn that is considered
on the pseudotime-scale the following holds:

dx
dt̂

=
dx
dt

dt

dt̂
=
dx
dt

1
τ(t)

= f(x, t̂ ), (7)

dx
dt

= τ(t)f
(
x,
∫ t

0

τ(u) du
)
. (8)

If applied to an autonomous system (time indepen-
dent), this reduces to

dx
dt

= τ(t)f(x). (9)

The model (1) of a neuron is such an autonomous sys-
tem and it is therefore unnecessary to investigate the
integral (5).

The function τ(t), that represents the temporal scal-
ing factor of the dynamical system, is considered next.
Even though the behavior of N1 is modified purposely,
it is desired to be still “neuron-like” in the sense that
action potentials (APs) have a duration close to 1ms.
For that reason, τ is bounded from below as well as
from above:

1− η ≤ τ(t) ≤ 1 + η, 0 ≤ η ≤ 1
4
. (10)

With τ varying between 3
4 and 5

4 , the AP durations are
still within the physiological range. On the other hand,
this speed difference is probably large enough to get
the neuron N1 in phase with the unobserved neuron, as
well.

The value of the temporal scaling factor of N1 will
depend on the error Vref − V of N2, such that it is 1
whenever the error vanishes. Therefore, a symmetric
sigmoidal function is chosen of the following form:

τ±(u) = 1± η
(

1− 2
1 + exp[u/στ ]

)
, (11)

with στ a positive parameter. As it is not clear whether
the system should speed up or slow down for a given
sign of the error, both the ‘+’-variant and the ‘−’-
variant are considered, representing the increasing sig-
moid and decreasing sigmoid respectively. The tempo-
ral scaling factor is desired to change slowly, in order
to prevent N1 from alternating between speeding up or
slowing down whenever the error changes sign often.
We introduce a first order differential equation for the
factor, having its equilibrium given by (11):

dτ

dt
= µ (τ± (Vref − VN2)− τ) , (12)

with µ a positive constant representing the reciprocal
time constant of the temporal scaling factor.

3 Numerical results

3.1 Single cell DPE

Parameters identical as in [8] are used to generate a
reference series that will be used as input signal of the
parameter search algorithm to determine if the original
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values of the parameters can be found by the algorithm.
To evaluate the DPE on single cells, as described by
equations (2), two STN cells are evaluated simultane-
ously. The first cell has known parameters and produces
the reference series used by the second cell that has dy-
namic parameters. It has the same effect as recording
the reference series at the same frequency as the inte-
gration time step, i.e. 100kHz. From the results, shown
in Figure 2, it is seen that the system converges. Two
parameters that appear linearly in the equation of the
observed variable are succesfully identified.

Whenever the reference signal is recorded at a lower
sampling rate, e.g. 10kHz, it has to be interpolated to
obtain a signal of 100kHz as is required by the inte-
grator. Linear interpolation of the data is chosen as it
is straightforward. The results obtained with this in-
terpolated signal are shown in Figure 3. The results
with the interpolated signal are noticably worse than
the DPE with the 100kHz signal. The slower rate of con-
vergence of gNa may be explained by the following: the
sodium conductance is best observed during action po-
tentials. However, as action potentials have a duration
of 1-2ms only 10-20 measurements per AP are present
at a sampling rate of 10kHz. These few data points are
not enough to capture every aspect of the AP and the
precise value of gNa cannot be derived easily from these
misformed APs.
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Fig. 2 Results of the DPE when it estimates two parameters,

i.e. gsyn and gNa, of a single neuron with a reference series of

20s at 100kHz. The top two diagrams show both the reference
series and the model synchronized to it at two different time
intervals. Note that in the beginning the fit is not perfect: the

spikes at 2.5 and 2.8 seconds are not as high as the reference
series. Target values of gL and gNa are respectively 2.25e3 and

37.5e3 and initial conditions 6e3 and 10e3. DPE constants used

are as follows: γ = 0.01, δL = δNa = 10 and k(0) = 0.
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Fig. 3 Results of the DPE when it estimates two parameters

of a single neuron with an interpolated reference series of 20s at

10kHz. Note that the convergence of the parameters, especially
gNa, is much slower than with the higher sampling rate. Futher-

more, the consants and initial conditions used are identical to

those in Figure 2.

3.2 Two cell DPE

We consider a two cell network coupled according to(4)
and DPE is applied to estimate the synaptic conduc-
tance gs that appears linearly in the ODE of the ob-
served quantity VN2. The results of this simulation, us-
ing a reference series sampled at 100kHz, are shown in
Figure 4. Note that, as predicted in subsection 2.2.2,
the regular implementation of DPE fails beacuse N1
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Fig. 4 DPE applied to a network of two cells, but without the
temporal scaling factor. Neuron N2 is synchronized with the ref-
erence series sampled at 100kHz. No feedback to N1 is present so
that its state remains independent with the unobserved neuron

of the reference series. The initial condition of gs is 6e3 and its
target value is 0.6e3. Other constants are γ = 0.1 and δs = 10.
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Fig. 5 DPE applied to a network of two cells with the temporal
scaling factor. Neuron N2 is synchronized with the reference series

sampled at 100kHz. Due to the temporal scaling factor, N1 seems

to synchronize with the reference as well.
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Fig. 6 The results of DPE with the temporal scaling factor τ .

Note that the neuron N1 is speeding up until it reaches the correct
phase, after which the parameter is identified correctly (see also

Figure 5). At this moment, the speed factor drops back to 1 and

the coupling strength k increases much slower, suggesting that
synchronization occured.

does not synchronize with its state that underlies the
reference series (top two plots in Figure 4). This causes
N2 to prefer a low synaptic conductance such that it
will not fire during synaptic input of N1, preventing
additional misfires with respect to the reference series.

Whenever we implement the temporal scaling factor
(9) to N1 and use a reference series sampled at 100kHz,
we are able to estimate the synaptic conductance of
N2. The results are shown in Figure 5 and Figure 6.
At first, we notice similar behavior as two cells without
the temporal scaling factor: the phase of N1 does not
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Fig. 7 A detail of the parameter and temporal scaling factor

close to their target values of 600 and 1 repectively. Note the
irregular oscillations of both variables.

match the reference series and a low synaptic conduc-
tance is prefered to prevent additional misfires of N2
that are initiated by synaptic input of N1. At this mo-
ment, the temporal scaling factor has an increased value
of approximately 1.01 and the phase of N1 approaches
the phase of the unobserved neuron. Once a spike of
N1 coincides with a spike of the unobserved neuron un-
derlying the reference series the temporal scaling factor
drops back to 1 to keep N1 close to this phase. This hap-
pens at t = 12 in Figure 5 and 6. Furthermore, we note
that the coupling strength k increases fast for the first
five seconds after which it slows down. This is the time
required by N2 to synchronize with the reference series.
Once synchronized, small errors between N2 and the
reference series will be caused by an incorrect phase of
N1. During this period, the coupling strength increases
slightly with every misfire. Whenever the phase of N1
matches the phase of the unobserved neuron, no more
misfires occur and the coupling strength stops increas-
ing.

A detail of the final state is shown in Figure 7 and
we observe that the converge to the target values is not
exponential Furthermore, we note the irregular oscilla-
tions of both the parameter and the temporal scaling
factor.

4 Analysis

After we have shown numerically that the method of
dynamical parameter estimation works on single cells
and two-cell networks, we analyze the conditions for
convergence. As stated earlier, convergence of the pa-
rameter to the correct value is only possible whenever
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the model synchronizes with the reference time series.
By considering the possibilty of a model to synchronize
with a time series, we derive a necessary condition for
converge of the dynamic parameter.

First we give a formal description of a simplified
DPE algorithm from which we derive criteria for syn-
chronization. Thereafter we analyze these conditions for
the systems that we described in the previous section.

4.1 Synchronization in DPE

We consider a system x ∈ Rn of the form:

ẋ = f(t, x, p), (13)

with p ∈ Rl representing the parameters of the system.
We assume that the first m components of x are ob-
served with time series and we couple these to a system
y ∈ Rn that has the same equations as x but different
parameters q ∈ Rl:

ẏ = f(t, y, q) +K(x− y), (14)

The n×n-diagonal matrixK hasm entries k1, . . . , km >

0 that correspond with the m observed compoments of
x:

K = diag(k1, . . . , km, 0, . . . , 0). (15)

In the coming analysis we fix all ki.
We assume that the parameters we want to estimate

appear linearly in the equations of of the observed com-
ponents, hence:

∂fi
∂pj

(t, x, p) =
∂fi
∂pj

(t, x), 1 ≤ i ≤ m, 1 ≤ j ≤ l. (16)

To estimate the parameters q we apply an adaptive con-
trol mechanism of the form

q̇ = B
∂f

∂q
(t, y)T (x− y), (17)

in which ∂f
∂q is the n× l matrix with partial derivatives

of fi with respect to qj and B is a l× l-diagonal matrix.
To determine whether the system [y, q] synchronizes

with [x, p] we consider the difference z between them:

z =
[
x− y
p− q

]
, (18)

ż =
[
ẋ− ẏ
−q̇

]
, (19)

=
[
f(t, x, p)− f(t, y, q)−K(x− y)

−B ∂f
∂q (t, y)T (x− y)

]
, (20)

Single cell

parameters CLEs

gL -0.000951 -0.003506 -0.006212 -0.013641

-0.027785 -3.492551

gL, gNa -0.000509 -0.000885 -0.003595 -0.008101
-0.026987 -0.126180 -3.384773

Table 1 The conditional Lyapunov exponents determined for
two DPE implementations on a single cell. Note that all CLEs

are negative, hence the algorithm synchronizes and identifies the

parameters.

upon expanding f(t, x, p) around f(t, y, q), we obtain:

=

[
∂f
∂y (t, y, q)(x− y) + ∂f

∂q (t, y)(p− q)−K(x− y)
−B ∂f

∂q (t, y)T (x− y)

]
,

(21)

=

[
∂f
∂y −K

∂f
∂q

−B ∂f
∂q

T
0

] [
x− y
p− q

]
, (22)

= Jz. (23)

If we can show that z → 0 as t → ∞, then the model
y synchronizes with the reference series x and the pa-
rameters q approach the target values p. Clearly, this
happens when the system (23) has only negative Lya-
punov exponents. Because the orbit of z is mostly deter-
mined by y, q and the reference series x, we call these
exponents conditional Lyapunov exponents. A proper
definition of these exponents in given in Appendix B.

Now that we have shown that a system should have
negative CLEs in order to identify its parameters with
the above stated DPE algorithm, we consider this con-
dition for the systems described in section 2. From the
numerical results obtained in section 3, we know what
results we should expect from this analysis.

4.2 Single cell

First we consider the DPE implementation (2) with
only a single parameter, namely gL. From numerical
simulations we know that DPE is able to estimate one
or two parameters in a single cell and therefore we ex-
pect that all CLEs of the algorithm are negative.

The linearized system (23) is derived and its spec-
trum of Lyapunov exponents is determined numerically
by the “re-orthonormalization method” [12]. This method
is summarized in Appendix A. The results are shown
in the first row of Table 1. It turns out that all the
Lyapunov exponents of the system are negative, which
matches our expectations.

Next we apply the DPE algorithm to a single cell to
estimate two parameters: gL and gNa. Numerical results
shown in Figure 2 suggest that synchronization occurs
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Two-cell network

parameters CLEs

gsyn 0.000022 -0.000871 -0.000951 -0.003479

. . . -1.722 -6.63

gsyn, τ 0.273469

Table 2 The conditional Lyapunov exponents determined for

two DPE implementations on a two-cell network. The first row
represents results results without temporal scaling, the second

with.

and thus we expect that all CLEs of this system are
negative as well. The values of the CLEs are represented
in the second row of Table 1. As expected, all Lyapunov
exponents are negative.

Note that the largest CLE in the second case is ap-
proximately half of the largest CLE in the first case,
indicating that convergence of q to p occurs at a lower
rate when more parameters have to be determined.

4.3 Two cells

If we consider the two-cell networks with a single unidi-
rectional connection as described in subsection 2.2 and
apply the DPE method without the temporal scaling
factor, we fail to identify a single parameter (see Fig-
ure 4). This is due to the phase difference of the un-
observed neuron between the model and the reference
series. Because of this translation symmetry we expect
neither convergence nor divergence, hence the largest
CLE should be 0.

The numerically determined Lyapunov exponents
are shown in Table 2. Not all 12 exponenents are given,
only the largest and the smallest are printed to give an
impression of the spectrum. The largest CLE turns out
to be positive, but small. As this number is close to the
expected value 0, we assume that this results is an error
of algorithm used to determine the exponents.

Next we analyze the same network, but we apply the
temporal scaling factor τ as described in 2.2.3. The dy-
namical equation of this parameter is of a different form
than (17) and therefore loses the Jacobi-matrix of the
system (23) its nice form. We use a different algorithm
to determine the conditional Lyapunov exponents: one
that is able to determine the largest CLE only. This
algorithm is described in Appendix A.

The second row of Table 2 contains the numerical
evaluation of this largest Lyapunov exponent. Unex-
pectedly the largest CLE is a positive number, indicat-
ing the presence of a chaotic attractor. Therefore we are
unable to determine the value of the parameter generi-
cally.

From numerical simulations presented in subsection
3.2 we know that the dynamic parameter gs has two

prefered values; either 0 or the target value 600. Because
of the chaotic nature of the system we can conclude that
the DPE method is unstable around both values, but
the orbit of the parameter can stay close to these values
for arbitrary time as well. This instability of the target
values can be observed in the numerical simulations as
well, as depicted in Figure 7. Both basins of attraction
represent a value of the parameter for which the model
shows behavior close to reference series and therefore
should both values be considered when estimating pa-
rameters from real observations rather than artificial
data.

The advantage of having a positive CLE instead of
one that equals 0 is that the system becomes chaotic
and a much larger part of the parameter space can be
explored. These excursions allow us to identify different
values of the parameters for which the model behaves
similar as the reference series.

5 Discussion

Neurons and small network of neurons play an impor-
tant role in the generation of rhythms in the brain. An
understanding of these rhythms is required to gain bet-
ter insights in the dynamics of the brain and several
disorders. In order to analyze such systems in more de-
tail we have implemented parameter search algorithms
on models of a single neuron and two-cell networks.

The method that we have used to identify param-
eters of different systems is based on synchronization.
The concept of synchronizing a model to a reference
series reduces the effect of unknown initial conditions
because the model is forced to show similar behavior as
the time series. Due to this force the model can become
independent of its initial conditions, which is required
for identifying its parameters successfully.

Furthermore, we have estimated the parameters of
the model with a first order dynamical equation that
converges to a value as the time evolves. This limit
value is the best value of the parameter. We have shown
that this method is not able to identify parameters ac-
curately when the model fails to synchronize with the
reference series. We have analyzed several models on
their ability to synchronize with a reference series and
we have derived a necessary and sufficient condition for
synchronization when the unknown parameters appear
linearly in the equations of the observed components: all
conditional Lyapunov exponents of the system should
be strictly negative.

We have considered a single STN cell of which only
recordings are available of its membrane potential and
we have implemented the described parameter search
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algorithm for this system and we have estimated the
conductances of two channels, parameters that appear
linearly in the equation of the observed component, ac-
curately. Further analysis has shown that all conditional
Lyapunov exponents of the system are negative, as is
required for convergence.

Next we have defined a two-cell network for which
synchrization is impossible by definition: between the
two cells of this network is a single unidirectional synap-
tic connection. Whenever time series are available of the
receiving neuron we can synchronize these series to that
neuron, but we fail to synchronize the sending neuron.
Even if we assumed the easiest case in which both neu-
rons are oscialltors with a fixed period, synchronization
is still impossible because the largest CLE of the sys-
tem is 0. Numerical simulations have confirmed that
this method fails to identify the synaptic conductance,
a parameter that appears linearly in the equation of the
observed component.

In order to estimate this parameter, we have de-
veloped a new method that temporarily modifies the
firing rate of the unobserved neuron and we have con-
sidered it on neurons that fire periodically with a known
frequency. Depending on the difference of the time se-
ries and the coupled neuron we speed up or slow down
the unobserved neuron by multiplying all its dynamical
equations with a scalar. We call this scalar the tempo-
ral scaling factor. By definition this factor lies in the
range [0.75, 1.25] such that the action potentials of the
neuron still have a physiologically correct duration.

We have studied the effects of this factor both nu-
merically and analytically. Simulations have shown that
it this temporal scaling factor enables the method to
come close to the original value of the parameter. Ex-
ponential convergence, however, was not the case as
both the dynamic parameter and the temporal scaling
factor kept oscillating irregularly. This result matches
with the analysis we have performed: the largest CLE of
the system is a positive number, indicating the presence
of a chaotic attractor. From the results of the numer-
ical simulations we have found that this attractor has
two basins of attraction: one around the target value of
the parameter and one around 0. The latter value corre-
sponds with the case in which the synaptic conductance
is 0 and no spikes of the sending neuron are transfered.
This results seems quite natural: if you are unable to
match the action potentials initiated by the synaptic
input because the phase of the sender is incorrect, it
is better to neglect this synaptic input to prevent such
misfires.

Even if synchronization and convergence are not
possible due to the chaotic nature of the system, this
method is still valuable. The orbits of these chaotic dy-

namics are likely to cover a much larger part of the
phase space than the other methods, yielding more in-
formation of the system and possibly identifying differ-
ent sets of parameters that show similar behavior of the
model.

The effectiveness of this chaotic parameter estima-
tion needs to be studied for larger systems. It is likely
that the basins of attraction grow wider and may even-
tually intersect each other, yielding a more complex at-
tractor. Furthermore, the new method has to be ana-
lyzed for systems in which the neurons fire irregularly.
In this case the time spent on the attractor around the
target value may become very small, making it hard to
identify the basins of the attractor.

A different aspect that has to be analyzed as well is
the effect of noise. Even in small system that synchro-
nize with the reference series in the abscence of noise,
noise will prevent synchronization and the dynamic pa-
rameter will be noisy as well. In some cases it might
suffice to determine the mean value of this parameter,
but this might fail in other cases.

References

1. H. Abarbanel et al. Dynamical parameter and state estima-
tion in neuron models. Unpublished work.

2. E. Izhikevich and G. Edelman. Large-scale model of mam-
malian thalamocortical systems. Proceedings of the National

Academy of Sciences, 105(9):3593–3598, 2008.

3. A. Maybhate and R. Amritkar. Use of synchronization and
adaptive control in parameter estimation from a time series.

Phys. Rev. E, 59(1):284–293, Jan 1999.

4. U. Parlitz. Estimating model parameters from time series by
autosynchronization. Phys. Rev. Lett., 76(8):1232–1235, Feb

1996.
5. U. Parlitz, L. Junge, and L. Kocarev. Synchronization-

based parameter estimation from time series. Phys. Rev.

E, 54(6):6253–6259, Dec 1996.

6. L. Pecora and T. Carroll. Synchronization in chaotic systems.
Phys. Rev. Lett., 64(8):821–824, Feb 1990.

7. G. Rangarajan, S. Habib, and R. Ryne. Lyapunov exponents
without rescaling and reorthogonalization, 1998.

8. D. Terman, J. Rubin, A. Yew, and C. Wilson. Activity pat-

terns in a model for the subthalamopallidal network of the
basal ganglia. Journal of Neuroscience, 22:2963–2976, 2002.

9. I. Tokuda, U. Parlitz, L. Illing, M. Kennel, and H. Abarbanel.

Parameter estimation for neuron models. volume 676, pages
251–256. AIP, 2003.

10. W. van Drongelen, H. Lee, M. Hereld, Z. Chen, F. Elsen,

and R. Stevens. Emergent epileptiform activity in neural
networks with weak excitatory synapses. IEEE Trans Neural

Syst Rehabil Eng, 13(2):236–41, 2005.

11. M. Vanier and J. Bower. A comparative survey of automated
parameter-search methods for compartmental neural models.

Journal of Computational Neuroscience, 7:149–171, 1999.
12. A. Wolf, J. Swift, H. Swinney, and J. Vastano. Determining

lyapunov exponents from a time series. Physica D: Nonlinear

Phenomena, 16(3):285 – 317, 1985.



10

A Lyapunov exponents

A.1 Description

The Lyapunov exponents (LEs) of a dynamical system determine
the growth rates of pertubations of an orbit. We state the follow-

ing definition for a Lyapunov exponent.

Definition 1 For any norm ||·|| a Lyapunov exponent λ satisfies

||x(t)− y(t)|| ≈ eλt||x(0)− y(0)||, (24)

with x(t) and y(t) both orbits of the system f and a sufficiently

small initial separation ||x(0)− y(0)||.

As the value of λ depends on the direction of the initial separa-
tion, a whole spectrum of Lyapunov exponents exists. The num-

ber of LEs equals the number of dimensions of the phase space

as this the number of independent directions in this space.
Clearly, if all Lyapunov exponents of the system are negative

the orbits of x and y will close each other such that ||x(t) −
y(t)|| → 0 as t → ∞. On the other hand, if one of the LEs
is positive the orbits of x and y are unstable with respect to

each other. If in this case x(t) and y(t) remain bounded for all

time a chaotic attractor exists in the bounded domain, because
no asymptotically stable limit points or limit cycles exist in the

domain due to the positive LE.

A.2 Numerical calculation

Now that we have defined a Lyapunov exponent and considered

some of its properties, we will consider the numerical approxi-
mations of these exponents. First we describe an algorithm that

is able to determine the largest LE only. Thereafter a more ad-

vanced algorithm is given that enables one to approximate the
complete spectrum of Lyapunov exponents.

A.2.1 Largest Lyapunov exponent

If the direction of the initial separation is chosen arbitrarily, it
is likely to have a component along the direction corresponding

to the largest LE. When we evaluate the distance between both
orbits (the original and the perturbed) after some time, it will be

dominated by the largest Lyapunov exponent as the contribution

of the other LEs is much lower. This concept can be used to
determine the largest Lyapunov exponents numerically.

At a certain point x0 in the phase space we add a small per-

turbation of size d0 and we obtain y0, hence ||x0−y0|| = d0. Some
time t1 later the state of the system and the perturbation are x1

and y1 respectively and the separation is given by definition 1:

d1 = ||x1 − y1|| ≈ d0eλ1t1 , (25)

in which λ1 represents the largest LE. We obtain an approxima-
tion of the largest Lyapunov exponent of the form

λ1 ≈
1

t1
ln
d1

d0
. (26)

As such a single evaluation estimates the Lyapunov exponent
at a small part of the attractor only, this procedure has to be
repeated several times until the “local” Lyapunov exponents of
the attractor are determined. Furthermore, no guidelines exist
for the initial separation d0 and the time t1. If t1 is too large the

perturbation y1 may deviated too fat from to its original orbit x1

to give you information about the neighbourhood of x, whereas
a too small t1 could yield cases in which the system has not be

evaluated long enough for λ1 to dominate the final separation d1.

A.2.2 Spectrum of Lyapunov exponents

To determine the entire spectrum of Lyapunov exponents more

advanced algorithms are required, such as proposed in [12,7]. We

summarize the method described in [12] below.
First the linearization of the system around its orbit is con-

sidered:

ż = J(x) z, (27)

in which z represents a relative perturbation of the system x and
J(x) the Jacobi-matrix of the system evaluated at x. As shown

earlier every initial perturbation will in the long term be affected

by the largest LE and corresponding direction only. Therefore
we introduce another perturbation which is perpendicular to the

first direction and therefore independent of the largest Lyapunov

exponent. Every time we normalize the system, we also orthogo-
nalize the directions. As this second direction is independent of

the largest LE, it will orient itself slowly in the direction of the
largest remaining LE and we are able to estimate the exponent

along this direction.

Continuing in this manner we define a total of n orthogonal
directions corresponding with the n Lyapunov exponents and we

orthonormalize the perturbations regularly such that the direc-

tion of the i-th perturbation is orthogonal to all i − 1 previous
directions. This orthonormalization is determined with the Gram-

Schmidt process.

Unlike with the algorithm presented in subsubsection A.2.1
the time between the re-orthonormalizations is not too important

because the perturbations point in a direction that is independent

of other Lyapunov exponents it is not necessary to “wait long
enough” for the dominating term.
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B Synchronization of dynamical systems

Two different methods exist to synchronize dynamical systems

to time series. The first method, called “feeding”, substitutes (or

feeds) the time series in the in the corresponding equations of the
dynamical system, thereby reducing the size of the system. The

method of “coupling” synchronizes a model by forcing it to show

similar behavior as the time series: the model is coupled to the
time series (much like a spring). Both methods are summarized

below.

B.1 Feeding method

First we define a continuous time dynamical system u ∈ Rn of

the form:

u̇ = f(t, u), (28)

We split this system into two subsystems u = [w, x] with w ∈ Rm
and x ∈ Rn−m:

ẇ = g(t, w, x), ẋ = h(t, w, x), (29)

such that w corresponds with the observed quantities of the time

series. Next, consider a system y ∈ Rn−m that is similar to x,
hence:

ẏ = h(t, w, y). (30)

Generally, y will have a different orbit than x due to different
initial conditions.

Definition 2 A system of the following form:

ẇ = g(t, w, x), ẋ = h(t, w, x), ẏ = h(t, w, y), (31)

synchronizes if x − y → 0 as t → ∞ independent of initial con-
ditions. Hence, the orbit of w contains enough information to

approximate the phase [w, x] of the system with [w, y].

We analyze the difference z = x − y between both systems to
state whether synchronization of this form is possible:

ż = ẋ− ẏ, (32)

= h(t, w, x)− h(t, w, y), (33)

≈ h(t, w, x)−
„
h(t, w, x) +

∂h

∂x
(t, w, x)(y − x)

«
, (34)

=
∂h

∂x
(t, w, x)z. (35)

in which ∂h
∂x

represents the Jacobi-matrix of h with respect to x.
A closer look at (35) reveals that we basically linearize around

the orbit [w(t), x(t)] to see if it attracts other nearby orbits. Con-

vergence to this orbit is possible whenever all eigenvalues of the
Jacobi-matrix in (35) have negative real part. As the Jacobi-

matrix changes in time, the eigenvalues are undefined and we

have to consider the Lyapunov exponents of the system. We state
the following theorem [6]:

Theorem 1 Synchronization occurs if and only if all Lyapunov

exponents of the system

ẏ = h(t, w(t), y). (36)

are negative. The Lyapunov exponents of the subsystem (36) are
refered to as “Conditional Lyapunov Exponents” (CLEs) of the
system (28).

B.2 Coupling method

Define a continuous time dynamical system x ∈ Rn:

ẋ = f(t, x). (37)

If we have observations of the first m coordinates of x, we can

add a feedback term to couple system y ∈ Rn to x:

ẏ = f(t, y) +K(x− y), K = diag(k1, . . . , km, 0, . . . , 0), (38)

with ki, i = 1 . . .m positive coupling constants.

Definition 3 A system of the form (37), (38) synchronizes if
x− y → 0 as t→∞ independent of initial conditions.

Next we consider the difference z = x − y between the model y
and the reference series x:

ż = ẋ− ẏ (39)

= f(t, x)− f(t, y)−K(x− y) (40)

≈ f(t, y) +
∂f

∂y
(t, y)(x− y)− f(t, y)−K(x− y) (41)

=

»
∂f

∂y
f(t, y)−K

–
z, (42)

in which ∂f
∂x

represents the Jacobi-matrix of f with respect to x.

As with the feeding method (previous subsection), we have

to consider the Lyapunov exponents of this system. We state that
the following theorem:

Theorem 2 The system (38) synchronizes if and only if its

Lyapunov exponents are negative. These Lyapunov exponents are

refered to as conditional Lyapunov exponents (CLEs).

B.3 Final remarks

Note that the conditional Lyapunov exponents of a system x

quantify the attraction of orbits of the coupled system y to the
orbit of x. For instance, the system x may have positive Lyapunov

exponents, implying chaotic dynamics, but it can still synchronize

with a system y. The Lorenz system is an example of such a
system [6,3].


