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Abstract

In this Report we present an approximate Riemann solver based on travelling waves. It is

the discontinuous Galerkin finite element (DG-FEM) analogue of the travelling wave (TW)

scheme introduced by Weekes [Wee98]. We present the scheme for the viscous Burgers equa-

tion and for the 1D Navier-Stokes equations.

Some steps in Weekes’ TW scheme for the Burgers equation are replaced by numerical ap-

proximations simplifying and reducing the cost of the scheme while maintaining the accuracy.

A comparison of the travelling wave schemes with standard methods for the viscous Burgers

equation showed no significant difference in accuracy. The TW scheme is both cheaper and

easier to implement than the method of Bassi and Rebay, and does not separate the viscous

part from the inviscid part of the equations.

We attempted to extend the DG-TW scheme to the 1D Navier-Stokes equations, but we have

not yet succeeded in doing so due to a large number of non-linear equations that have to be

solved. To avoid this problem, a first step is made in simplifying these equations, but no tests

have been done so far.
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1 Introduction

Many applications in fluid dynamics require the solution of the compressible Navier-Stokes

equations. For almost all applications, finding analytical solutions is impossible, but with

the aid of computers, one can numerically approximate the exact solution. This field of

numerically approximating fluid dynamics solutions is called Computational Fluid Dynamics

(CFD).

One numerical technique for computing solutions of PDE’s is the finite element method. In

this thesis we consider the discontinuous Galerkin finite element method (DG-FEM). In this

method the domain is partitioned by a finite number of non-intersecting elements. On each

element the exact solution is approximated by polynomials which are discontinuous across

element faces. In the present study we consider only linear polynomial basis-functions.

Some well known benefits of the DG-FEM method are: optimal flexibility for local mesh

refinement, adjustment of the polynomial order in each element (hp-adaptation) and excellent

performance on parallel computers. These benefits are the result of the very compact stencil

of DG methods.

DG was developed for first order hyperbolic equations and it was possible to compute solu-

tions for inviscid compressible flows. Viscous compressible flow equations described by the

compressible Navier-Stokes equations are not hyperbolic and new techniques had to be de-

veloped to discretize the diffusion operator. Bassi and Rebay [BR97] and Oden et al. [BO99]

provide such techniques, extending the DG formulation for hyperbolic equations developed

by Cockburn and Shu [CS01] to incompletely parabolic equations. In [BRM+], improvements

to the formulation in [BR97], which showed a weak instability, have been made. These im-

provements were analyzed by Brezzi et.al. in [ABCM02, BMM+00]. A different technique

to deal with the diffusion operator has been proposed by Cockburn and Shu [CS98] with the

local discontinuous Galerkin method.

Other recent work in DG-FEM on compressible flows was the extension of DG-FEM to space-

time by van der Vegt and van der Ven [vdVvdV02a, vdVvdV02b] and Klaij, van der Vegt

and van der Ven [KvdVvdV].

All presently available DG methods split the viscous contribution of the flux from the inviscid

part and deal with them seperately in the numerical discretization.As mentioned above, in

DG-FEM the domain is partitioned by a finite number of non-intersecting elements and on

each element the exact solution of the equation to be solved is approximated by a polynomial.

Due to the discontinuous nature of the polynomial representation in each element the flux at

a face is not uniquely defined. To overcome this problem a numerical flux depending on the

left and right traces is introduced. At each face, a viscous Riemann problem must be solved:

Ut + F e(U)x = F v(U,Ux)x,

U(x, 0) =

{
UL, if x < 0,

UR, if x > 0,

with U a column vector of conserved variables, F e(U) the inviscid flux, F v(U,Ux) the viscous
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flux and UL and UR the left and right traces at the face. In this Report we assume that

Ut + F e(U)x = 0 is hyperbolic.

For certain equations (e.g. the Euler equations where F v(U,Ux)x = 0) it is possible to find

an exact solution to this problem. However, in practical computations this problem needs

to be solved many times, making the Riemann problem one of the most computationally

demanding parts in the numerical method. Therefore, instead of solving this problem exactly,

one approximates the numerical flux.

Much work has been done on approximating the numerical flux for inviscid problems. Some

examples are the HLL and HLLC Riemann solvers which are discussed in [Rhe05]. Less is

known about approximating the numerical flux for viscous problems. Instead, methods have

been developed splitting the flux at element faces into an inviscid and a viscous contribution.

In DG-FEM the method of Bassi and Rebay is a well known method for handling the viscous

contributions of the flux, while inviscid Riemann solvers are used for the inviscid contributions.

A drawback of this scheme is that a penalty term needs to be introduced for stability reasons,

penalizing the discontinuity at the element faces without making a distinction if it originates

from the physics or from the use of discontinuous polynomials. Furthermore, this is a costly

method based on mathematical properties rather than on the physics of the problem.

These drawbacks motivate the development of an approximate viscous Riemann solver. Trav-

elling waves will be introduced as approximate solutions to shocks. Travelling wave solu-

tions to viscous conservation laws are similarity solutions of the form U(x, t) = ϕ(ω), with

ω = x− st, which are constant along lines with the slope dx/dt = s. Using these approxima-

tions it is possible to obtain a flux which does not separate the viscous part from the inviscid

part of the flux.

This Report is the second part of my Master’s thesis. Part I was a literature report. In this

Report we present an approximate Riemann solver based on travelling waves. The outline of

this Report is as follows: in Section 2 we consider the viscous Burgers equation. We show how

to solve this equation using the DG-FEM method of Bassi and Rebay and we will introduce

a new scheme for this equation based on travelling waves, the DG-TW scheme. The DG-TW

scheme is a travelling wave scheme based on the schemes introduced by Harabetian [Har90]

for finite difference methods and by Weekes [Wee98] for finite volume methods. In Section 3

the DG-TW scheme is extended to the 1D Navier-Stokes equations based on the analysis done

in [Wee98]. In the Appendix an approximate viscous Riemann solver is presented based on

the HLL and HLLC Riemann solvers.
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2 The viscous Burgers equation

In this chapter, we start by showing how to solve the viscous Burgers equation numerically

using the DG-FEM method of Bassi and Rebay (Section 2.1). Afterwards, in Section 2.2,

we consider two travelling wave schemes: by Harabetian [Har90] for finite difference methods

and by Weekes [Wee98] for finite volume methods. The travelling wave solution to a viscous

conservation law is a similarity solution of the form u(x, t) = ϕ(ω), where ω = x − st. The

advantage of the travelling wave approach is that it does not separate the viscous part from the

hyperbolic part of the equation. Finally, in Section 2.3 we introduce an alternative DG-FEM

method based on travelling wave theory.

In this chapter we focus on the following situation:

ut + f(u)x = µuxx, f(u) = 1
2u

2, with x ∈ R, t ∈ R
+, (2.1)

where µ is the viscosity coefficient. Boundary conditions are given by:

lim
x→−∞

u(x, t) = 2, lim
x→+∞

u(x, t) = 0, ∀t ∈ R
+, (2.2)

and the initial condition is:

u(x, 0) =
2

1 + exp(x/µ)
. (2.3)

The exact solution of this problem is given by [Har90]:

u(x, t) =
2

1 + exp((x− t)/µ)
.

2.1 Classic DG-FEM approach

2.1.1 Introduction

We consider the viscous Burgers problem as given by Eqs. (2.1) and (2.2) with initial condition

given by Eq. (2.3).

To discretize the Burgers equation, we define the tessellation Th of N elements Kk in the open

spatial domain Ω ∈ R as:

Th = {Kk : ∪N
k=1Kk = Ωh and Kk ∩Kk′ = ∅ if k 6= k′, 1 ≤ k, k′ ≤ N}.

The approximations uh and vh of the variable u(x, t) and test function v(x) belong to the

space Vh:

Vh = {v ∈ L2(Ωh) : v|Kk
∈ P 1(Kk), k = 1, ..., N}, (2.4)

in which P 1(Kk) denotes the space of linear polynomials, and L2(Ωh) the space of Lebesque

square integrable functions. DG was developed for first order hyperbolic equations so second

order derivatives cannot be treated directly. Therefore we apply the method by Bassi and

Rebay and start by introducing the necessary definitions and propositions [Kla04].
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Rn

LnLf

Rf

RKLK

Figure 1: The face between the elements KL and KR with outward normal vectors nL and

nR (in one dimension). The trace of a function f from KL is denoted fL, the trace from KR

is denoted fR

The definitions and propositions given in this section are needed to deal with discontinuities

on element faces in which a function f is double-valued. This is the result of the discontinuous

functions approximation. For clarity and brevity f(x, t) is written as f .

At the internal faces Si = K̄L ∩ K̄R (see Fig. 1), the traces of a function f are defined as

fL = limε↓0 f(x−εnL) with nL the outward normal vector. At boundary faces Sb = K̄L∩∂Ω,

the traces of a function f are just the value of f on the boundary.

Averages of a function f across an internal face are defined as {{f}} = 1
2 (fL + fR). Across a

boundary face the average of a function f is the value of f on the boundary.

The jump [[f ]] of the function f across an internal face is defined by [[f ]] = f LnL + fRnR and

on a boundary face [[f ]] = fLnL. Since nL is the outward normal vector to KL and nR the

outward normal vector to KR, by definition nL = −nR.

The jump and average are used to link the element boundary integrals with face integrals, as

stated in the next proposition:

Proposition 2.1. The following relation holds for arbitrary functions f and g:

∑

k

∫

∂Kk

gLfLnL d(∂Kk) =

∫

Γ
{{g}}[[f ]]dS +

∫

Γi

[[g]]{{f}}dS,

where Γ = {Si} ∪ {Sb} is the set of all faces and Γi = {Si} the set of internal faces.

Besides jumps and averages across faces, we also define lifting operators which are used to

extend face data to the element:

Definition 2.1. (Lifting operators). The global lifting operator working on a function f

is defined in the weak sense as:
∫

Ω
gR(f) dΩ :=

∫

Γ
{{g}}f dΓ, ∀g ∈ Vh

and the local lifting operator as:

∫

Ω
gRS(f) dΩ :=

∫

S
{{g}}f dS, ∀S ∈ Γ,

for all test functions g ∈ Vh. The difference between the local and global lifting operator is

that the local lifting operator is 0 everywhere except on the cells adjacent to the face under

consideration.
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2.1.2 The weak formulation

We follow the report of [Kla04] to apply the method of Bassi and Rebay to Eq. (2.1). The

method of Bassi and Rebay introduces an auxiliary variable σ and Eq. (2.1) is written as a

system of first order equations:

ut + (f(u) − σ)x = 0 in Ω,

σ − µux = 0 in Ω.

The auxiliary variable σ will be eliminated from these equations later on. Because of the

discontinuous function approximation, a function f is double-valued on the element faces.

The definitions and propositions given in the previous section are used to deal with these

discontinuities.

The equation for the auxiliary variable is: µux = σ. Multiplying by a test function v and

partially integrating twice in space over an element Kk results in:
∫

Kk

vσ dx =

∫

Kk

vµux dx,

= −
∫

Kk

vxµudx+

∫

∂Kk

vµûn ds,

=

∫

Kk

vµux dx+

∫

∂Kk

vµ(û− u)nds,

with n the component of the outward normal vector to ∂Kk. Summing over all elements of

the tessellation Th gives:
∫

Ωh

vσ dx =

∫

Ωh

vµux dx+
∑

k

∫

∂Kk

vµ(û− u)nds.

The integral over the element boundaries can be transformed into an integral over the faces

using Prop. 2.1:
∫

Ωh

vσ dx =

∫

Ωh

vµux dx+

∫

Γ
µ{{v}}[[û − u]] ds+

∫

Γi

µ[[v]]{{û− u}} ds. (2.5)

To find an expression for the auxiliary variable σ we introduce the numerical flux û = {{u}}
and we find from Eq. (2.5) and the definition of the global lifting operators:

σ = µux −R
(
[[u]]

)
. (2.6)

Now we consider the equation ut+(f−σ)x = 0. This equation is multiplied by a test function

w and integrated by parts over an element Kk to get:
∫

Kk

(
wut − wx(f − σ)

)
dx+

∫

∂K
w(f̂ − σ̂)nds = 0.

Summing over all elements of the tessellation Th gives:
∫

Ωh

(
wut − wx(f − σ)

)
dx+

∑

k

∫

∂K
w(f̂ − σ̂)nds = 0.
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Using Prop. 2.1 to transform the integral over the element boundaries into an integral over

the faces, we find:
∫

Ωh

(
wut − wx(f − σ)

)
dx+

∫

Γ
{{w}}[[f̂ − σ̂]] ds+

∫

Γi

[[w]]{{f̂ − σ̂}} ds = 0.

Using expression Eq. (2.6) for the auxiliary variable gives:
∫

Ωh

(
wut − wx(f − µux + R([[u]]))

)
dx+

∫

Γ
{{w}}[[f̂ − σ̂]] ds+

∫

Γi

[[w]]{{f̂ − σ̂}} ds = 0,

which is called the primal form as it is written in terms of the primary unknown u and the

generic numerical fluxes f̂ and σ̂.

We obtain the following weak formulation: Find a u ∈ Vh such that B(u,w) = 0,∀w ∈ Vh

with:

B(u,w) =

∫

Ωh

(
wut − wx

(
f − µux + R([[u]])

))
dx

+

∫

Γ
{{w}}[[f̂ − σ̂]] ds+

∫

Γi

[[w]]{{f̂ − σ̂}} ds.

2.1.3 The numerical fluxes

As seen in the previous section, we require three numerical fluxes f̂ , û and σ̂. We already

defined the numerical flux of u as the average of u of the face, û = {{u}}, and we now define

the numerical fluxes for σ and f .

As seen in the previous section, we derived the following expression for σ:

σ = µux −R
(
[[u]]

)
.

We choose the numerical flux σ̂ as:

σ̂ = {{µux − ηRS
(
[[u]]

)
}},

where the global lifting operator R was approximated by the local lifting operator RS with

weight η to ensure locality of the scheme. The weight η should be strictly larger than the

number of faces per element.

The numerical flux f̂ is based on the exact solution of the Riemann problem for the inviscid

Burgers equation [Tor97]. The Riemann problem for the inviscid Burgers equation is:




ut + f(u)x = 0 with f(u) = 1
2u

2,

u(x, 0) =

{
uL if x < 0,

uR if x > 0.

The complete solution of this problem depends on the following cases:

• If uL > uR:

u(x, t) =

{
uL if x

t < s,

uR if x
t > s,

(2.7)
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where s = 1
2(uL + uR) and where uL is the velocity immediately to the left and uR the

velocity immediately to the right of an element face.

• If uL ≤ uR:

u(x, t) =





uL if x
t ≤ uL,

0 if uL <
x
t < uR,

uR if x
t ≥ uR.

(2.8)

We are interested in the flux on the face between neighboring elements. This is the case where

x = 0. The flux is defined as f(u) = 1
2u

2. Using these facts combined with Eq. (2.7) and Eq.

(2.8), the following numerical flux can be derived:

h(uL, uR) =





1
2u

2
L if 0 ≤ sL,

0 if sL < 0 < sR,
1
2u

2
R if 0 ≥ sR,

where sL and sR are defined as:

sL = min
(

1
2(uL + uR), uL

)
, sR = max

(
1
2(uL + uR), uR

)
.

Note that by taking periodic boundary conditions, we can omit all boundary integrals.

2.1.4 Discretization

The domain Ω = [0, 1] ⊂ R is partitioned by N + 1 grid points, E := {xk}N
k=1, defining N

elements. It is convenient to introduce a reference element, K̂ = [−1, 1], and the mapping

FK : R → R between the reference element K̂ and element Kk as follows:

x = FKk
(ξ) =

2∑

m=1

xk,mχm(ξ) = x̂k +
|Kk|ξ

2
,

where Kk = (xk, xk+1). The shape functions are χ1(ξ) = (1 − ξ)/2, χ2(ξ) = (1 + ξ)/2;

x̂k = 1
2(xk + xk+1), and |Kk| = (xk+1 − xk). In the reference element K̂, we define basis

functions ϕ̂0 and ϕ̂1 as:

ϕ̂0(ξ) = 1, and ϕ̂1(ξ) = ξ.

Finally, the local basis functions in K̂ are related to the basis functions in Kk as follows:

ϕ̂n(ξ) = ϕ̂n(F−1
Kk

(x)) = ϕk
n(x) for n = 0, 1.

The variable u and test functions v are approximated in each element Kk by their approxi-

mations uh and vh given respectively by:

uh(x, t)|Kk
= ū(Kk, t)ϕ

k
0(x) + û(Kk, t)ϕ

k
1(x) and vh(x) = v̄(Kk)ϕ

k
0(x) + v̂(Kk)ϕk

1(x),
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where, since ϕk
0(x) = 1, ū(Kk, t) represents the mean of u(x, t) on |Kk|:

ū(Kk, t) =
1

|Kk|

∫

Kk

u(x, t)dx,

and û(Kk, t) the slope of u(x, t) on |Kk|. When discretizing the equations, a two points

Gauss scheme is used for the volume integrals. Furthermore we use the limits ϕk
1(x

−
k ) = 1

and ϕk
1(x

+
k ) = −1, where x−k = limε↓0(xk − ε) and x+

k = limε↓0(xk + ε).

Time integration is done by using a total variation diminishing (TVD) third-order Runge-

Kutta discretization. The dynamical system du
dt = R(u), is solved as follows:

u(1) = un + ∆tR(un)

u(2) = 1
4

(
3un + u(1) + ∆tR(u(1))

)

un+1 = 1
3

(
un + 2u(2) + 2∆tR(u(2))

)
,

where un = u(t) and un+1 = u(t+ ∆t). For stability, which requires a restriction on ∆t, we

make use of the CFL and diffusion number. The CFL number is:

CFL =
λ∆t

∆x
,

and the diffusion number, DN:

DN =
µ∆t

(∆x)2
,

where µ is the viscosity. We define ∆x and λ as:

∆x = min
k

|Kk|, λ = max
k

(sLk
, sRk

).

The value of ∆t used when implementing is:

∆t = min

(
CFL∆x

λ
,
DN(∆x)2

µ

)
. (2.9)

Note that in the inviscid case Eq. (2.9) reduces to ∆t = CFL∆x
λ .

Numerical results for this method can be found in Section 2.3.

2.2 Travelling wave schemes

2.2.1 Introduction

In this section we will consider the schemes introduced by Harabetian [Har90] and Weekes

[Wee98] for the numerical approximation of viscous perturbations of nonlinear hyperbolic

conservation laws. We will solve the viscous Burgers problem as given by Eq. (2.1) and

(2.2) with initial condition given by Eq. (2.3). For finite difference schemes, a standard

approach for these types of equations is to approximate the viscous term with a centered

difference approximation and a centered difference or an upwind difference approximation for

the hyperbolic term.
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In [Har90] a second order scheme is introduced using travelling wave solutions which does

not split the viscous term from the hyperbolic term. A travelling wave solution to a viscous

conservation law is a similarity solution of the form u(x, t) = ϕ(ω), where ω = x − st. The

key idea of this scheme is to interpolate a piece of a travelling wave (TW) between grid points

and then let the exact solution operator to Eq. (2.1) act on it. Then, the flux µux − f(u) at

the cell boundaries is evaluated. This scheme only works in the case a travelling wave exists

(un
j > un

j+1). If not, a centered difference scheme is applied to the viscous and hyperbolic

term.

The TW scheme introduced in [Wee98] is also second order accurate. The main difference

between the scheme by Weekes and by Harabetian is that the latter only considers the sit-

uation of shocks, resorting to centered difference schemes in the case of rarefactions. The

TW scheme by Weekes treats rarefactions as entropy-violating travelling waves maintain-

ing the travelling wave approach. Another improvement of the scheme by Weekes is that a

conservation requirement is imposed.

In Section 2.2.2 we derive Harabetian’s TW scheme. Weekes’ TW scheme is derived in Section

2.2.3. Both schemes are tested in Section 2.2.4, where we also compare results.

2.2.2 Harabetian’s travelling wave scheme

Define the following (non dimensional) quantities:

Re =
|f ′| · ∆x

µ
, Cell Reynolds number,

λ =
|f ′| · ∆t

∆x
, CFL Number,

(2.10)

where |f ′| = sup |f ′(u)| and ∆x and ∆t are the spatial and temporal mesh widths of the

discretization. As mentioned in the introduction, a travelling wave ϕ must be found such

that ϕ(ω), where ω = x − st, is a solution to Eq. (2.1) and ϕ(xj) = uj , ϕ(xj+1) = uj+1.

Substituting the travelling wave into Eq. (2.1) we find the following equation:

µϕ′′ = −sϕ′ + f(ϕ)′, ϕ(xj) = uj , ϕ(xj+1) = uj+1, (2.11)

where the prime ′ denotes differentiation with respect to ω. Since this is a second order ODE

and the speed s is still undetermined, an extra boundary condition for ϕ′ is prescribed, the

choice being dictated by stability and accuracy considerations. In [Har90] it is proven that if

uj > uj+1 and ϕ′(xj) = ϕ′
j < 0, then there exists a unique s and ϕ(x) that solve Eq. (2.11).

The speed s is found by solving:

∫ uj+1

uj

µ

−s(z − uj) + f(z) − f(uj) + µϕ′
j

dz = ∆x, (2.12)

so that ϕ(x) can be determined from the following formula:

∫ ϕ(x)

uj

µ

−s(z − uj) + f(z) − f(uj) + µϕ′
j

dz = x− xj. (2.13)
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CFL number λ: 0 0.25 0.5 0.6 0.65 0.75 0.8 1

Reynolds number Re∗(λ): 2 2.6 3.6 3.9 4.1 4.3 4.5 4.9

Table 2.1: The range of CFL and Reynolds numbers for which Harabetian’s scheme is TVD.

Given uj , uj+1 and ϕ′
j , the numerical flux for the travelling wave scheme as given in [Har90]

is defined by:

HTW
j+1/2 = µϕ′(xj+1/2 − 1

2s∆t
)
− f

(
ϕ
(
xj+1/2 − 1

2s∆t
))
,

and the travelling wave scheme is:

un+1
j = un

j − ∆t

∆x
(HTW

j+1/2 −HTW
j−1/2).

Define:

Re∗(λ) = sup
0≤z≤1

2

(1 − λz)(1 − z)
log

(
1

z

)
.

To avoid oscillatory solutions around discontinuities, one would like the scheme to be total

variation diminishing (TVD). The travelling wave scheme is proven to be TVD in [Har90] if

the following is satisfied:

Re ≤ Re∗(λ), (2.14a)

λ

(
2

Re
+ 1

)
≤ 1. (2.14b)

The upper limits of the Reynolds number as a function of λ are given in Table 2.1. From Eq.

(2.14a) and (2.14b) it follows that 2λ(1 − λ) ≤ Re ≤ Re∗(λ). Since, according to Eq. (2.14b)

λ ≤ 1, this means that the TW scheme by Harabetian is restricted to cases with Re ≤ 4.9

when one is interested in obtaining non-oscillatory solutions.

Optimal stability in the TW scheme by Harabetian is obtained by taking ϕ′
j = uj+1 − uj in

Eq. (2.12). Evaluating the integral in Eq. (2.12):

2µ√
2µ(uj+1 − uj) − (s− uj)2

(
arctan

(
uj+1 − s√

2µ(uj+1 − uj) − (s− uj)2

)

− arctan

(
uj − s√

2µ(uj+1 − uj) − (s− uj)2

))
= ∆x, (2.15)

where:

2µ(uj+1 − uj) − (s− uj)
2 < 0.
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To avoid having to work with complex numbers, we use the fact that arctan(ix) = iarctanh(x)

and write Eq. (2.15)as:

2µ

(
arctanh

(
(s− uj+1)/A

)
− arctanh

(
(s− uj)/A

))

A − ∆x = 0, (2.16)

where:

A =
√
|2µ(uj+1 − uj) − (s− uj)2|.

To find s a bisection method [vDDS+01] is used with left initial condition sl = −10 and right

initial condition the asymptote of Eq. (2.16): sr = 1
2(u2

j+1 −u2
j)/(uj+1 −uj)+µ (see also Eq.

(2.12)). Analogously to deriving Eq. (2.16), we obtain from Eq. (2.13):

2µ

(
arctanh

(
(s− ϕ(x))/A

)
− arctanh

(
(s− uj)/A

))

A − x+ xj = 0,

from which it follows that:

ϕ(x) = s−A tanh

(
2µ arctanh

(
(s− uj)/A

)
+ (x− xj)A

2µ

)
. (2.17)

Differentiating the expression for ϕ(x) in Eq. (2.17) we obtain:

ϕ′(x) =
A2

2µ

(
tanh2

(
2µ arctanh

(
(s− uj)/A

)
+ (x− xj)A

2µ

)
− 1

)
.

Besides using a bisection method to determine s as mentioned above, we also consider an s

determined by using a 2-point Gauss method to evaluate the integral in Eq. (2.12) leading

to a quadratic equation for s. First we define a mapping F : R → R between [−1, 1] and

[uj , uj+1] as:

z = F (ξ) = 1
2(uj + uj+1) +

uj+1 − uj

2
ξ.

Using this mapping, Eq. (2.12) can be written as:

1
2(uj+1 − uj)

∫ 1

−1

µ

−s(F (ξ) − uj) + f(F (ξ)) − f(uj) + µϕ′
j

dξ = ∆x. (2.18)

Define G(ξ) as:

G(ξ) =
µ

−s(F (ξ) − uj) + f(F (ξ)) − f(uj) + µϕ′
j

.

By applying the 2-point Gauss integration technique on Eq. (2.18) we obtain the following

quadratic equation for s:

1
2(uj+1 − uj)(G(−

√
1/3) +G(

√
1/3)) = ∆x.
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Solving for s, the speed is given by the following expression:

s± =
−AD + h(CD +BE) −AB ± F

2hBD
,

where:

A = 1
2µ(uj+1 − uj), B = ϕ(−

√
1/3) − uj, C = f(ϕ(−

√
1/3)) − f(uj) + µϕ′

j

D = ϕ(
√

1/3) − uj , E = f(ϕ(
√

1/3)) − f(uj) + µϕ′
j ,

F =
(
(AD)2 − 2AD2C∆x+ 2ADBE∆x+ 2A2DB + (∆xCD)2 − 2∆x2CDBE

+2∆xCDAB + (∆xBE)2 − 2∆xB2EA+ (AB)2
) 1

2

We take s such that the entropy condition for a shock is satisfied. For the Burgers equation:

uj > s > uj+1 (see also [Rhe05] for details on the entropy condition for shock waves).

As stated before, the travelling wave scheme can only be used if un
j > un

j+1. If this is not

the case a centered difference scheme to the viscous and hyperbolic terms is used. We use

Richtmeyer’s two-step procedure:

u
n+1/2
j+1/2 =

1

2

(
un

j + un
j+1

)
− ∆t

2∆x

(
f(un

j+1) − f(un
j )

)
+

µ∆t

2∆x2

(
un

j+1 − 2un
j+1/2 + un

j

)
,

un+1
j = un

j − ∆t

∆x

(
f
(
u

n+1/2
j+1/2

)
− f

(
u

n+1/2
j−1/2

))
.

As mentioned above, we take s such that the entropy condition for a shock is satisfied, but it

is possible that both s− and s+ do not satisfy the entropy condition. This occurs when the

difference between uj and uj+1 is very small. To prevent this from happening we only use

the travelling wave scheme if un
j − un

j+1 > 10−8. Furthermore, we do not use the travelling

wave scheme if the previous point was calculated with Richtmeyer’s procedure, for then no

travelling wave flux term has been calculated at that point which is needed to join the two

schemes together.

2.2.3 Weekes’ travelling wave scheme

In [Wee98] a function Φ(x, t) is constructed to approximate the exact solution u(x, t) of Eq.

(2.1). This profile, Φ(x, t), consists of travelling waves ϕj+ 1

2

(ω) that interpolate the data

at x = xj and x = xj+1 at time tn. Defining ω = x − xj+1/2 − sj+1/2(t − tn), where

xj+1/2 = 1
2 (xj + xj+1), the interpolation requirement for ϕj+ 1

2

is:

ϕj+ 1

2

(
− 1

2∆x
)

= un
j , ϕj+ 1

2

(
1
2∆x

)
= un

j+1. (2.19)

If un
j < un

j+1 there are no travelling wave solutions u = ϕ to Eq. (2.1) and Eq. (2.19). Instead,

ϕj+ 1

2

is taken to be a travelling wave solution to the modified PDE:

ut + f(u)x = µ̃uxx, f(u) = 1
2u

2,

where µ̃ = µ sgn(un
j − un

j+1). The ϕj+ 1

2

are therefore solutions to the ODE:

−sϕ′ + f(ϕ)′ = µ̃ϕ′′. (2.20)
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Since this is a second order ODE and the speed s is unknown, three constraints are needed

to obtain a particular solution, ϕj+ 1

2

. Two constraints are given by the interpolation require-

ment. As a third constraint, ϕj+ 1

2

has to satisfy the conservation requirement:

∫ 1

2
∆x

− 1

2
∆x

ϕj+ 1

2

dω = ∆x
2 (un

j + un
j+1). (2.21)

Note the difference with the TW scheme of Harabetian. Harabetian did not have a con-

servation requirement, but instead prescribed ϕ′, his choice being dictated by stability and

accuracy considerations.

The motivation behind the conservation requirement is that as µ → ∞, the travelling wave

profiles steepen and become step functions. The conservation requirement forces the discon-

tinuities to occur at cell interfaces, xj+1/2, at time tn and so, in the limit, the constructed

profile Φ(x, tn) agrees with the piecewise constant profile of Godunov’s method for the inviscid

problem.

In [Wee98] it is proven that if f(u) is convex, there exists an s and a ϕ(ω) that solve the

problem given by Eq. (2.19), (2.20) and (2.21). From Eq. (2.20):

dω =
µ̃

−sϕ+ f(ϕ) + c
dϕ, (2.22)

where c is a constant of integration. It follows that:

ω + 1
2∆x =

∫ ϕ(ω)

uj

µ̃

−sϕ+ f(ϕ) + c
dϕ, (2.23)

and, using Eq. (2.19), the interpolation requirement becomes:

∆x =

∫ uj+1

uj

µ̃

−sϕ+ f(ϕ) + c
dϕ. (2.24)

Multiplying Eq. (2.22) with ϕ we obtain:

ϕdω =
µ̃ϕ

−sϕ+ f(ϕ) + c
dϕ.

Using Eq. (2.21), the conservation requirement becomes:

1
2∆x(uj + uj+1) =

∫ uj+1

uj

µ̃ϕ

−sϕ+ f(ϕ) + c
dϕ. (2.25)

The system consisting of Eq. (2.24) and (2.25) is solved simultaneously for the unknowns s

and c and, along with Eq. (2.23), gives the solution for ϕ(ω).

In [Wee98] it is suggested to use Newton’s method to solve this system, and for the cases

where the Jacobian of the iteration matrix is large, to use asymptotic approximations for

ϕj+ 1

2

.
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As initial condition for the Newton method we use a 2-points Gauss method to evaluate the

integrals in Eq. (2.24) and Eq. (2.25). In Section 2.2.4 we show that using the s and c

calculated only with the Gauss method results in approximately the same solution as when

applying the Newton method. This is explained as follows:

An integral of the form:

I =

∫ uj+1

uj

f(u) du

can be approximated with Î using the 2-points Gauss method resulting in:

I = Î + O(|uj+1 − uj |3).

Since |uj+1 −uj | in our cases is small, O(|uj+1 −uj |3) is small and Î is a good approximation

to I resulting in good approximations for s and c.

Using a Gauss integration technique (as was done in Section 2.2.2) we can solve Eq. (2.24)

and Eq. (2.25) simultaneously to find the following initial expressions for s and c:

s =
uj + uj+1

2
, c =

∆x(u2
j + u2

j+1) + 12µ̃(uj+1 − uj) + 4∆xujuj+1

12∆x
.

An expression for ϕ(ω) can be obtained by first evaluating the integral in Eq. (2.23) leading

to:

2µ√
s2 − 2c

(
arctanh

(
s− uj√
s2 − 2c

)
− arctanh

(
ϕ− s√
s2 − 2c

))
= ω + 1

2∆x.

This equation can be solved for ϕ(ω) leading to:

ϕ(ω) = s+A tanh

(
4µ̃ arctanh

(
(uj − s)/A

)
− (2ω + ∆x)A

4µ̃

)
,

where:

A =
√
s2 − 2c. (2.26)

It follows that:

ϕ′(ω) =

A2

(
tanh2

(4µ̃ arctanh((uj−s)/A)−(2ω+∆x)A
4µ̃

)
− 1

)

2µ̃
.

The numerical scheme for the viscous problem Eq. (2.1) is derived by integrating the equation

over the jth cell from time tn to time tn+1,

∫ x
j+1

2

x
j− 1

2

u(x, tn+1) dx =

∫ x
j+1

2

x
j− 1

2

u(x, tn) dx−
∫ tn+1

tn

(f(u) − µux)(xj+ 1

2

, t) dt

+

∫ tn+1

tn

(f(u) − µux)(xj− 1

2

, t) dt.
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In [Wee98] three versions of a travelling wave scheme are given. We only consider the first

scheme since the other two schemes are simple extensions of the first scheme. Approximating

uj with the cell average of u:

ū =
1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn) dx,

the travelling wave scheme is given by:

un+1
j = un

j − ∆t

∆x
(HTW (uj , uj+1) −HTW (uj−1, uj)),

where:

HTW (uj , uj+1) =
1

∆t

∫ tn+1

tn

(f(Φ) − µΦx)(xj+ 1

2

, t) dt

=
−1

s∆t

∫ −s∆t

0

(
f(ϕj+ 1

2

) − µϕ′
j+ 1

2

)
(ω) dω,

(2.27)

which, for fixed µ is second-order accurate on smooth solutions. The stability condition is

satisfied if ∆t is of order ∆x2.

As mentioned in the introduction, when uj < uj+1, viscous rarefaction fans are replaced by

entropy-violating travelling waves. Numerically, this poses a danger only when the rarefaction

is sonic, that is, if the characteristic speeds, f ′(uj) and f ′(uj+1), are of opposite signs. When

this occurs, a sonic entropy fix may have to be employed. The sonic point ω = ω̂ is found by

solving f ′(ϕ(ω̂)) = 0:

ω̂ =
4µ arctanh(s/A) − 4µ arctanh

(
(s− uj)/A

)
− ∆xA

2A
,

with A given by Eq. (2.26). If ω̂ is beyond the region between 0 and −s∆t, no entropy fix

is needed and HTW remains as in Eq. (2.27), where the total quantity of f(ϕ) − µϕ′ that

passes through the interface x
j+

1
2

from time tn to tn+1 as the travelling wave moves with its

speed s, is calculated. Otherwise, if ω̂ is between 0 and −s∆t, HTW is computed as:

HTW =
−1

s∆t

∫ ω̂

0
(f(ϕ) − µϕ′)(ω) dω + (−s∆t− ω̂)

−1

s∆t
(f(ϕ) − µϕ′)(ω̂).

The travelling wave starts moving through the interface with speed s. When the sonic point

is encountered, the profile is kept stationary and the flux is calculated as if the wave speed

were zero. In the implementation the integral term is computed using the 2-points Gauss

integration method. In [Wee98] it is shown that with this entropy fix, the resulting flux is the

Godunov flux f(ϕ(0)), plus an additional nonpositive term. Furthermore, with this entropy

fix, the TW scheme for µ → 0 is first-order accurate and generates TVD, entropy satisfying

solutions.
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Figure 2: The solution for u(x, t) calculated using the TW schemes by Harabetian and Weekes

and a centered difference scheme. In this case: λ = 0.65, Re = 4.0, ∆t = 0.01625, ∆x = 0.05

and 200 time steps. These parameters correspond to a viscosity coefficient of µ = 0.025 and

a final time of t = 3.25.

2.2.4 Numerical results

As mentioned in the introduction, we consider the travelling wave scheme for the viscous

Burgers equations given in Section 2.2.1.

Test case 1

For this test case we used the following parameters: λ = 0.65, Re = 4, ∆t/∆x = 0.325,

∆x = 0.05 and we did a total of 200 time steps. This situation corresponds to a viscosity

coefficient of µ = 0.025, see Eq. (2.10). This is the same test case as was done in [Har90]. In

Figure 2 the solution for u(x, t) is depicted using the different schemes. In Section 2.2.2, we

mentioned that we consider calculating the speed s from Eq. (2.12) using a bisection method

or using a Gauss method. In Figure 3a we depict the pointwise error |uh − u| of the TW

scheme by Harabetian for both ways of calculating s.
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Harabetian Weekes Centered difference

Gauss Bisection Gauss Newton

‖uh − u‖2 0.041 0.016 0.0043 0.0042 0.0126

Table 2.2: L2-norm of the error in the TW-schemes at t = 3.25.

Similarly, for the TW scheme by Weekes, we considered calculating s and c using a Gauss

method or applying a Newton method. The pointwise errors |uh − u| are depicted in Figure

3b. The reason for the different behavior of the pointwise error for Weekes’ TW scheme

when using a Newton method as shown in Figure 3b for x ∈ [2.4, 3] is because in this region

|uj − uj+1| is small. As mentioned in the previous section, in these regions Weekes [Wee98]

uses asymptotic approximations since the Newton method has difficulties obtaining a solution

when |uj − uj+1| is small. We did not implement these asymptotic approximations.

From Figure 3 we see that the error in Weekes’ scheme is one order smaller than in Hara-

betian’s scheme. Furthermore, we see that in Harabetian’s scheme using the Gauss method

results in larger errors than when using a bisection method. For Weekes’ scheme the difference

between Gauss’ integration and the Newton method is minimal. This can also be seen by

looking at the L2 error in Table 2.2.

Test case 2

In this test case we use the following parameters: ∆x = 0.2, µ = 0.5, a diffusion number of

DN = 0.05 (found by trial and error) and 2000 time steps. The time step ∆t satisfies:

∆t ≤ DN · ∆x2

µ
, (2.28)

where DN is the diffusion number. We use ∆t = 0.004. We only consider the TW scheme

by Weekes, because Harabetian’s method is not stable for these parameters. In [Wee98] no

stability or TVD analysis is given for the TW scheme we implemented, but we did not run

into any problems doing this test case. The solution of u(x, t) is depicted in Figure 4a. In

Figure 4b the pointwise error |uh − u| in the travelling wave scheme using a Gauss method

or a Newton method is depicted. As in the previous test case, the difference between Gauss’

integration and Newton’s method is minimal. This can also be seen by looking at the L2

error: for both methods ‖uh − u‖2 = 0.0058.
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(a) Harabetian’s TW scheme.
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(b) Weekes’ TW scheme.

Figure 3: The pointwise error |uh − u| in the travelling wave schemes at t = 3.25.
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(a) The solution for u(x, t).
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(b) The pointwise error |uh − u|.

Figure 4: In this case: ∆x = 0.2, µ = 0.5, diffusion number = 0.05, number of time steps

= 2000, ∆t = 0.004, with the TW scheme by Weekes. The final time is t = 8.
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Figure 5: The solution for u(x, t) calculated using the TW scheme and a centered difference

scheme. The solution is depicted at t = 0.02. A viscosity coefficient of µ = 2.0 and a spatial

mesh width of ∆x = 0.02 was used.

Test case 3

In our last test case we consider the viscous Burgers equations with periodic boundary con-

ditions:

ut + f(u)x = µuxx, f(u) = 1
2u

2, with x ∈ [0, 1], t ∈ R
+,

with initial condition given by:

u(x, 0) = sin(2πx− π
2 ) + 1.

We use the following parameters: ∆x = 0.02, µ = 2.0, a diffusion number of 0.05 and 2000

time steps. Our time step is ∆t = 1.0 · 10−5 which satisfies Eq. (2.28). The solution u(x, t)

is depicted in Figure 5. The solution of the TW scheme calculated with the Gauss method is

exactly the same as the solution calculated with the Newton method and approximately the

same as the solution determined with the centered difference scheme.

2.2.5 Conclusions

We saw in the previous section that the error in Weekes’ scheme is much smaller than in

Harabetian’s scheme for the given test case. Furthermore, we saw that for Harabetian’s
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scheme to be TVD, the restrictions in Eq. (2.14a) and (2.14b) have to be satisfied where as

for the TW scheme by Weekes, we only need ∆t to be of order ∆x2 for stability. Therefore

we continue with Weekes’ scheme. Another reason to use the TW scheme by Weekes is that

we do not have to use a different scheme for the case where a travelling wave solution does

not exist.

We also tested the TW scheme using the s and c calculated using only the 2-points Gauss

method for the integrals in Eq. (2.24) and Eq. (2.25) and using the Newton method and saw

no significant differences, meaning we can use the cheaper Gauss method instead of Newton.

In the next section we will modify the TW scheme by Weekes slightly so that we can apply

the TW scheme to DG-FEM.

2.3 The travelling wave scheme in DG-FEM

2.3.1 Introduction

In this section we will modify the travelling wave scheme by Weekes such that we can apply

it to DG-FEM. We consider the viscous Burgers problem as given by Eq. (2.1) and (2.2) with

initial condition given by Eq. (2.3).

We will compare the results obtained with the DG-FEM travelling wave (DG-TW) scheme

to the results obtained with the method of Bassi and Rebay.

2.3.2 The DG-TW scheme

As in [Wee98], we construct a function Φ(x, t) to approximate the exact solution u(x, t) of

Eq. (2.1). This profile, Φ(x, t), consists of travelling waves ϕj(ω) that interpolate the data

at x = xj− 1

2

and x = xj+ 1

2

at time tn. Defining ω = x − xj − sj(t − tn), the interpolation

requirement for ϕj is:

ϕj(−1
2∆x) = ūn

j−1, ϕj(
1
2∆x) = ūn

j , (2.29)

where ∆x is the spatial mesh width and ūn
j−1 and ūn

j are the mean values of u on cell j − 1

and j, respectively, at time t = tn. If ūn
j−1 < ūn

j there are no travelling wave solutions u = ϕ

to Eq. (2.1) and (2.29). Instead, ϕj is taken to be a travelling wave solution to the modified

PDE:

ut + f(u)x = µ̃uxx, f(u) = 1
2u

2,

where µ̃ = µ sgn(ūn
j−1 − ūn

j ). The ϕj are therefore solutions to the ODE:

−sϕ′ + f(ϕ)′ = µ̃ϕ′′. (2.30)

Since this is a second order ODE and the speed s is unknown, three constraints are needed to

obtain a particular solution, ϕj . Two constraints are given by the interpolation requirement.

A third requirement that ϕj has to satisfy is the conservation requirement:

∫ 1

2
∆x

− 1

2
∆x

ϕj dω =
∆x

2
(ūn

j−1 + ūn
j ). (2.31)
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Note that, unlike for inviscid numerical fluxes, we use the mean data of u in the (j− 1)th and

jth element (which are second order approximations to uj−1 and uj respectively) instead of

the left and right trace of u on the jth face. The motivation behind this is the following:

Let uh(x, t)|Kj
= ūj + ûkψj(x) be the approximation of u(x, t) on the j th cell, then:

∫

Kj−1∪Kj

u(x, t) dx =

∫

Kj−1

uh(x, t)|Kj−1
dx+

∫

Kj

uh(x, t)|Kj
dx

=

∫

Kj−1

ūj−1 dx+

∫

Kj

ūj dx

= ∆x(ūj−1 + ūj),

(2.32)

and so the conservation integral of u(x, t) over both cells adjacent to face j equals the integral

of the means of u(x, t) on both cells adjacent to face j. Therefore, if we halve the cell size we

should obtain:

∫ 1

2
∆x

− 1

2
∆x

u(x, t) dx ≈ ∆x
2 (ūn

j−1 + ūn
j ),

from which Eq. (2.31) follows. If we were to take the traces of u on the j th face, we would

not satisfy the conservation constraint, Eq. (2.32). Note that we do not take:

∫ ∆x

−∆x
u(x, t) dx =

∫ ∆x

−∆x
ϕj dω = ∆x(ūn

j−1 + ūn
j ), (2.33)

as conservation requirement, even though this is an exact expression. The reason for this will

become clear soon.

In [Wee98] it is proven that if f(u) is convex, there exist an s and a ϕ(ω) that solve the

problem given by Eq. (2.29), (2.30) and (2.31). From Eq. (2.30):

ω + 1
2∆x =

∫ ϕ(ω)

ūj−1

µ̃

−sϕ+ f(ϕ) + c
dϕ, (2.34)

where c is a constant of integration. The interpolation requirement, Eq. (2.29), becomes:

∆x =

∫ ūj

ūj−1

µ̃

−sϕ+ f(ϕ) + c
dϕ, (2.35)

and the conservation requirement, Eq. (2.31), becomes:

∆x
2 (ūj−1 + ūj) =

∫ ūj

ūj−1

µ̃ϕ

−sϕ+ f(ϕ) + c
dϕ. (2.36)

If we had taken the conservation requirement satisfying Eq. (2.33) we would not have been

able to obtain Eq. (2.34), (2.35) and (2.36) since ϕ(−∆x) and ϕ(∆x) are unknown.

The system consisting of Eq. (2.35) and (2.36) is solved simultaneously for the unknowns s

and c and, along with Eq. (2.34), gives the particular solution for ϕ(ω).
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As stated in Section 2.2.3, one could use a Newton method to solve this system or we could

use a 2-points Gauss method. By applying the Gauss integration method (see Section 2.2.2

for more details on how to do this) on the integrals in Eq. (2.35) and (2.36) we obtain a

simple system which can be solved simultaneously for s and c:

s =
ūj−1 + ūj

2
, c =

∆x(ū2
j−1 + ū2

j ) + 12µ̃(ūj − ūj−1) + 4∆xūj−1ūj

12∆x
.

An expression for ϕ(ω) can be obtained from Eq. (2.34):

ϕj(ω) = s+A tanh

(
4µ̃ arctanh

(
(ūj−1 − s)/A

)
− (2ω + ∆x)A

4µ̃

)
,

where:

A =
√
s2 − 2c.

It follows that:

ϕ′
j(ω) =

A2

(
tanh2

(4µ̃ arctanh((ūj−1−s)/A)−(2ω+∆x)A
4µ̃

)
− 1

)

2µ̃
.

If ūj > ūj+1 we introduce the following numerical flux:

HDG−TW (ūj−1, ūj) = f(ϕj(0)) − µϕ′
j(0), (2.37)

where ω = 0 is the position of the discontinuity at time t = tn.

As in the previous section, if ūj < ūj+1, we determine the sonic point ω = ω̂, where f ′(ϕ(ω̂)) =

0. If ω̂ ≥ 0 or ω̂ < −s∆t no entropy fix is needed and HDG−TW remains as in Eq. (2.37).

Otherwise, if ω̂ is between 0 and −s∆t, HDG−TW is computed as:

HDG−TW (ūj−1, ūj) = f(ϕj(ω̂)) − µϕ′
j(ω̂).

Multiplying Eq. (2.1) by a test function v in each element Kk, integrating over each element

Kk and summing the local weak formulation over all elements, we obtain the following global

weak formulation for the viscous Burgers equation:

Find a u ∈ Vh such that B(u,w) = 0, ∀w ∈ Vh with:

B(u,w) =

∫

Ωh

w ut dx−
∫

Ωh

wxf dx+µ

∫

Ωh

wxux dx+

N∑

k=1

∫

∂Kk

wHDG−TW (ūj−1, ūj) ds,

where Vh is defined in Section 2.1.1.

2.3.3 Testing the DG-TW scheme

In this section we will test the DG-TW scheme against the method of Bassi and Rebay.
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Figure 6: The solution for u(x, t) calculated using the DG-TW scheme. The solution is

depicted at t = 0.02. A viscosity coefficient of µ = 2.0 and a spatial mesh width of ∆x = L/64

was used.



2 The viscous Burgers equation 25

Test case 1

We will determine the solution of Eq. (2.1) and (2.2) with initial condition given by Eq.

(2.3) at time t = 0.02 using a viscosity coefficient of µ = 2.0. We consider a spatial domain

of length L = 120 with Ω = [−60, 60]. See Figure 6 for the solution. The solutions of the

DG-TW scheme are compared to solutions calculated with the method of Bassi and Rebay.

We determine the L2- and L∞-norms of the errors as follows:

‖uk − u‖∞ := max{|uk
i − ui| : 1 ≤ i ≤ n},

‖uk − u‖2 :=

(
∆x

n∑

i=1

(
uk

i − ui

)2
) 1

2

,

where k is the number of cells in the grid, ∆x = 1/k the cell width on the coarsest grid and

xi is the ith grid point on the grid with k cells.

The results of the order behavior are depicted in Figure (7). We see that there is no significant

difference in the solution when using the DG-TW scheme or the method of Bassi and Rebay.

Both schemes show second order behavior. We also see that determining the solution by using

Gauss or Newton makes no difference. These can also be seen in Table (2.3).

To determine how much the viscosity plays a part in the scheme, we determine the ratio

viscous/inviscid contributions in the method of Bassi and Rebay and of the DG-TW scheme.

This ratio was determined in the calculation of the means as well as in the calculation for

the slopes. In Figure 8 these ratios are depicted along the x-axis. We see that in the shock

region, x ∈ [0, 20], the viscous contributions certainly play a major part in the solution. We

also see that the ratio in the calculation of the means are similar for the Bassi and Rebay

method and the DG-TW scheme, but the peaks of the ratios in the calculation of the slopes

between both methods are slightly apart.

Remark. In the calculation of the ratio viscous-/inviscid contributions, we set the ratio equal

to 0 if the inviscid contributions were 0.

Test case 2

To show that the DG-TW scheme also works for other problems, we considered the viscous

Burgers equation with periodic boundary conditions:

ut + f(u)x = µuxx, f(u) = 1
2u

2, with x ∈ [0, 1], t ∈ R
+,

and initial condition given by:

u(x, 0) = sin(2πx− π
2 ) + 1.

Figure 9 depicts the solution using the DG-TW scheme and the method of Bassi and Rebay

at t = 0.02 calculated on a grid using 64 cells, a viscosity of 2.0 and a diffusion number of 0.05.

The difference between the DG-TW solution and the Bassi and Rebay solution is depicted in

Figure 10. We see that the DG-TW scheme and the method of Bassi and Rebay agree very

well with each other. We do not test this any further for a scalar equation.

Remark. Doing these test cases, no situations occurred in which the entropy fix had to be

applied.
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Figure 7: Comparing the order behavior of the DG-TW scheme against the order behavior

using the method of Bassi and Rebay. In this case: µ = 2.0, diffusion number DN = 0.05,

time t = 0.02.
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(a) Viscous-/inviscid ratio’s in the calculation of the means.

−60 −40 −20 0 20 40 60
−2000

−1500

−1000

−500

0

500

1000

1500

2000

x

ra
tio

 in
 s

lo
pe

 c
al

cu
la

tio
n

Bassi and Rebay
Gauss
Newton

(b) Viscous-/inviscid ratio’s in the calculation of the slopes.

Figure 8: Comparing the ratio viscous/inviscid contributions, in the calculations of the means

and slopes, in the method of Bassi and Rebay and in the DG-TW scheme. In this case:

µ = 2.0, diffusion number DN = 0.05, time t = 0.02 and ∆x = L/512 with L = 120.
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Bassi and Rebay DG-TW Gauss/Newton

∆x ‖uh − u‖∞ p ‖uh − u‖2 p ‖uh − u‖∞ p ‖uh − u‖2 p

L/16 0.0796 - 0.307 - 0.0789 - 0.305 -

L/32 0.0442 0.8 0.128 1.3 0.0440 0.8 0.127 1.3

L/64 0.0121 1.9 0.0361 1.8 0.0121 1.9 0.0359 1.8

L/128 0.00343 1.8 0.00929 2.0 0.00344 1.8 0.00929 2.0

L/256 0.000867 2.0 0.00234 2.0 0.000872 2.0 0.00235 2.0

L/512 0.000218 2.0 0.000586 2.0 0.000220 2.0 0.000591 2.0

Table 2.3: Norms of the method of Bassi and Rebay and the DG-TW scheme. The order is

denoted as p.
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Figure 9: The solution for u(x, t) calculated using the DG-TW scheme and the method of

Bassi and Rebay. The solution is depicted at t = 0.02. A viscosity coefficient of µ = 2.0 and

a spatial mesh width of ∆x = 1/64 was used.
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Figure 10: The difference between the DG-TW solution and the Bassi and Rebay solution for

u(x, t). This difference is depicted at t = 0.02. A viscosity coefficient of µ = 2.0 and a spatial

mesh width of ∆x = 1/64 was used.

2.4 Conclusions

In this section we considered travelling wave schemes introduced in [Har90] and [Wee98]. It

turned out that the TW scheme introduced by Weekes is more suitable to use than the TW

scheme introduced by Harabetian. We also considered two ways of finding roots of the non-

linear equations. In [Wee98] it is suggested to use a Newton method to find these roots. We,

however, found that using a Gauss method gave the same results at much lower cost.

We modified Weekes’ TW scheme in Section 2.3 so that it could be applied to DG-FEM. This

resulted in the DG-TW scheme. The DG-TW scheme was compared to the method of Bassi

and Rebay, the standard way of treating second order derivatives in a DG method, in a test

case of which we verified that the viscous contributions in the algorithm play an important

part in the solution. We see that there was no significant difference in the solution when

using the DG-TW scheme or the method of Bassi and Rebay and that both schemes show

second order behavior. We also see that using Gauss or Newton in the DG-TW scheme gives

the same results.

Furthermore, the DG-TW scheme is easier to implement than the Bassi and Rebay method,

since, once the inviscid Burgers equation is implemented, one needs only to modify the flux

function and add a viscous volume term. It is therefore also cheaper than the Bassi and

Rebay method: the costly lifting operators and viscous contributions are not needed.

The DG-TW scheme is a scheme evolving from the physics of the system. Inviscid and viscous

contributions are not split. The method of Bassi and Rebay, on the other hand, is a scheme

separating the flux at element faces into an inviscid and a viscous contribution. A penalty

term is introduced for stability reasons, penalizing the discontinuity at the element faces
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without making a distinction if it originates from the physics or from the use of discontinuous

polynomials. So, besides being easier to implement and less costly, the DG-TW method is

also based on the physics rather than only the mathematical properties.
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3 1D Navier-Stokes equations

In this chapter we analyze the TW-scheme introduced in [Wee98] for the 1D Navier-Stokes

equations. Afterwards we will adapt this scheme so that it can be applied to DG as was done

in the previous chapter for Burgers. We start this chapter by deriving a dimensionless form

of the 1D Navier-Stokes equations (see [Kla04]).

3.1 Dimensionless form

Consider the Navier-Stokes equations in dimensional form:

Ut + F e(U)x = F v(U,Ux)x,

where:

U =



ρ

ρu

ρE


 , F e(U) =




ρu

ρu2 + p

u(ρE + p)


 , F v(U,Ux) =




0
4
3µux

4
3µuux + κTx


 ,

Here ρ is the density, u the velocity, p the pressure, E = e + 1
2u

2 the total energy, e the

internal energy, T the temperature, µ the dynamic viscosity coefficient and κ the thermal

conductivity coefficient.

Assuming a calorically perfect gas, the pressure p and internal energy e are given by the

equations of state:

p = ρRT,

e = cvT,

where cp and cv are the specific heats respectively at constant pressure and constant volume

and R = cp − cv is the specific gas constant.

The magnitudes of the dimensional quantities involved in the Navier-Stokes equations are

given in terms of the four fundamental magnitudes mass [M ], length [L], time [T ] and tem-

perature [θ]. Our non dimensionalization is based on the recurrent set of reference values

{ρ∞, a∞, T∞, L} with a∞ the free-stream speed of sound defined as:

a∞ =

√
γp∞
ρ∞

,

and L a characteristic length scale. The dimensionless form of the Navier-Stokes equations

[Kla04] is given by:

C
(
Ũt̃ + F e(Ũ )x̃ − F v(Ũ , Ũx̃)x̃

)
= 0,

where:

Ũ =



ρ̃

ρ̃ũ

ρ̃Ẽ


 , F e(Ũ ) =




ρ̃ũ

ρ̃ũ2 + p̃

ũ(ρ̃Ẽ + p̃)


 , F v(Ũ , Ũx) =




0
4
3 µ̃ũx̃

4
3 µ̃ũũx̃ + κ̃T̃x̃


 ,



32 3 1D Navier-Stokes equations

and:

C =



ρ∞a∞/L 0 0

0 ρ∞a
2
∞/L 0

0 0 ρ∞a
3
∞/L


 .

Since the form of the dimensionless equations is identical to the dimensional equations, the

tilde notation is ommited from now on. We consider flow problems defined by the following

eight parameters:

• the characteristic length L,

• the free-stream density ρ∞, velocity u∞ and temperature T∞,

• the gas constant R and the specific heat at constant pressure cp,

• the free-stream dynamic viscosity µ∞ and thermal conductivity κ∞,

Since the equations contain four fundamental magnitudes, according to the Buckingham’s Pi

theorem, four dimensionless Pi groups can be formed:

• the free-stream Mach number M∞ = u∞/a∞,

• the ratio of specific heats γ = cp/cv ,

• the free-stream Reynolds number Re∞ = ρ∞u∞L/µ∞,

• the Prandtl number Pr = cpµ∞/κ∞,

The flow parameters can now be expressed in terms of the dimensionless Pi groups and the

recurrent set {ρ∞, a∞, T∞, L}:

R =
p∞

ρ∞T∞
, cp =

γ

γ − 1
R, µ∞ =

ρ∞u∞L

Re∞
, κ∞ =

cpµ∞
Pr

.

By definition ρ∞ = 1, a∞ = 1, T∞ = 1 and L = 1 so that all values can be calculated once

M∞, Re∞ and Pr are given:

R =
1

γ
, cp =

1

γ − 1
, µ∞ =

M∞
Re∞

, κ∞ =
M∞

Re∞Pr
cp.

Using these expressions we can write the dimensionless Navier-Stokes equations as:

Ut + F e(U)x = F v(U,Ux)x,

where:

U =



ρ

ρu

ρE


 , F e(U) =




ρu

ρu2 + p

u(ρE + p)


 , F v(U,Ux) =




0
4
3µux

4
3µuux + κTx


 ,
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with:

µ =
M∞
Re∞

, κ =
cpµ

Pr
.

In [Wee98] a Prandtl number of Pr = 0.75 is assumed resulting in κ/cp = 4
3µ. For a calorically

perfect gas, the enthalpy is given by:

h = cpT.

Using these assumptions, and using e = h− p/ρ, the Navier-Stokes equations are given as:

Ut + F e(U)x = F v(U,Ux)x, (3.1)

where:

U =



ρ

ρu

ρE


 , F e(U) =




ρu

ρu2 + p

ρu(h+ 1
2u

2)


 , F v(U,Ux) =

4

3
µ




0

ux(
h+ 1

2u
2
)
x


 .

In [Wee98], the following form of the Navier-Stokes equations is used:

Ut + F (U)x = µG(U)xx, (3.2)

where:

U =



ρ

ρu

ρE


 , F (U) =




ρu

ρu2 + p

ρu(h+ 1
2u

2)


 , G(U) =

γ + 1

2γ




0

u

h+ 1
2u

2


 . (3.3)

For us it is unclear how the step is made from Eq. (3.1) to (3.2) since (γ + 1)/2γ = 4/3

results in a γ smaller than 1 which is physically not possible. However, we do continue with

the dimensionless form given by Eq. (3.2).

3.2 Weekes’ travelling wave scheme

The travelling wave scheme is based on assuming travelling wave solutions of the viscous Rie-

mann problem. In [Wee98] a travelling wave scheme was developed for the one-dimensional,

compressible Navier-Stokes equations. This scheme is different from other methods in that

the viscous part is not split from the hyperbolic part of the equations. In this section a viscous

Riemann solver is derived solving the local Riemann problem by interpolating each adjacent

data pair via three waves.

A function Φ will be constructed to approximate the exact solution U(x, t) of Eq. (3.2), which

will interpolate the given data such that:

Φ(xj , tn) = U(xj, tn), ∀j. (3.4)

The Navier-Stokes equations admit three distinct eigenvalues, λ(1) < λ(2) < λ(3). Associated

with λ(1) and λ(3) are genuinely nonlinear characteristic fields and associated with λ(2) is a
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Figure 11: Structure of the solution for the viscous Riemann problem

linearly degenerate field. Within the genuinely nonlinear fields, shock waves or rarefaction

waves are formed. Since we want to approximate the exact solution U(x, t) of Eq. (3.2)

with travelling waves, rarefaction waves are treated as entropy violating shocks. Consider the

profile Φ = Φj+ 1

2

joining Uj to Uj+1 as being made up of a I travelling wave ΦI
j+ 1

2

(x, t) =

ϕI
j+ 1

2

(ω) with speed s1 connecting Uj to a state U ∗
1 , followed by a diffusion wave ΦII

j+ 1

2

(x, t) =

ϕII
j+ 1

2

(ω) connecting U ∗
1 to a state U ∗

2 in the second field, and ΦIII
j+ 1

2

(x, t) = ϕIII
j+ 1

2

(ω), a III

travelling wave with speed s3 connecting U ∗
2 to Uj+1. Here ω = x− xj+ 1

2

− sj+ 1

2

(t− tn) and

xj+ 1

2

= 1
2(xj + xj+1). The profile Φ therefore can be described as:

Φj+ 1

2

− Uj =

(
ΦI

j+ 1

2

− Uj

)
+

(
ΦII

j+ 1

2

− U∗
1

)
+

(
ΦIII

j+ 1

2

− U∗
2

)
. (3.5)

See Figure 11 for the structure of the Riemann problem.

There is conservation of U in the sense that:

∫ xj+1

xj

Φ(x, tn) dx = 1
2∆x(Uj + Uj+1).

or equivalently:

0 =

(∫ 1

2
∆x

− 1

2
∆x

ϕI(ω) dω − ∆x
2 (Uj + U∗

1 )

)
+

(∫ 1

2
∆x

− 1

2
∆x

ϕII(ω) dω − ∆x
2 (U∗

1 + U∗
2 )

)

+

(∫ 1

2
∆x

− 1

2
∆x
ϕIII(ω) dω − ∆x

2 (U∗
2 + Uj+1)

)
.

The viscous Riemann solver which gives the ϕi and U∗
1 and U∗

2 is described in Section 3.2.2.

Using the travelling wave scheme, Weekes introduces three numerical fluxes, H TW
0 , HTW

1 and
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HTW
2 , which are calculated via a standard flux-difference splitting formulation:

HTW
k (Uj , Uj+1) − F (Uj) = [HI

k(Uj , U
∗
1 ) − F (Uj)]

+ [HII
k (U∗

1 , U
∗
2 ) − F (U∗

1 )] + [HIII
k (U∗

2 , Uj+1) − F (U∗
2 )],

where k = 0, 1, 2, and H i
k the numerical flux corresponding to the Riemann problem in which

only the i-th wave appears. In Section 3.2.4 we give the analysis for the H TW
0 flux, the other

two fluxes are simple extensions of the HTW
0 flux and are not needed when deriving a DG

version of the flux.

3.2.1 Travelling wave solutions of the Navier-Stokes equations

When the velocity on the right of a discontinuity is less than that on the left, there are no

travelling wave solutions U = Φ for Eq. (3.2). We consider therefore, in the first and third

wave fields, travelling wave solutions,

U(x, t) = ϕ(ω) =



ρ

ρu

ρE


 (ω),

of the modified Navier-Stokes equations:

Ut + F (U)x = µ̃G(U)xx,

where µ̃ = −sgn(u′(ω))µ. The tilde notation will be used for the modified Navier-Stokes

equations. These tildes have no relation with the dimensionless form of the Navier-Stokes

equations. As in the scalar case, if uj < uj+1, viscous rarefaction fans are replaced by entropy

violating travelling waves.

In this section we derive an equation from which we can determine ϕ(ω).

We start by transforming the problem to a frame moving with the shock. Denote the shock

speed by s, then the flow speed relative to the shock is v = s − u. The Rankine-Hugoniot

conditions (derived in Appendix A.2) give:

Q := ρLvL = ρRvR, (3.6a)

P := ρLv
2
L + pL +

γ + 1

2γ
µ̃

(
dv

dω

)

L

= ρRv
2
R + pR +

γ + 1

2γ
µ̃

(
dv

dω

)

R

, (3.6b)

E :=
(
hL+ 1

2v
2
L

)
vLρL+

γ + 1

2γ
µ̃

(
d

dω

(
h+ 1

2v
2
))

L

=
(
hR+ 1

2v
2
R

)
vRρR+

γ + 1

2γ
µ̃

(
d

dω

(
h+ 1

2v
2
))

R

,

(3.6c)

and Q, P and E are constants. Note that v is measured positive in the negative ω direction.

We can reduce the system to two equations for v and h, using p = ρh(γ − 1)/γ:

γ + 1

2γ
µ̃
dv

dω
= P −Q

(
v +

γ − 1

γ

h

v

)
, (3.7a)
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γ + 1

2γ
µ̃
d

dω

(
h+ 1

2v
2
)

= E −Q
(
h+ 1

2v
2
)
. (3.7b)

Consider now the case that ω → ∞, then the flow tends to a uniform state. From Eq. (3.7b),

since d(·)/dω = 0, this results in h2 + 1
2v

2
2 = E/Q, where (·)2 denotes the state at ω → ∞.

Therefore, according to [Whi74], the only solution that is bounded as ω → −∞ is:

h+ 1
2v

2 = H, (3.8)

throughout, where H = E/Q. It follows that h+ 1
2v

2 is the same on the two sides of the shock

as well as throughout the shock. Using Eq. (3.8) we can write Eq. (3.6b) as:

γ + 1

2γ
µ̃
dv

dω
= P −Q

(
γ + 1

2γ
v +

γ − 1

γ

H

v

)
. (3.9)

The constants P, Q and E must be such that the right hand side vanishes for both v = v1

and v = v2 so:

P = Q

(
γ + 1

2γ
v1 +

γ − 1

γ

H

v1

)

= Q

(
γ + 1

2γ
v2 +

γ − 1

γ

H

v2

)
.

It follows that H must be such that:

Q

(
γ + 1

2γ
v1 +

γ − 1

γ

H

v1

)
−Q

(
γ + 1

2γ
v2 +

γ − 1

γ

H

v2

)
= 0.

We find:

H =
γ + 1

2(γ − 1)
v1v2,

and P follows as:

P = Q
γ + 1

2γ
(v1 + v2).

Substituting these expressions into Eq. (3.9) we find:

Q
(v1 − v)(v − v2)

v
= µ̃

dv

dω
, (3.10)

with the relation:

v1v2 =
2(γ − 1)

γ + 1
H. (3.11)

Here (·)1 and (·)2 denote the states at −∞ and +∞. From Eq. (3.10), we see that in the

limit Re → ∞, so µ → 0, we obtain v = v1 and v = v2 as the trivial solutions for v. From

Eq. (3.10) it follows that:

− µ̃

Q

v

(v − v1)(v − v2)
dv = dω, (3.12)
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leading to:

∫ v

vj

− µ̃

Q

v

(v − v1)(v − v2)
dv =

∫ ω

− 1

2
∆x

dω, (3.13)

which results in the following equation for v(ω):

µ̃

Q(v1 − v2)

(
v2 ln

(∣∣∣∣
v(ω) − v2

vj − v2

∣∣∣∣
)
− v1 ln

(∣∣∣∣
v(ω) − v1

vj − v1

∣∣∣∣
))

= ω + 1
2∆x. (3.14)

Solving for v(ω) gives the travelling wave ϕ(ω) = s− v(ω). In the next section we show how

to determine u1, u2 and s where:

u1 = s− v1, u2 = s− v2. (3.15)

3.2.2 The viscous Riemann solver, I and III wave

The task of the viscous Riemann solver is to find the profiles ϕi(ω) for i = I, II, III and the

middle states U ∗
1 and U∗

2 , given the states Uj and Uj+1 at xj and xj+1. How the profiles and

middle states are found is discussed in this and the following section.

Travelling wave solutions ϕI(ω) and ϕIII(ω) are obtained by imposing requirements of inter-

polation and conservation. Given a middle velocity u∗ = u∗1 = u∗2, we interpolate a travelling

wave solution, over wave I, such that:

ϕI
(
− 1

2∆x
)

= Uj , uI
(

1
2∆x

)
= u∗, (3.16)

and require that the mass is conserved:

∫ 1

2
∆x

− 1

2
∆x

ρI(ω) dω = 1
2∆x(ρj + ρ∗1). (3.17)

Similarly, over wave III, the interpolation requirement is:

ϕIII
(

1
2∆x

)
= Uj+1, uIII

(
− 1

2∆x
)

= u∗,

and the conservation requirement:

∫ 1

2
∆x

− 1

2
∆x

ρIII(ω) dω = 1
2∆x(ρ∗2 + ρj+1).

From Eq. (3.13) it follows that:

∫ v∗1

vj

− µ̃

Q

v

(v − v1)(v − v2)
dv =

∫ 1

2
∆x

− 1

2
∆x

dω,

which, by using Eq. (3.16), results in the interpolation equation for wave I:

µ̃

Q(v1 − v2)

(
v2 ln

(∣∣∣∣
v∗1 − v2
vj − v2

∣∣∣∣
)
− v1 ln

(∣∣∣∣
v∗1 − v1
vj − v1

∣∣∣∣
))

= ∆x. (3.18)
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Multiplying Eq. (3.12) by the density ρI(ω), and using Q = ρv from Eq. (3.6a) we obtain:

−µ̃
(v − v1)(v − v2)

dv = ρ(ω) dω,

resulting in:

∫ v∗
1

vj

−µ̃
(v − v1)(v − v2)

dv =

∫ 1

2
∆x

− 1

2
∆x

ρ(ω) dω.

From the mass conservation requirement, Eq. (3.17) we obtain:

µ̃

(v1 − v2)

(
ln

(∣∣∣∣
v∗1 − v2
vj − v2

∣∣∣∣
)
− ln

(∣∣∣∣
v∗1 − v1
vj − v1

∣∣∣∣
))

= 1
2∆x(ρj + ρ∗1). (3.19)

Solving Eqs. (3.11), (3.15), (3.18) and (3.19) for u1, u2 and s would allow us to define ϕI

completely. Similarly, the analogous equations over wave III can be solved to obtain ϕIII .

Where this inversion is to difficult, Weekes used asymptotic approximations to the viscous

profiles [Wee98].

We guessed u∗ to obtain solutions for uk
1, u

k
2 and sk, k = I, III. To determine whether the

guess is correct we need to determine the pressures in the intermediate states. The pressures

p∗1 and p∗2 have to be equal since across a contact wave the pressure remains constant. If the

pressures p∗1 and p∗2 are not equal a new u∗ has to be determined and uk
1, u

k
2 and sk, k = I, III

have to be calculated again.

We have u∗, s, ρ
∗
1, Ej and uj for the first intermediate state. We can now determine the

pressure p∗1. From Eq. (3.8) and h = γ(E − 1
2u

2) we obtain:

H = γ(Ej − 1
2u

2
j) + 1

2(s− uj)
2,

= γ(E∗
1 − 1

2u
2
∗) + 1

2(s− u∗)
2,

which is constant. It follows that:

E∗
1 =

1

γ

(
H − 1

2(s− u2
∗)

)
+ 1

2u
2
∗.

Knowing that p = (E − 1
2u

2)ρ(γ − 1) the pressure in the first intermediate state equals:

p∗1 =
(
E∗

1 − 1
2u

2
∗)ρ

∗
1(γ − 1).

The pressure in the second intermediate state, p∗2, is determined similarly. We need to deter-

mine the difference between the pressures p∗1 and p∗2:

P (u∗) = p∗1 − p∗2. (3.20)

If P (u∗) 6= 0 then a new guess for u∗ can be obtained by using a bisection method for P (u∗)

and the process of finding uk
1 , u

k
2 and sk, k = I, III, needs to be repeated.

If u∗ = uI(1
2∆x) = uIII(−1

2∆x) is such that p∗1 = pI(1
2∆x) and p∗2 = pIII(−1

2∆x) are equal,

hence P (u∗) = 0, then we define:

U∗
1 = ϕI

(
1
2∆x

)
,
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and:

U∗
2 = ϕIII

(
− 1

2∆x

)
.

Since ρu = sρ − Q, conservation of momentum over a travelling wave automatically follows

from conservation of mass, but since:

ρE = ρ

(
h

γ
+ 1

2u
2

)
=

(
H

γ
+ 1

2s
2

)
ρ+

(
γ − 1

2γ
Q

)
v − sQ,

conservation of energy does not. Over the I wave an error Err1 is made:

1
2∆x

(
H

γ
+1

2s
2

)
(ρj+ρ

∗
1)−∆x sQ+

(
γ − 1

2γ
Q

)∫ 1

2
∆x

− 1

2
∆x

v dω = 1
2∆x

(
ρjEj+ρ

∗
1E

∗
1

)
+Err1, (3.21)

and similarly, over the III wave an error Err3 is made.

3.2.3 The viscous Riemann solver, II wave

As with a contact wave occurring in a solution to the Euler equations, the velocity is kept

constant at u∗ = u∗1 = u∗2 across the II wave. A profile propagating with this contact speed

will be looked for. On either side of a contact the densities ρ∗1 and ρ∗2 are not equal. These

will be connected through a monotone diffusion wave convecting with speed u∗. The profile

is taken to be a function of the similarity variable ω = x− xj+ 1

2

− u∗(t− tn):

ρII(ω) = ρa + ρberf

(
ω√
µ

)
, (3.22)

where erf(x) = 2√
π

∫ x
0 e

−t2dt. The values ρa and ρb are such that ρII interpolates ρ∗1 and ρ∗2:

ρII

(
− 1

2∆x

)
= ρ∗1, ρII

(
1
2∆x

)
= ρ∗2.

As µ→ 0, the profile tends to a step function with states ρ∗1 and ρ∗2 on the left and the right,

moving with speed u∗ which is exactly the situation for an inviscid contact. In [Wee98] this

profile choice is motivated by observing the form of the solution to the convection-diffusion

problem Dt + aDx = νDxx [Liu86]. By choosing the density profile Eq. (3.22), the density is

symmetric about the line ρ = ρ(0) = 1
2(ρ∗1 + ρ∗2), and conservation of mass,

∫ 1

2
∆x

− 1

2
∆x

ρII(ω)dω = 1
2∆x(ρ∗1 + ρ∗2),

holds automatically. Since u is constant over the profile, momentum conservation also follows.

So far, conservation of mass and momentum hold over all three wave. A pressure profile pII(ω)

will be constructed to ensure energy conservation.

A similarity solution for the pressure pII(ω) is assumed with a profile given by the diffusion

wave:

pII(ω) = p∗ + p0

(
exp

(
− ω2

µ

)
− exp

(
− ∆x2

4µ

))
, (3.23)
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such that:

pII

(
− 1

2∆x

)
= p∗1 = p∗, pII

(
1
2∆x

)
= p∗2 = p∗.

The function for pII given in Eq. (3.23) is symmetric with a centered bump with width

and height diminishing with µ to give a constant pressure profile in the limit. This function

is assumed so that energy conservation over the waves can be achieved by choosing the p0

appropriately.

Since ρE = p
γ−1 + 1

2ρu
2:

∫ 1

2
∆x

− 1

2
∆x

ρE dω =
1

γ − 1

∫ 1

2
∆x

− 1

2
∆x

pII(ω) dω +

∫ 1

2
∆x

− 1

2
∆x

1
2u

2 dω, (3.24)

has to hold. We know that in the intermediate states u = u∗ is constant. Furthermore, we

know that mass and momentum are conserved. Using the definition Q = ρv, from Eq. (3.24)

we obtain that the following must hold:

∫ 1

2
∆x

− 1

2
∆x

ρE dω =
1

γ − 1

∫ 1

2
∆x

− 1

2
∆x

pII(ω) dω +

∫ 1

2
∆x

− 1

2
∆x

(
1
2ρu

2
∗ − u∗Q

)
dω, (3.25)

however, from Eq. (3.21) we know that an error Err1 is made as well as an error Err3. In

Eq. (3.25) the last integral on the right is conserved. For energy to be conserved, p0 is chosen

such that:

1

γ − 1

∫ 1

2
∆x

− 1

2
∆x

pII(ω) dω = ∆x
p∗

γ − 1
− (Err1 +Err3),

where p∗ is the constant value of the pressure in the intermediate states and p0 was introduced

in the pressure function Eq. (3.23) to obtain energy conservation.

3.2.4 The numerical flux

Once the Riemann problem has been solved and Φ(x, t) has been defined, the numerical flux

that defines the TW scheme in the finite volume context is given by:

Hi
0(Uj , Uj+1) =

1

4t

∫ tn+1

tn

(F (Φi) − µG(Φi)x)(xj+ 1

2

, t)dt, (3.26)

where i = I, II, III.

We will start computing H0 in the first and third fields, where Φi(x, t) = ϕi(ω) are travelling

wave solutions to Eq. (3.2) with µ replaced by µ̃. Substituting ϕi(ω) into Eq. (3.2) with µ

replaced by µ̃ and integrating, we obtain:

−sϕi + F (ϕi) = µ̃
dG(ϕi)

dω
+ k,

where k is an integration constant which is determined by taking the limit ω → −∞ for then

−sϕ1 +F (ϕ1) = k, where ϕ1 is a constant state of the profile ϕ at −∞. It then follows that:

F (Φi) − µG(Φi)x = F (ϕ1) + s(ϕi − ϕ1) + (µ̃− µ)
dG(ϕi)

dω
. (3.27)
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Using Eq. (3.26):

Hi
0 =

1

∆t

∫ tn+1

tn

(
F (ϕ1) − sϕ1

)
dt+

1

∆t

∫ tn+1

tn

sϕi + (µ̃− µ)
dG

dω
(ϕi) dt.

Use ω = −s(t− tn) at x = xj to transform the second integral. We obtain:

Hi
0 =

1

∆t

∫ tn+1

tn

(
F (ϕ1) − sϕ1

)
dt− 1

s∆t

∫ −s∆t

0
sϕi + (µ̃− µ)

dG

dω
(ϕi) dω,

resulting in:

Hi
0 = F (ϕ1) − sϕ1 +

µ− µ̃

s∆t
(G(ϕs) −G(ϕ0)) −

1

∆t

∫ −s∆t

0
ϕi(ω)dω, (3.28)

with ϕs = ϕ(−s∆t) and ϕ0 = ϕ(0). We have used travelling waves to approximate the

exact solution, so ϕs and ϕ0 approximate us = u(xj , tn+1) and u0 = u(xj , tn) respectively. It

therefor holds that vs = s− ϕs and v0 = s− ϕ0. From Eq. (3.3) and Eq. (3.8), we obtain:

G(ϕs) −G(ϕ0) =
γ + 1

2γ
(vs − v0)




0

−1

−s


 .

To evaluate the flux integrals in Eq. (3.28), using Eq. (3.6a) and Eq. (3.8), it is only necessary

to know the integral formulae for ρ(ω) and v(ω). From Eq. (3.10) and by using the definition

Q = ρu we obtain:

ρdω =
µ̃

(v1 − v)(v − v2)
dv,

resulting in:

1

∆t

∫ ωb

ωa

ρdω =
1

∆t

∫ vb

va

µ̃

(v1 − v)(v − v2)
dv

=
µ̃

∆t(va − v2)

(
ln

(∣∣∣∣
vb − v2
va − v2

∣∣∣∣
)
− ln

(∣∣∣∣
vb − v1
va − v1

∣∣∣∣
))

.

Also from Eq. (3.10):

vdω =
µ̃v2

Q(v1 − v)(v − v2)
dv,

resulting in:

1

∆t

∫ ωb

ωa

vdω =
1

∆t

∫ vb

va

µ̃v2

Q(v1 − v)(v − v2)
dv

=
µ̃

Q∆t
(va − vb) +

µ̃

∆tQ(v1 − v2)

(
v2
2 ln

(∣∣∣∣
vb − v2
va − v2

∣∣∣∣
)
− v2

1 ln

(∣∣∣∣
vb − v1
va − v1

∣∣∣∣
))

,

where ωa and ωb are arbitrary and va = v(ωa) and vb = v(ωb).
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If µ̃ is negative, so µ̃ = −µ, the characteristic speeds on the left and right of ϕ(ω) need to

be checked to see whether the rarefaction is sonic. If uj − aj < 0 < u∗1 − a∗1 on wave I or

u∗2 + a∗2 < 0 < uj+1 + aj+1 on wave III, then the respective rarefaction wave is sonic and a

sonic entropy fix to the HTW
0 flux is made. As in the viscous Burgers case (see Section 2.2.3),

we integrate Eq. (3.27) until the sonic point ω = ω̄ is encountered, after which the profile

of the travelling wave is kept stationary and the flux calculation is continued as if the wave

speed were zero. From Eqs. (3.26) and (3.27), using ω = −s(t− tn) at x = xj and employing

the entropy fix, we obtain:

H0 = − 1

s∆t

∫ ω̄

0

(
F (ϕ1) + s(ϕ− ϕ1) − 2µ

dG

dω
(ϕ)

)
dω

− 1

s∆t

∫ −s∆t

ω̄

(
F (ϕ̄) − µ

dG

dω
(ϕ̄)

)
dω,

which, after evaluating the integrals, results in:

Hi
0 =

2µ

s∆t
(G(ϕ̄)−G(ϕ0))−

ω̄

s∆t
(F (ϕ1)−sϕ1)−

1

∆t

∫ ω̄

0
ϕ(ω)dω+

(
1+

ω̄

s∆t

)
(F (ϕ̄)−µdG

dω
(ϕ̄)).

The term dG/dω is found as follows: by using Eqs. (3.3) and (3.8) we find:

dG

dω
(ϕ) =

γ + 1

2γ




0
du
dω

d
dω (H − 1

2v
2 + 1

2u
2)


 .

Using u = s− v and du/dω = −dv/dω we obtain:

dG

dω
(ϕ) =

γ + 1

2γ

dv

dω




0

−1

−s


 ,

The numerical flux with the entropy fix replaces Eq. (3.28) if the sonic point ω̄ lies between 0

and −s∆t. The sonic point is where ū = ā for wave I and where ū = −ā for wave III, where

a is the speed of sound. For a polytropic gas, a2 = γp
ρ = (γ − 1)h, so we solve:

ū2 = ā2 = (γ − 1)h̄ = (γ − 1)

(
H − 1

2
v̄2

)

⇐⇒ γ + 1

2
ū2 − s(γ − 1)ū− (γ − 1)

(
H − 1

2
s2

)
= 0,

(3.29)

for ū < 0 for wave I and for ū > 0 for wave III. Having ū, the value of ω̄ is calculated from

Eq. (3.14).

Next we look at the II wave. The velocity in the intermediate states is constant and equal to

u∗. Therefor, define ω as: ω = x− xj+ 1

2

− u∗(t− tn). Using this definition, so d/dx = d/dω,

d/dt = −u∗d/dω and ω = −u∗(t− tn) in x = xj+ 1

2

, the integral in Eq. (3.26) is transformed

to an integral over ω:

1

4t

∫ tn+1

tn

(F (ΦII) − µG(ΦII)x)(xj+ 1

2

, t) dt =
−1

u∗∆t

∫ −u∗∆t

0
F (ϕII) − µ

d

dω
G(ϕII) dω.
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Evaluating the integral over d
dωG(ϕII) we obtain the contribution of the contact field:

HII
0 =

−1

u∗∆t

∫ −u∗∆t

0
F (ϕII)(ω)dω +

µ

u∗∆t
(G(ϕs) −G(ϕ0)),

where ϕs = ϕ(−u∗∆t), ϕ0 = ϕ(0). Across the contact, u∗ is constant, so one need only

calculate the integrals of ρII and pII to obtain
∫
F .

The ODE, Eq. (3.10) gives the derivative of v(ω), and from Eq. (3.6a) and Eq. (3.8), the

derivatives of the components of ϕ are computed as follows:

dρ

dω
=

d

dω

(
Q

v

)
= −Q

v2

dv

dω
. (3.30)

The derivative d(ρu)/dω is determined as:

d(ρu)

dω
= u

dρ

dω
+ ρ

du

dω
= (s− v)

dρ

dω
− ρ

dv

dω
.

Using Eq. (3.30) and the definition Q = ρv:

(s− v)
dρ

dω
− ρ

dv

dω
=

(
s− v +

ρv2

Q

)
dρ

dω
= s

dρ

dω
,

so:

d(ρu)

dω
= s

dρ

dω
, (3.31)

The derivative d(ρE)/dω is determined as:

d(ρE)

dω
=

(
h

γ
+ 1

2s
2

)
dρ

dω
+

(
γ + 1

2γ
Q

)
dv

dω
. (3.32)

3.3 The DG-TW scheme for 1D Navier-Stokes equations

In this section we will discuss the modifications that have to be made to the TW scheme by

Weekes so that it can be applied in a DG context.

In a DG context, we only require finding the travelling waves ϕI , ϕII and ϕIII . We do not

need to determine integral terms as given in Section 3.2.4. The TW scheme by Weekes is

developed for a finite volume scheme. In such a scheme the discontinuities do not arise on

the vertices contrary to DG schemes. To make the scheme applicable to DG, we consider the

vertex xj in which the solution has a discontinuity due to the discontinuous nature of the

approximations. Since in our DG approximation we use linear basis functions, we need to be

careful as how to define the interpolation and conservation requirements. As explained in the

scalar case, we do not use the traces at the face j, but the means of the approximation in

each cell adjacent to face j. Defining ω as ω = x − xj − sj(t − tn), we impose the following

requirements:

For the I wave the interpolation requirement is:

ϕI
(
− 1

2∆x
)

= U j−1, uI
(

1
2∆x

)
= u∗,
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and the conservation requirement:

∫ 1

2
∆x

− 1

2
∆x

ρI(ω) dω = 1
2∆x(ρ̄j−1 + ρ∗1).

Similarly, over wave III, we require:

ϕIII
(

1
2∆x

)
= U j, uIII

(
− 1

2∆x
)

= u∗,

and:

∫ 1

2
∆x

− 1

2
∆x

ρIII(ω) dω = 1
2∆x(ρ∗2 + ρ̄j).

With these requirements we can solve a similar system as is done by Weekes, given a middle

velocity u∗ = um
1 = um

2 , to obtain the travelling waves ϕI and ϕIII :

For the I-wave we need to solve the system consisting of Eq. (3.11) and:

µ̃

Q(uI
2 − uI

1)

(
(sI − uI

2) ln

(∣∣∣∣
uI

2 − u∗
uI

2 − ūj−1

∣∣∣∣
)
− (sI − uI

1) ln

(∣∣∣∣
uI

1 − u∗
uI

1 − ūj−1

∣∣∣∣
))

= ∆x, (3.33)

µ̃

(uI
2 − uI

1)

(
ln

(∣∣∣∣
uI

2 − u∗
uI

2 − ūj−1

∣∣∣∣
)
− ln

(∣∣∣∣
uI

1 − u∗
uI

1 − ūj−1

∣∣∣∣
))

= 1
2∆x(ρ̄j−1 + ρ∗1), (3.34)

for uI
1, u

I
2 and sI .

Similarly, for the III-wave the system consisting of Eq. (3.11) and:

µ̃

Q(uIII
2 − uIII

1 )

(
(sIII −uIII

2 ) ln

(∣∣∣∣
uIII

2 − u∗
uIII

2 − ūj

∣∣∣∣
)
− (sIII −uIII

1 ) ln

(∣∣∣∣
uIII

1 − u∗
uIII

1 − ūj

∣∣∣∣
))

= −∆x,

(3.35)

µ̃

(uIII
2 − uIII

1 )

(
ln

(∣∣∣∣
uIII

2 − ūj

uIII
2 − u∗

∣∣∣∣
)
− ln

(∣∣∣∣
uIII

1 − ūj

uIII
1 − u∗

∣∣∣∣
))

= 1
2∆x(ρ̄j + ρ∗2). (3.36)

needs to be solved for uIII
1 , uIII

2 and sIII . If u∗ is such that pm
1 = pI(1

2∆x) and pIII(−1
2∆x) =

pm
2 are equal we define Um

1 = ϕI(1
2∆x) and Um

2 = ϕI(−1
2∆x). As in the previous section,

there is no conservation of energy so we determine Err1 as in Eq. (3.21). The conservation

error over the III-wave. Err3 follows from a similar equation.

For the flux calculation we seek a solution for U in x = xj at t = tn. In the above, the domain

has been scaled to [−∆x/2,∆x/2] with −∆x/2 corresponding to xj− 1

2

, ∆x/2 to xj+ 1

2

and 0

to xj. With u1, u2 and s known for waves I and III we can determine uI(0) = sI − ϕI(0)

and uIII(0) = sIII − ϕIII(0) by solving (see also Eq. (3.14)):

µ̃

Q(uI
2 − uI

1)

(
(sI − uI

2) ln

(∣∣∣∣
uI

2 − uI(0)

uI
2 − ūj−1

∣∣∣∣
)
− (sI − uI

1) ln

(∣∣∣∣
uI

1 − uI(0)

uI
1 − ūj−1

∣∣∣∣
))

= 1
2∆x, (3.37)
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µ̃

Q(uIII
2 − uIII

1 )

(
(sIII−uIII

2 ) ln

(∣∣∣∣
uIII

2 − uIII(0)

uIII
2 − ūj

∣∣∣∣
)
−(sIII−uIII

1 ) ln

(∣∣∣∣
uIII

1 − uIII(0)

uIII
1 − ūj

∣∣∣∣
))

= −1
2∆x, (3.38)

respectively. Knowing uI(0) and uIII(0) the other variables, ρ, p and E, at ω = 0 for each

wave can be calculated using Eq. (3.6a), (3.8) and the definitions of internal- and total energy:

e =
p

ρ(γ − 1)
, E = e+ 1

2u
2.

The travelling wave ϕII is similar to that found for the finite volume case, with the dif-

ferences being that ω is defined as ω = x − xj − sj(t − tn) and we use the means of the

solutions instead of the traces. On the II-wave we know that the velocity is constant and

equal to u∗. Using Eq. (3.22) and (3.23) and the definitions of internal- and total energy,

ρII(0), uII(0), pII(0), and EII(0) can be determined.

Derivatives of the components of U in ω = 0 on each wave are computed analogously to the

computation discussed in Section 3.2.4, but using the means of the solutions instead of the

traces. We now have enough information to determine the flux in ω = 0 for each wave:

Hk(UL, UR)(0) = F (Uk(0)) − µ
γ + 1

2γ

dG

dω
(Uk(0)), for k = I, II, III. (3.39)

In [Wee98] the fluxes are calculated via a standard flux-difference splitting formulation. In

our case this results in:

H(U j−1, U j) = F (U j−1) +
(
HI(U j−1, U

∗
1 )(0) − F (U j−1)

)
+

(
HII(U

∗
1 , U

∗
2 )(0) − F (U ∗

1 )
)

+
(
HIII(U

∗
2 , U j)(0) − F (U ∗

2 )
)
. (3.40)

If an entropy fix is needed we do not consider the solution at ω = 0, but in the sonic point

ω = ω̄ (see Eq. 3.29). Summarizing, the algorithm for the flux computation is as follows:

1. Guess the middle velocity u∗ = um
1 = um

2 .

2. Solve the system Eq. (3.11), (3.33) and (3.34) for uI
1, u

I
2 and sI and the system Eq.

(3.11), (3.35) and (3.36) for uIII
1 , uIII

2 and sIII using Newton’s method (see also Ap-

pendix C).

3. If P (u∗) = pm
1 − pm

2 6= 0, then use a bisection method for the equation P (u∗) = 0 (Eq.

(3.20)) is used to obtain a new guess for u∗ and return to step 2.

4. Solve Eq. (3.37) and Eq. (3.38) using a Newton method to obtain uI(0) and uIII(0),

respectively. ρk(0), pk(0) and Ek(0) with k = I, III then can be computed.

5. Determine Err1 from Eq. (3.21). Err3 follows from a similar equation.

6. The variables on the II-wave in ω = 0 can be determined using Eq. (3.22) and (3.23)

and knowing that u = u∗ is constant.

7. Determine the derivatives of the variables in ω = 0 using Eq.(3.30), (3.31) and (3.32).
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8. Determine the fluxes in ω = 0 on each wave using Eq. (3.39).

9. The travelling wave flux can be computed using Eq. (3.40).

3.4 Numerical results

3.4.1 Test case confirmation

In this section we consider a test cases described in [Wee98]. This test case has a very small

viscosity coefficients, so the goal of this section is to show that viscosity plays a significant

role in the solution. We use the method of Bassi and Rebay for the Navier-Stokes equations,

Eq. (3.2), and compare with classic DG-FEM for the Euler equations using a stabilization

operator to prevent oscillations around solutions with sharp gradients [vdVvdV02a] and the

HLLC approximate Riemann solver. In the implementation we take the term (γ + 1)/(2γ)

in Eq. (3.2) equal to 4/3, so that Eq. (3.1) and Eq. (3.2) are the same. Furthermore, each

element of the approximate solution vector are such that they belong to the space Vh (Eq.

(2.4)).

We consider the following test case:

x ∈ Ω = [0, 1], µ = 0.04, ∆x = 0.02 with initial data:

(ρL uL pL) = (1 2.36643 1), for x < 0.4

(ρR uR pR) = (2.66667 0.88741 4.5), for x > 0.4
(3.41)

The solution of the density, ρ(x, t), velocity, u(x, t), and the total energy, E(x, t), at time

t = 1.12 are depicted in Figure 12.

For this test case, the following parameters are constant: CFL number = 0.5, diffusion number

= 0.02, stabilization factor in the method of Bassi and Rebay η = 3.5 and a ratio of specific

heats γ = 1.4. As can be seen in Figures 12, these test cases are suitable for the Navier-Stokes

equations since the viscosity plays a significant part in the final solution.

3.4.2 Testing the DG-TW flux on the mass-equation

The travelling wave flux for DG-FEM as presented in Section 3.3 will be tested in this section

for the Navier-Stokes equations. We do not consider entropy violating shocks. At this moment

it is not possible to do more than four time steps using the DG-TW flux on all equations.

Therefore, we only use the DG-TW flux for the mass equation. The method of Bassi and

Rebay is used for the momentum and energy equation as well as for situations where an

entropy violating shock occurs. It is also not possible yet to consider the test case from

Section 3.4.1. Instead, we consider the following test case:

x ∈ Ω = [0, 1], µ = 0.01, ∆x = 0.02 with initial data:

(ρL uL pL) = (1.25 1.85 1.656875), for x < 0.4

(ρR uR pR) = (1.45 1.65 2.046675), for x > 0.4
(3.42)
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Figure 12: Solutions of the Navier-Stokes equations and the Euler equations for test case Eq.

(3.41). Used parameters: µ = 0.04 and ∆x = 0.02. The solution is depicted at time t = 1.12.
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The solution of the density, ρ(x, t), velocity, u(x, t), and the total energy, E(x, t), are depicted

in Figures 13, 14 and 15 at time steps 5, 20, 40 and 60. It is not possible yet to do more

than 60 time steps. For this test case, the following parameters are constant: CFL number

CFL = 0.5, diffusion number DN = 0.02, stabilization factor in the method of Bassi and

Rebay η = 3.5 and the ratio of specific heats γ = 1.4, where CFL, DN and η are found by

trial and error. We see that the total energy starts to overshoot due to the small difference

in the density solution between the DG-TW and Bassi and Rebay method. As mentioned in

Section 3.3 various numbers of Newton iterations had to be performed. Although we know

in which domain the solution has to lie, and so we can implement restrictions which the

solution has to satisfy, the Newton iterations form the biggest problem in this method. It is

possible that asymptotes are present in the domain in which we seek a solution resulting after

a certain number of iterations in solutions which are not desired. The Newton iterations are

also very costly since they have to be performed more than once (in step 3 of the summary

of the algorithm in Section 3.3, u∗ has to be such that the pressures pm
1 and pm

2 are equal)

and are probably more expensive than the lifting operators and viscous contributions in the

Bassi and Rebay method.

Remark. Since at time step 60 we are only at time t = 0.022, the solution of the Bassi and

Rebay method still contains small peaks. These peaks dissappear as the number of time steps

is increased.
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(c) 40th time step.
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(d) 60th time step.

Figure 13: Results of the density solution determined with DG-TW compared to results

determined with the method of Bassi and Rebay. The Weekes flux was only used for the

mass equation. The method of Bassi and Rebay was used for the momentum and energy

equation. Used parameters: CFL number = 0.5, diffusion number = 0.02, number of cells

= 50, viscosity coefficient µ = 0.01, stabilization factor for the method of Bassi and Rebay

η = 3.5. Results determined for 5, 20, 40 and 60 time steps.
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(c) 40th time step.
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Figure 14: Results of the velocity solution determined with DG-TW compared to results

determined with the method of Bassi and Rebay. The Weekes flux was only used for the

mass equation. The method of Bassi and Rebay was used for the momentum and energy

equation. Used parameters: CFL number = 0.5, diffusion number = 0.02, number of cells

= 50, viscosity coefficient µ = 0.01, stabilization factor for the method of Bassi and Rebay

η = 3.5. Results determined for 5, 20, 40 and 60 time steps.
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Figure 15: Results of the total energy solution determined with DG-TW compared to results

determined with the method of Bassi and Rebay. The Weekes flux was only used for the

mass equation. The method of Bassi and Rebay was used for the momentum and energy

equation. Used parameters: CFL number = 0.5, diffusion number = 0.02, number of cells

= 50, viscosity coefficient µ = 0.01, stabilization factor for the method of Bassi and Rebay

η = 3.5. Results determined for 5, 20, 40 and 60 time steps.
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3.5 Simplifying the system

In the previous section we saw that it was not easy to obtain a solution to the 1D Navier-

Stokes equations. The main problem is solving the system given by Eq. (3.11), (3.33) and

(3.34) and the system given by Eq. (3.11), (3.35) and (3.36). In this Section we will simplify

these equations in order to be able to solve them more efficiently.

3.5.1 Analysis of the shock speed s

In Appendix C we explain how to find the following expression for s by solving Eq. (3.11):

s± =
−b±

√
b2 − 4ac

2a
,

where:

a = 1 − 1
2β, b = −u1 − u2 + βūj−1, c = u1u2 − βγEj−1 − 1

2(1 − γ)βū2
j−1.

and:

β =
2(γ − 1)

γ + 1
.

Define the following small parameters:

ε1 = u1 − u2, ε2 = ūj−1 − u2,

then:

√
b2 − 4ac =

√
(u1 − u2)2 + 2β(u1 − ūj−1)(u2 − ūj−1) + 2βγ(2 − β)

(
Ej−1 − 1

2 ū
2
j−1

)

=
√
ε21 − 2β(ε1 − ε2)ε2 + 2βγ(2 − β)

(
Ej−1 − 1

2 ū
2
j−1

)

≈
√

2βγ(2 − β)
(
Ej−1 − 1

2 ū
2
j−1

)
+ O(ε).

We can therefore approximate the shock speed as:

s ≈
(u1 + u2) − βūj−1 ±

√
2βγ(2 − β)

(
Ej−1 − 1

2 ū
2
j−1

)

2 − β
,

which is an expression for the shock speed that is linear in u1 and u2. We continue by using

the following expression for s:

s = ξ(u1 + u2) +A, (3.43)

with:

ξ =
1

2 − β
, A =

−βūj−1 ±
√

2βγ(2 − β)
(
Ej−1 − 1

2 ū
2
j−1

)

2 − β
. (3.44)
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3.5.2 Simplifying Eq. (3.33) and (3.34)

We will simplify Eq. (3.33) and (3.34) using Taylor series expansions. Remember that

u1 > ūj−1 > u∗ > u2 in the case of a shock wave. We assume a smooth solution for the flow

and therefore we take |u1 − u2| � 1 (this can always be achieved for smooth solutions by

decreasing the mesh width, ∆x). We introduce the following small parameter:

ε = u2 − u1. (3.45)

Consider first Eq. (3.34). Substituting ε into Eq. (3.34) we can write Eq. (3.34) as :

ln

(∣∣∣∣
u2 − u∗
u2 − ūj−1

∣∣∣∣
∣∣∣∣
u1 − ūj−1

u1 − u∗

∣∣∣∣
)

=
ε∆x

2µ̃
(ρ̄j−1 + ρ∗1) (3.46)

We know that ρ∗1 = Q/(s− u∗) and Q = ρ̄j−1(s− ūj−1) so, from Eq. (3.46):

∣∣∣∣
u2 − u∗
u2 − ūj−1

∣∣∣∣
∣∣∣∣
u1 − ūj−1

u1 − u∗

∣∣∣∣ = exp

(
ε∆x

2µ̃
ρ̄j−1

(
1 +

s− ūj−1

s− u∗

))
.

Assume that ε∆x/µ̃ is small, then, using Taylor series expansions, we find:
∣∣∣∣
u2 − u∗
u2 − ūj−1

∣∣∣∣
∣∣∣∣
u1 − ūj−1

u1 − u∗

∣∣∣∣ ≈ 1 +
ε∆x

2µ̃
ρ̄j−1

(
1 +

s− ūj−1

s− u∗

)
. (3.47)

We know that in the case of a shock u1 > ūj−1 > u∗ > u2 (or in the case of a rarefaction

u1 < ūj−1 < u∗ < u2) so we can omit the absolute bars. By using the expression for s given

by Eq. (3.43) and by introducing the constant κ defined as:

κ =
∆x

2µ̃
ρ̄j−1, (3.48)

we can write Eq. (3.47) as:

(u2−u∗)(u1− ūj−1) = (u2− ūj−1)(u1−u∗)
(

1+κ(u2−u1)

(
1+

ξ(u1 + u2) +A− ūj−1

ξ(u1 + u2) +A− u∗

))
,

or:

u2

(
u1 − ūj−1

)
+

(
u∗(ūj−1 − u1)

)
=

(
u2

(
u1 − u∗

)
+

(
ūj−1(u∗ − u1)

))
·

(
2κξu2

2 +
(
ξ + 2κA− κ(u∗ + ūj−1)

)
u2 + ξu1 +A− u∗ − 2κξu2

1 − 2κAu1 + κu1(u∗ + ūj−1)

ξu2 + ξu1 +A− u∗

)
,

(3.49)

where ξ and A are defined in Eq. (3.44). For notational purposes introduce the following

parameters:

α1 = u1 − ūj−1, α2 = u∗(ūj−1 − u1),

α3 = u1 − u∗, α4 = ūj−1(u∗ − u1),

α5 = ξ + 2κA− κ(u∗ + ūj−1), α6 = ξu1 +A− u∗ − 2κξu2
1 − 2κAu1 + κu1(u∗ + ūj−1),

α7 = ξu1 +A− u∗,
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then Eq. (3.49) is equivalent to:

u2α1 + α2 = (u2α3 + α4)
2κξu2

2 + α5u2 + α6

ξu2 + α7
,

which can be written as the following cubic equation for u2:

u3
2(2κξα3)+u

2
2(α3α5+2κξα4−α1ξ)+u2(α3α6+α4α5−α1α7−ξα2)+(α4α6−α2α7) = 0. (3.50)

Using again the parameter given in Eq. (3.45), Eq. (3.33) can be rewritten as:

ln

(∣∣∣∣
u2 − u∗
u2 − ūj−1

∣∣∣∣
(s−u2)

∣∣∣∣
u1 − u∗
u1 − ūj−1

∣∣∣∣
−(s−u1))

=
Qε∆x

µ̃
. (3.51)

By again using Q = ρ̄j−1(s− ūj−1) and κ as defined in Eq. (3.48), Eq. (3.51) can be written

as:
(

u2 − u∗
u2 − ūj−1

)(s−u2)

=

(
u1 − u∗
u1 − ūj−1

)(s−u1)

exp
(
2κ(u2 − u1)(s− ūj−1)

)
. (3.52)

Assuming again that ε∆x/µ̃ is small, so κ(u2 − u1) is small, then using Taylor expansions

and the expression for s given by Eq. (3.43), rewrite Eq.(3.52) as:

(
u2 − u∗
u2 − ūj−1

)(ξu1+u2(ξ−1)+A)

=

(
u1 − u∗
u1 − ūj−1

)(u1(ξ−1)+ξu2+A)

(
1 + 2κ(u2 − u1)(ξ(u1 + u2) + A − ūj−1)

)
. (3.53)

where ξ and A are defined in Eq. (3.44). Once u2 has been determined from Eq. (3.50), Eq.

(3.53) has just one unknown, namely u1. Use a 1D Newton method or a bisection method to

solve u1 from Eq. (3.53).

3.5.3 Summarizing

Instead of solving the system given by Eq. (3.11), (3.33) and (3.34), we have obtained an

easier system to solve. By using a shock speed given by:

s = ξ(u1 + u2) +A, (3.54)

with:

ξ =
1

2 − β
, A =

−βūj−1 ±
√

2βγ(2 − β)
(
Ej−1 − 1

2 ū
2
j−1

)

2 − β
,

we need to solve the following two equations for u1 and u2:

Eq. (3.33) has been simplified to:

(
u2 − u∗
u2 − ūj−1

)(ξu1+u2(ξ−1)+A)

=

(
u1 − u∗
u1 − ūj−1

)(u1(ξ−1)+ξu2+A)

(
1 + 2κ(u2 − u1)(ξ(u1 + u2) + A − ūj−1)

)
, (3.55)
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Eq. (3.34) has simplified to:

u3
2(2κξα3)+u

2
2(α3α5+2κξα4−α1ξ)+u2(α3α6+α4α5−α1α7−ξα2)+(α4α6−α2α7) = 0, (3.56)

with the α’s given by:

α1 = u1 − ūj−1, α2 = u∗(ūj−1 − u1),

α3 = u1 − u∗, α4 = ūj−1(u∗ − u1),

α5 = ξ + 2κA− κ(u∗ + ūj−1), α6 = ξu1 +A− u∗ − 2κξu2
1 − 2κAu1 + κu1(u∗ + ūj−1),

α7 = ξu1 +A− u∗,

First solve the cubic equation given by Eq. (3.56) for u2. Substitution of this solution into Eq.

(3.55) results in an equation that has to be solved for u1. For this we can use a bisection or a

1D Newton method. There is no unique solution to these equations so we need requirements

to obtain the physically correct solutions. One requirement is: u1 > ūj−1 > u∗ > u2 (in the

case of a shock wave) or u1 < ūj−1 < u∗ < u2 (in the case of a rarefaction wave) . The big

advantage of solving the system given by Eq. (3.55) and (3.56) instead of the system given

by Eq. (3.11), (3.33) and (3.34) is that we do not need a two-dimensional Newton iteration

process.
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4 Conclusions and future work

Conclusions

In this thesis we present an approximate Riemann solver for viscous flows based on travelling

waves. The purpose of the Riemann solver is to solve the local (viscous) Riemann problems

occurring at the element faces due to the discontinuous nature of the polynomial represen-

tation in each element of the DG-FEM method. A standard way in DG-FEM to solve this

problem is by splitting the viscous and inviscid contributions of the flux, solving an inviscid

Riemann problem for the inviscid contributions and using the method of Bassi and Rebay

for the viscous contributions of the flux. However, physically, there is no reason to split the

flux. This method is based on mathematical properties. The DG-TW scheme presented in

this thesis is a scheme based more directly on the physics of the problem in which the viscous

and inviscid contributions are not split.

We tested the DG-TW scheme by solving the viscous Burgers equation. No significant dif-

ferences are observed in the solution when comparing the DG-TW scheme to the method of

Bassi and Rebay. We also obtained exactly the same order behavior with the DG-TW scheme

as with the method of Bassi and Rebay. We also notice a great simplification in implementing

the DG-TW scheme compared to Bassi and Rebay. Once the inviscid Burgers equation is im-

plemented, we just need to modify the flux function and add a viscous volume term while, for

the method of Bassi and Rebay, a number of viscous contributions have to be implemented.

We also attempted to develop a travelling wave scheme for the 1D Navier-Stokes equations,

but we have not yet succeeded in doing so. The problems we have are the large number

of non-linear equations that have to be solved. We made a first step in simplifying these

equations, but no tests have been done so far.

Future work

We have shown that for the viscous Burgers equation it is possible to use travelling wave

solutions to obtain a numerical flux in which viscous and inviscid contributions are not split.

We tried taking the next step, namely applying travelling wave solutions in the 1D Navier-

Stokes equations, but we have not yet succeeded. As mentioned above, this is due to the large

number of non-linear equations that have to be solved. We made a first step in simplifying

these equations. Future work will be to test these simplifications or to find other ways of

solving the non-linear equations than using a 2D Newton iteration method. Once the 1D

Navier-Stokes equations have been solved, the step to the 2D Navier-Stokes equations will

have to be made.





A Rankine-Hugoniot relations 61

support of

x=bx=a

D
t=T

t

x 

φ

Figure 16: Definition of the support of the function φ, from [Smo94]

A Rankine-Hugoniot relations

In this section we derive the Rankine-Hugoniot relations in viscous problems. In Section A.1

we do this for a general equation in which the shock is moving. In Section A.2 we derive the

Rankine-Hugoniot relations for the 1D Navier-Stokes equations in a frame moving with the

shock.

A.1 Rankine-Hugoniot conditions for viscous problems

In this section we will derive the Rankine-Hugoniot relations following [Smo94] and [vdVB03]

for the following viscous problem:

Ut + F e(U)x = F v(U,Ux)x x ∈ Ω, t ∈ R
+, (A.1)

with initial condition:

U(x, 0) = U0(x). (A.2)

We assume for now that the solution U of Eq. (A.1) is smooth. Later the problem will be

extended to non-smooth solutions. We let φ be a continuously differentiable function, which

vanishes outside of a compact subset in t ≥ 0, i.e., (support φ) ∩ (t ≥ 0) ⊆ D, where D is

the rectangle 0 ≤ t ≤ T, a ≤ x ≤ b, so chosen that φ = 0 outside of D, and on the lines

t = T, x = a and x = b, see Figure 16. Hence, φ ∈ C1
0 .

Multiplying Eq. (A.1) with φ and integrate over the domain R × R
+ results in:

∫ b

a

∫ T

0
(Ut + F e(U)x − F v(U,Ux)x)φdx dt = 0.

Integrate by parts to obtain:
∫ b

a

∫ T

0
Utφdx dt =

∫ b

a
Uφ

∣∣t=T

t=0
dx−

∫ b

a

∫ T

0
Uφt dx dt

= −
∫ b

a
U0(x)φ(x, 0) dx −

∫ b

a

∫ T

0
Uφt dx dt,

and:
∫ T

0

∫ b

a
(F e(U) − F v(U,Ux))xφdx dt = −

∫ T

0

∫ b

a
(F e(U) − F v(U,Ux))φx dx dt.
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Combining these terms, we can rewrite Eq. (A.1) as:

∫∫

t≥0
(Uφt + (F e(U) − F v(U,Ux))φx) dx dt+

∫ b

a
U0(x)φ(x, 0) dx = 0. (A.3)

If the solution U(x, t) is a classical solution, U ∈ C 1, then both formulations, Eq. (A.1) and

Eq. (A.3) are the same. If, however, U and U0 are merely bounded and integrable, then Eq.

(A.3) still makes sense as long as it is valid for all functions φ ∈ C 1, even when discontinuities

develop. The formulation of the conservation laws can therefore be generalized:

Definition A.1. A bounded integrable function U(x, t) is called a weak solution of the initial

value problem Eq. (A.1), with bounded and integrable initial data U0, provided Eq. (A.3)

holds for all φ ∈ C1
0 .

The weak formulation is considerably more general than the formulation using the differential

equation, but the weak formulation is non-unique. An additional requirement, the entropy

condition, is imposed to obtain a unique, physically relevant solution.

Using the weak formulation, it is possible to solve problems with discontinuities, but not all

discontinuities are permissible and the weak formulation imposes restrictions on the disconti-

nuity. To analyze these conditions, a smooth curve Γ across which U has a jump discontinuity

is considered. The solution U is smooth in the domain on both sides of the curve Γ and has

a clear limit on both sides of Γ.

Let P be any point on Γ, and let D be a small sphere centered at P . Assume that in D

the curve Γ is given by x = x(t). The sphere around P can be split into two parts, D1 and

D2, which are on either side of Γ, see Figure 17. Let φ ∈ C 1
0 (D), hence φ is a continuously

differentiable function in D and is zero at the boundary of D. The weak formulation, Eq.

(A.3), is transformed into:

∫∫

D
(Uφt + (F e(U) − F v(U,Ux))φx) dx dt =

∫∫

D1

(Uφt + (F e(U) − F v(U,Ux))φx) dx dt

+

∫∫

D2

(Uφt + (F e(U) − F v(U,Ux))φx) dx dt,

where the integral of U0 at initial time t = 0 in Eq. (A.3) disappears since φ is zero on the

boundary of D. Using the fact that U is C1 in Di, i = 1, 2, the integral over each sub-domain

can be further transformed into:

∫∫

Di

(Uφt + (F e(U) − F v(U,Ux))φx) dx dt =

∫∫

Di

(
(Uφ)t +

(
(F e(U) − F v(U,Ux))φ

)
x

)
dx dt

−
∫∫

Di

(
Ut + (F e(U) − F v(U,Ux))x

)
φdx dt

=

∫∫

Di

(
(Uφ)t +

(
(F e(U) − F v(U,Ux))φ

)
x

)
dx dt,

since U satisfies the differential equation Ut + (F e(U) − F v(U,Ux))x = 0 in Di because the
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Figure 17: Domains used in the derivation of the Rankine-Hugoniot relations, from [Smo94]

solution is smooth outside Γ. Applying the divergence theorem, we obtain:
∫∫

Di

(
(Uφ)t +

(
(F e(U) − F v(U,Ux))φ

)
x

)
dx dt =

∫

∂Di

φ

(
− U dx+

(
F e(U) − F v(U,Ux)

)
dt

)

=

∫

Γ
φ

(
− U dx+

(
F e(U) − F v(U,Ux)

)
dt

)
,

since φ = 0 on all boundaries of Di except along Γ.

By defining UL = limε↓0 U(x(t) − ε, t), UR = limε↓0 U(x(t) + ε, t), UL
x = limε↓0 Ux(x(t) − ε, t)

and UR
x = limε↓0 Ux(x(t) + ε, t) we then find:

∫

∂D1

φ

(
−U dx+

(
F e(U)−F v(U,Ux)

)
dt

)
=

∫ Q2

Q1

φ

(
−UL dx+

(
F e(UL)−F v(UL, U

L
x )

)
dt

)
,

(A.4)

∫

∂D2

φ

(
−U dx+

(
F e(U)−F v(U,Ux)

)
dt

)
= −

∫ Q2

Q1

φ

(
−UR dx+

(
F e(UR)−F v(UR, U

R
x )

)
dt

)
,

(A.5)

where the minus sign in front of the integral on the righthand side in Eq. (A.5) is due to

the fact that the integration path along Γ for domain D2 is in opposite direction from the

integration path along Γ for domain D1. Combining Eq. (A.4) and Eq. (A.5), we find:

0 =

∫

Γ
φ

(
− [[U ]] dx+ [[F e(U) − F v(U,Ux)]] dt

)
,

where [[U ]] = UL − UR, the jump across Γ, and similarly, [[F e(U) − F v(U,Ux)]] = F e(UL) −
F v(UL, U

L
x ) − F e(UR) + F v(UR, U

R
x ). Since φ was arbitrary, we conclude that:

S[[U ]] = [[F e(U) − F v(U,Ux)]], (A.6)

at each point on Γ, where S = dx/dt is the speed of the discontinuity. This relation is the

Rankine-Hugoniot condition for viscous equations.
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A.2 Rankine-Hugoniot derivation for 1D Navier-Stokes in a moving frame

of reference

In this section, by following [Whi74], we shall derive the Rankine-Hugoniot relations for the

1D Navier-Stokes equations in a frame of reference moving with the shock.

Consider the following form of the Navier-Stokes equations:

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = µ
γ + 1

2γ
uxx,

(ρE)t + (ρu(h + 1
2u

2))x = µ
γ + 1

2γ
(h+ 1

2u
2)xx.

(A.7)

The flow is steady relative to the shock, therefore all flow quantities are functions of ω = x−st
alone. It holds that:

∂

∂t
= −s d

dω
,

∂

∂x
=

d

dω
,

so that Eq. (A.7) can be rewritten as:

− s
dρ

dω
+
d(ρu)

dω
= 0,

− s
d(ρu)

dω
+

d

dω
(ρu2 + p) = µ

γ + 1

2γ

d2u

dω2
,

− s
d(ρE)

dω
+

d

dω
(ρu(h+ 1

2u
2)) = µ

γ + 1

2γ

d2

dω2
(h+ 1

2u
2),

or, after integration:

−sρ+ (ρu) = A, (A.8)

−s(ρu) + (ρu2 + p) − µ
γ + 1

2γ

du

dω
= B, (A.9)

−s(ρE) + (ρu(h+ 1
2u

2)) − µ
γ + 1

2γ

d

dω
(h+ 1

2u
2) = C, (A.10)

where A, B and C are constants of integration. Note that these relations can also be found

by substituting U, F e(U) and F v(U,Ux), where

U =



ρ

ρu

ρE


 , F e(U) =




ρu

ρu2 + p

ρu(h+ 1
2u

2)


 , F v(U,Ux) = µ

γ + 1

2γ




0

ux(
h+ 1

2u
2
)
x


 ,

into Eq. (A.6).

Define the relative velocity v = s− u, then from Eq. (A.8):

ρv = Q, with Q = −A. (A.11)

From Eq. (A.9), by noting that:

du

dω
=

d

dω
(s− v) = − dv

dω
,
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and:

ρu(u− s) = −sρv + ρv2 = ρv2 − sQ,

we obtain:

ρv2 + p+ µ
γ + 1

2γ

dv

dω
= P, with P = B + sQ. (A.12)

By noting that:

(1
2u

2 + e)ρu+ pu = ( 1
2u

2 + h)ρu,

and that E = e+ 1
2u

2, Eq. (A.10) can be written as:

−vρ(1
2u

2 + e) + (s− v)p− µ
γ + 1

2γ

(
dh

dω
+ u

du

dω

)
= C.

Since p = (γ − 1)eρ and u = s− v it follows that:

−vρ(1
2 (s− v)2 + γe) + sp− µ

γ + 1

2γ

(dh
dω

+
d

dω

(
1
2v

2
)
− s

dv

dω

)
= C.

Using h = γe:

vρ(h + 1
2v

2) + µ
γ + 1

2γ

d

dω
(h+ 1

2v
2) + vρ(1

2s
2 − sv) − sp− sµ

γ + 1

2γ

dv

dω
= −C. (A.13)

From Eq. (A.12) we obtain:

sµ
γ + 1

2γ

dv

dω
= sP − sρv2 − ps.

Substituting into Eq. (A.13):

vρ(h + 1
2v

2) + µ
γ + 1

2γ

d

dω

(
h+ 1

2v
2
)

= E , with E = −C + sP − 1
2s

2Q. (A.14)

From Eq. (A.11), (A.12) and (A.14) we obtain the following form of the Rankine-Hugoniot

relations for the 1D Navier-Stokes equations:

Q = ρv,

P = ρv2 + p+ µ
γ + 1

2γ

dv

dω
,

E = vρ
(
h+ 1

2v
2
)

+ µ
γ + 1

2γ

d

dω

(
h+ 1

2v
2
)
,

where P, Q and E are constants.
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B Approximate viscous Riemann solvers

In this section we will introduce some ideas for an approximate viscous Riemann solver. We

will present a scheme and test it on the viscous isothermal equations. We use the viscous

isothermal equations since in these equations only two waves occur, each wave separating a

constant state. This makes it possible to apply the HLL flux.

Deriving the approximate viscous Riemann solver we will consider conservation laws given

by:

Ut + F e(U)x = F v(U,Ux)x x ∈ Ω, t ∈ R
+, (B.1)

with initial condition:

U(x, 0) = U0(x). (B.2)

Let the inviscid part of the equation admit two real and distinct eigenvalues so that the

inviscid part of the equation is hyperbolic. Physically, the eigenvalues represent the speeds

of propagation of information.

B.1 An approximate viscous Riemann solver

In this section an approximate viscous Riemann solver will be presented using the Rankine-

Hugoniot conditions as derived in Section A.1 and transformations as in [vdVK03].

As in Section A.1, we consider the following equation:

Ut + F e(U)x − F v(U,Ux)x = 0,

but now in a control volume Ω = [xL, xR] × [0, T ]. On the domain Ω2 ∪ Ω3, where the

open domain Ω2 is bounded by waves SL and SM , and the open domain Ω3 by SM and SR

respectively, see Figure 18, the solution is smooth, so in this region we can express the weak

formulation as:∫

Ω2∪Ω3

(
Ut + F e(U)x − F v(U,Ux)x

)
dx dt = 0. (B.3)

Using the transformations as in [vdVK03], we can rewrite Eq. (B.3):
∫∫

Ω2

Ut dx dt =

∫ T

t=0

∫ tSM

x=tSL

Ut dx dt

= −
∫ T

t=0

∫ SM

ξ=SL

Uξ
x

t2
t dξ dt

= −
∫ T

t=0

∫ SM

ξ=SL

Uξξ dξ dt

= −T
∫ 1

s=0

∫ SM

ξ=SL

Uξξ dξ ds

= −T
∫ 1

s=0

(
Uξ

∣∣∣∣
SR

SL

−
∫ SR

SL

U dξ

)
ds

= −T
∫ 1

s=0

(
SMU

∗−
M − SLU

∗
L

)
ds+ T

∫ 1

s=0

∫ SM

ξ=SL

U(ξ) dξ ds,

(B.4)
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Figure 18: Wave pattern used in the definition of the HLLC flux function. Here SL and SR

are the fastest left and right moving signal velocities. The solution in the star region U ∗ is

divided by the wave with velocity SM .

where U ∗
L and U∗−

M denote the trace of U in Ω2 at SL and SM , respectively. Similarly we find

over the domain Ω3:

∫∫

Ω3

Ut dx dt = −T
∫ 1

s=0

(
SRU

∗
R − SMU

∗+

M

)
ds+ T

∫ 1

s=0

∫ SR

ξ=SM

U(ξ) dξ ds, (B.5)

where U ∗+

M and U∗
R denote the trace of U in Ω3 at SM and SR, respectively.

Define the averaged star state Ū∗ as:

Ū∗ =
1

T (SR − SL)

∫ TSR

TSL

U(x, T ) dx.

Using the self similarity of U(x, t) in the star region, the average of the exact solution Ū∗ can

also be expressed as:

Ū∗ =
1

(SR − SL)

∫ SR

SL

U∗(ξ) dξ. (B.6)

Using Eq. (B.6) we can combine Eq. (B.4) and Eq. (B.5) to:

∫∫

Ω2∪Ω3

Ut dx dt = −T
∫ 1

s=0

(
SMU

∗−
M − SLU

∗
L + SRU

∗
R − SMU

∗+

M

)
ds+ T

∫ 1

s=0

∫ SR

SL

U∗(ξ) dξ ds

= −T
∫ 1

s=0

(
SMU

∗−
M − SLU

∗
L + SRU

∗
R − SMU

∗+

M

)
ds+ T

∫ 1

s=0
(SR − SL)Ū∗ ds.

(B.7)

Analogously to the above relations we can find expressions for the integral over the domain
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Ω2 ∪ Ω3 for the inviscid and viscous fluxes:

∫∫

Ω2

(
F e(U)x − F v(U,Ux)x

)
dx dt =

∫ T

t=0

∫ tSM

x=tSL

(
F e(U)x − F v(U,Ux)x

)
dx dt

= T

∫ 1

s=0

((
F e(U) − F v(U,Ux)

)∣∣∣∣
tSM

tSL

)
ds.

(B.8)

Similarly, over Ω3 we find:

∫∫

Ω3

(
F e(U)x − F v(U,Ux)x

)
dx dt = T

∫ 1

s=0

((
F e(U) − F v(U,Ux)

)∣∣∣∣
tSR

tSM

)
ds. (B.9)

Combining Eq. (B.7), Eq. (B.8) and Eq. (B.9), we find the following expression for the

average of the exact solution:

Ū∗ =
1

SR − SL

(
F e(U∗

L)−F v(U∗
L, U

L∗

x )+F e(U∗+

M )−F v(U∗+

M , UM∗
+

x )−F e(U∗
R)+F v(U∗

R, U
R∗

x )

− F e(U∗−
M ) − F v(U∗−

M , UM∗
−

x ) − SLU
∗
L + SM (U∗−

M − U∗+

M ) + SRU
∗
R

)
. (B.10)

Using the Rankine-Hugoniot relations as given in Section A.1, this expression can be trans-

formed into an expression of only known variables. Over the SL-wave we have the Rankine-

Hugoniot expression:

F e(UL) − SLUL − F v(UL, U
L
x ) = F e(U∗

L) − SLU
∗
L − F v(U∗

L, U
L∗

x ),

over the SR-wave:

−F e(UR) + SRUR + F v(UR, U
R
x ) = −F e(U∗

R) + SRU
∗
R + F v(U∗

R, U
R∗

x ),

and over the SM -wave:

−F e(U∗−
M ) + SM (U∗−

M − U∗+

M ) + F v(U∗−
M , UM∗

−

x ) + F e(U∗+

M ) − F v(U∗+

M , UM∗
+

x ) = 0.

Expression Eq. (B.10) becomes:

Ū∗ =
1

SR − SL

(
SRUR −SLUL +F e(UL)−F v(UL, U

L
x )−F e(UR)+F v(UR, U

R
x )

)
. (B.11)

The flux along the t-axis is obtained by integrating Eq. (A.1) over part of Ω2:

∫ T

t=0

∫ 0

x=tSL

(Ut + F e(U)x − F v(U,Ux)x) dx dt.

Analogously to the above relations we find:

∫ T

t=0

∫ 0

x=tSL

Ut dx dt = T

∫ 1

s=0
SLU

∗
L ds+ T

∫ 1

s=0

∫ 0

ξ=SL

U(ξ) dξ ds,
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and:

∫ T

t=0

∫ 0

x=tSL

F e(U)x−F v(U,Ux)x dx dt = T

∫ 1

s=0

(
F e(U0)−F v(U0, U

0
x)−F e(U∗

L)+F v(U∗
L, U

L∗

x )

)
ds.

Combining these two expressions and using the Rankine-Hugoniot relation across the SL-wave,

we obtain:

F e(U0) − F v(U0, U
0
x) = F e(UL) − F v(UL, U

L
x ) − SLUL −

∫ 0

ξ=SL

U(ξ) dξ.

By replacing U(ξ) in the integral term by the average of the exact solution in the star state,

Eq. (B.11), we obtain:

F e(U0)−F v(U0, U
0
x) =

SR(F e(UL) − F v(UL, U
L
x )) − SL(F e(UR) − F v(UR, U

R
x )) + SLSR(UR −RL)

SR − SL
,

(B.12)

which is the flux along the t-axis without considering contact waves.

B.2 Testing the viscous HLL-flux and conclusions

Consider the viscous isothermal equations:

Ut + F e(U)x − F v(U,∇U)x = 0, (B.13)

with:

U =

[
ρ

ρu

]
, F e(U) =

[
ρ

ρ(u2 + a2)

]
, F v(U,∇U) =

[
0

µux

]
.

In general, the weak formulation for Eq. (B.13) is given by:

Find a U ∈Wh such that B(U, V ) = 0,∀V ∈Wh with:

B(U, V ) =

∫

Ωh

V Ut dx−
∫

Ωh

VxF
e(U) dx+

∫

Ωh

VxF
v(U,∇U) dx+

N∑

k=1

∫

∂Kk

Ĥ(UL, UR)V ds,

where Ĥ is the numerical flux from Eq. (B.12) ensuring continuous fluxes at each face and

Wh is the discrete discontinuous finite element space given by:

Wh = {V ∈ L2(Ωh) : V |Kk
∈ P 1(Kk), k = 1, ..., N},

in which P 1(Kk) denotes the space of linear polynomials, and L2(Ωh) the space of Lebesque

square integrable functions.

We tested the numerical flux for a test case with the following initial condition:

ρ(x, 0) =

{
10, for x ≤ 1

2

8, for x > 1
2

, ρu(x, 0) = 0,
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Figure 19: Order behavior of the density variable ρ. The method of Bassi and Rebay and the

viscous Riemann solver as given by Eq. (B.12) were used. As reference, an “exact” solution

was calculated with the method of Bassi and Rebay on a grid with 320 cells. Depicted are

the results at t = 0.2 time units using a viscosity coefficient of µ = 0.1.

and different values of the viscosity coefficient. For small values of the viscosity coefficient

the flux seems to work without any problems, however, increasing the viscosity coefficient

to a value of µ = 0.1, the order behavior of the scheme deteriorates. In Figure 19 the order

behavior of the solution determined with the method of Bassi and Rebay and with the viscous

Riemann solver is depicted. We see that as the cell size decreases the order behavior of the

viscous Riemann solver deteriorates. For small values of the viscosity coefficient the viscous

terms in the numerical flux are insignificant explaining the good order behavior for these

cases. Increasing the viscosity coefficient, the viscous terms in the numerical flux become

more important. In our case, increasing the viscosity coefficient resulted in a deteriorating

order behavior, meaning that something is wrong with the viscous terms in our flux. We also

tested the numerical flux in a 2D-Navier Stokes code. We did a Couette test case and the

results were bad.

A reason why this viscous flux does not work for large viscosity coefficients: In Eq. (B.12) we

need, among other terms, the following: F v(UL, U
L
x ) and F v(UR, U

R
x ). Since we are working

with linear approximations to the exact solution, we have values for U L
x , the derivative of U

in the left state and UR
x , the derivative of U in the right state. We therefore use these slopes

in F v(UL, U
L
x ) and F v(UR, U

R
x ). This is, however, not consistent with the way the original

HLL flux is derived, since here it is assumed that all states are constant states, which in our

case results in F v(UL, U
L
x ) = F v(UL, 0) and F v(UR, U

R
x ) = F v(UR, 0). This has proven to be

a problem in many attempts to derive an approximate viscous Riemann solver. Taking all
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states constant results in the removal of the viscous terms and taking U linear in all regions

can result in introducing new unknown terms which are absent if U is constant.
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C Newton’s method for a system of two equations

In this section we will explain how we implemented Newton’s method for solving the system

given by Eq. (3.33) and (3.34) for uI
1 and uI

2. The system given by Eq. (3.35) and (3.36) is

solved similarly for uIII
1 and uIII

2 .

First we determine sI from Eq. (3.11):

v1v2 =
2(γ − 1)

γ + 1
H. (C.1)

From Eq. (3.8):

H = h+ 1
2v

2

= e+
p

ρ
+ 1

2v
2

= γe+ 1
2v

2

= γE + 1
2v

2 − 1
2γ(s− v)2.

We know the means of E and u in cell j − 1 and we know that H is constant so:

H = γEj−1 + 1
2(s− ūj−1)

2 − 1
2γū

2
j−1. (C.2)

Define the following constant:

β =
2(γ − 1)

γ + 1
,

then, substituting v1 = s− u1, v2 = s− u2 and Eq. (C.2) into Eq. (C.1) we obtain:

(s− u1)(s− u2) = β
(
γEj−1 + 1

2 (s− ūj−1)
2 − 1

2γū
2
j−1

)
,

which can be rewritten as:

as2 + bs+ c = 0,

where:

a = 1 − 1
2β, b = −u1 − u2 + βūj−1, c = u1u2 − βγEj−1 − 1

2(1 − γ)βū2
j−1.

It follows that:

s± =
−b±

√
b2 − 4ac

2a
.

We do not know which s to take since in certain test cases both speeds, s− and s+ both

agreed to the entropy shock conditions. In the implementation we took s = s− for the I-wave

and s = s+ for the III-wave. This is based on trial and error. This choice proved to be the

most successful. A good condition still needs to be found for obtaining the wave-speed s.
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Write Eq. (3.33) as:

f1(u1, u2) =
µ̃

ρ̄j−1(s(u1, u2) − ūj−1)(u2 − u1)

(
(s(u1, u2) − u2) ln

(∣∣∣∣
u2 − u∗
u2 − ūj−1

∣∣∣∣
)

− (s(u1, u2) − u1) ln

(∣∣∣∣
u1 − u∗
u1 − ūj−1

∣∣∣∣
))

− ∆x, (C.3)

and write Eq. (3.34) as:

f2(u1, u2) =
µ̃

(u2 − u1)

(
ln

(∣∣∣∣
u2 − u∗
u2 − ūj−1

∣∣∣∣
)
−ln

(∣∣∣∣
u1 − u∗
u1 − ūj−1

∣∣∣∣
))

−1
2∆x

(
ρ̄j−1+ρ̄j−1

s(u1, u2) − ūj−1

s(u1, u2) − u∗1

)
.

(C.4)

In these equations we used ρ∗1 = Q/(s−u∗1) and Q = ρ̄j−1(s− ūj−1), since the means of u and

ρ are known in cell j − 1 and Q is constant. We are now able to solve the system consisting

of Eq. (C.3) and (C.4) for u1 and u2 using Newton’s method.

Consider the system:

F (U) = 0, F =

[
f1

f2

]
, U =

[
u1

u2

]
.

This system is solved using Newton’s method as follows:

U (k+1) = U (k) −
(
∂F

∂U
(U (k))

)−1

· F (U (k)),

where ∂F/∂U is the Jacobian of F (U). We note that u1 > ūj−1 > u∗ > u2. Therefore, as

initial guess, we take u1 = ūj−1 + ε and u2 = u∗ − ε with ε = 0.0001. We did not use the

exact Jacobian but an approximation:

∂F

∂U
≈

[
f1(u1+δ,u2)−f1(u1,u2)

δ
f1(u1,u2+δ)−f1(u1,u2)

δ
f2(u1+δ,u2)−f2(u1,u2)

δ
f2(u1,u2+δ)−f2(u1,u2)

δ

]
,

with δ = 10−6. As stated before, uIII
1 and uIII

2 are determined similarly.
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