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Abstract

For the development and testing processes of a medical device, a simulation model
can be helpful. Inreda Diabetic BV (Goor, The Netherlands) is developing an artificial
pancreas to regulate the blood glucose value in patient with type 1 diabetes mellitus.
This new medical device is a bi-hormonal closed-loop system. A simulation model
was designed to test the algorithm of the artificial pancreas. The aim of this study
was to develop a model to help understand the medical device interactions on the
glucose regulation and to provide information on the simulated responses to various
stimuli. The model represents the three main physiological subsystems, the glucose,
insulin and glucagon processes. In addition, the first simulation results proved
that the model can simulate the glucose regulation, albeit with parameters from
literature. Next, a first step was made to estimate the model’s parameters. However,
these estimations are not straightforward and further research is necessary. Despite
this limitation, this study showed a solid developed model for the understanding of
the glucose regulation.
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1Introduction

1.1 Diabetes management

Diabetes mellitus is a chronic metabolic disorder resulting in a dysfunctional glu-
cose regulation. In type 1 diabetes, the β-cells in the pancreas are affected by an
autoimmune response [9, 37]. This leads to necrosis of the β-cells, which results
in reduced cell mass. As a consequence, the β-cells fail to secrete (enough) in-
sulin. At this moment there is no cure for diabetes. Pellegrini et al. identified that
the affected β-cells can be replaced by healthy β-cells [28]. These islet transplan-
tations can be done by different methods [28]. The transplantation methods still
have its limitations that need to be overcome, before there will be a cure for diabetes.

Therefore, the management of diabetes is focused on maintaining the patient’s
blood glucose within the desired range. Patients need to regulate their own blood
glucose by measuring and correcting their blood glucose levels. A high blood glucose
level, or hyperglycemia, is corrected by injecting insulin. Hypoglycemia, which is
a low blood glucose level, can be corrected by eating carbohydrates. Further, they
need to keep in mind what to eat or when to exercise. This self-regulation requires
considerable effort from the patient. Patients are constantly managing their blood
glucose levels [19]. This requires an adaptation of their lifestyles [19]. Diabetes has
a great impact on the patient’s lifestyle [21] and their families [34].

As mentioned above, patients need to measure their blood glucose values to manage
their diabetes. A device for Self Monitoring of Blood Glucose (SMBG) helps with this
measurement. The device works with a drop of blood derived from a finger prick
and reports the glucose value. On the basis of this measurement the patient can
correct a high glucose value by the administration of insulin. A low value is mostly
corrected by eating carbohydrates. These actions are preformed several times a day:
mostly before meals and before bedtime. Insulin is given subcutaneously by pen,
called Multiple Daily Insulin (MDI) therapy, or by insulin pump called Continuous
Subcutaneous Insulin Infusion (CSII). MDI is the common therapy for type 1 diabetes
mellitus (T1DM) patients.

Medical devices for diabetes disease management can relieve the patient’s bur-
den. One of these devices is a glucose sensor: Continuous Glucose Monitors (CGM).
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This is an amperometric biosensor for the continuous measurement of the glucose
concentration in the interstitial fluid. The glucose level in the interstitial fluid corre-
sponds to the subcutaneous glucose values. These measurements provide patients
more insight in their own blood glucose values than irregular SMBG blood glucose
measurements. The CGM displays not only the values, but also the trends and rate
of change. Nevertheless, the interpretation and treatment decisions need to be done
by the patient [19]. With the use of CGM, less SMBG measurements have to be
performed. The SMBG measurements are only needed for calibration or to verify
the glucose sensor.

The insulin pump, CSII, is also a medical device in diabetes management. This
device provides continuous subcutaneous insulin administration and bolus insulin
before the intake of carbohydrates. Once per 2 days the infusion set of the CSII
needs to be replaced. Therefore, the burden of frequent insulin administration is
diminished compared to MDI. Another advantage of CSII is the ability to adjust the
basal insulin infusion rate. In contrast to MDI where the long acting insulin is given
once a day and cannot be adjusted during the day or night. Therefore, patients with
frequent hypoglycemia and/or hypoglycemia unawareness benefit from CSII therapy
[22]. CSII therapy delivers only insulin, patients still need to count carbohydrates
and decide on the amount of bolus insulin. This extra-administered insulin mini-
mizes or corrects peaks in the blood glucose value. The bolus is complementary to
the basal insulin.

CSII can be combined with SMBG systems. The blood glucose values are auto-
matically sent from the SMBG to the CSII device. CSII features can support the
patient with calculating the bolus of insulin using the amount of carbohydrates, the
current glucose value and the insulin levels. Even with this support, named bolus
calculator, patients still need to take care of their own therapy: measuring glucose
with a finger prick, counting carbohydrates and entering these results in the bolus
calculator, taking into account any intended physical activity.

1.2 Closed loop systems

In sensor-augmented pump therapy the CGM and CSII systems are combined. This
is a prospect of a closed-loop system. A closed-loop system automatically controls
the desired output. The controller responds to changing output, without any human
intervention. The closed-loop system includes a sensor to measure these changes. In
case of a closed-loop system for diabetes management the controlled output is the
blood glucose value, which should remain in a specified range. The controller is a
medical device, for instance the CSII with a glucose control algorithm, and the CGM
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is the sensor. The continuous development of the technology behind the CGM and
CSII contributes to the closed-loop principle [19, 32]. The two connected devices
replace the pancreatic function of sensing and controlling the glucose regulation.

Inreda Diabetic BV (Goor, The Netherlands) is developing a closed-loop system,
i.e. an artificial pancreas (AP) [2]. The goal is to regulate the blood glucose
value [17] in order to prevent hyperglycemia and hypoglycemia. The system is
bi-hormonal, because it can administer insulin and glucagon. Insulin and glucagon
are counter-regulatory hormones, their action is to prevent hyper- and hypoglycemia,
respectively. Therefore this device contains two pumps for the insulin and glucagon
delivery. The use of glucagon is an expansion of CSII. The rationale for using
glucagon in the closed loop is that the glucagon response to hypoglycemia is com-
promised in diabetes [20]. Therefore, glucagon secretion by the α-cells is supported
or replaced by the closed-loop controller. Furthermore the AP uses two CGMs to
improve the measurement’s accuracy and reliability. The algorithm of the controller
calculates the required doses of either insulin or glucagon to adjust the glucose
values.

1.3 Models

Not only technological advancements are important, mathematical models can also
have a significant impact on the development of a closed-loop system. A model is
a representation of the reality involving some degree of approximation. Therefore,
a model is a simplification of the reality. A model can achieve four types of goals
[7, 10]: describing quantitative relationships in terms of equations, interpreting
experimental results, predicting a system response to a certain stimulus, or explain
the change to an observation or measurement. The model goal determines the
modeling method.

A mathematical model describes the physiological behavior in terms of mathematical
equations. This model type can be based on clinical data or on the understanding
of the physiological process. The first modeling method is called a black box. The
mathematical description of the physiology is identified with experimental input and
output data. For the second method, it is necessary to understand the physiological
complexity in order to make conscious decisions. Decisions are based on simplifica-
tions and assumptions. This modeling method is called a white box. However, the
physiology is seldom entirely understood and not all the parameters can be directly
measured [7]. For these two reasons the physiology is often modeled as a grey box.

A model can be helpful in the development and testing processes for medical devices.

1.3 Models 3



The model helps to understand the medical device interactions on a physiological
process. It provides information on the simulated responses to various stimuli of
the medical device. A model also simulates a wider range of physiological and
pathophysiological situations than can be tested in clinical trials. Therefore, it is a
valuable tool for preclinical testing of a medical device.

Clinical studies are important to determine the safety and performance of the glucose
control algorithm of the closed-loop system. Only, the development, evaluation and
testing of the control algorithm is time consuming, expensive and it involves ethical
issues [8]. Therefore, a computer simulation offers a possibility for studying the
design, testing and validating the closed-loop system in silico. This simulation of a
virtual patient could reduce the time, cost and burden for patients participating in
the clinical studies. This preclinical testing can result in a direction for the clinical
studies and shows beforehand the (in)effective control scenarios in a safe and cost
effective manner.

1.4 Review of existing models

Two recent review articles describe the main existing simulation models for testing
glucose controllers. These are the review of Wilinska et al. and the review of
Colmegna et al. [11, 38]. The first review compares five models and the second
review compares three models which are also mentioned in the first review. In total,
five simulation models are compared: the Sorensen model, the Universities of Vir-
ginia and Padova (UVA/Padova) research group model, the University of Cambridge
model, the Medtronic model and the model of Fabietti et al. These models simulate
the glucose regulation of a diabetes patient. The models are used to investigate
and design a closed-loop controller. These reviews describe the submodels of each
model and discuss the simplifications, the assumptions and differences that are made.

The Sorensen model is an explanatory physiological model of the glucose metabolism.
The model represents the organs in six compartments. These compartments are again
divided in three spaces: the capillaries, the interstitial and the intracellular space. In
these spaces the interactions of glucose, insulin and glucagon are described. These
are represented as a mass balance. This model was the first complete model that
simulates an average patient with type 1 diabetes. However, it simulates intravenous
administrated insulin. Therefore, the delay when insulin is infused subcutaneously
is neglected.

The UVA/Padova model exists of two subsystems, namely the glucose and insulin
system. In a later publication an additional glucagon subsystem is presented. The
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glucose subsystem is divided into three systems, which describe the transport, pro-
duction and utilization of glucose. This model includes the subcutaneous insulin
kinetics to simulate the administered insulin. The simulation population consists
of 300 virtual patients including adults, adolescents and children. The model is
approved by the Food and Drug Administration to replace animal trials.

The Cambridge’s model consist of five submodels: the glucose and insulin kinetics,
the glucose absorption, the subcutaneous insulin, and the interstitial glucose. Ad-
ditionally, this research group included physical exercise to the model. With these
extended submodels the model is specifically build to support the development of a
closed-loop system. The model population consists of 18 virtual patients. The model
is validated with an overnight clinical study.

The Medtronic and Fabietii models are based on the Bergman’s minimal model
from 1970, which is the most widely studied model [1, 33]. This model describes the
interaction between the blood glucose concentration and the insulin concentration
in blood [33]. The submodels of the glucose kinetics are simplistically represented
using Bergman’s model.

Comparing all these reviewed models, the Cambridge and UVA/Padova models
are considered the most complete models for testing an AP. Both models are based
on clinical data sets instead of literature. The differences between the models
are seen in the compartmental structures. The main differences are the insulin
absorption in the blood plasma after subcutaneous administration and the rate of
appearance of intake of carbohydrates. These assumptions have an effect on the
total number of compartments and therefore the amount of differential equations.
More compartments make the model more complex. Which model is more suitable
for testing an AP depends on the testing specifications.

1.5 Requirements

The AP of Inreda diabetic BV is designed by the company itself and includes pumps
for insulin and glucagon administration, control algorithms and CGM. Eventually the
medical device need to be tested in vivo, but in silico testing is easier and timesaving.
In silico testing requires insight in physiologic systems of glucose control and the
parameters of the AP’s algorithm. Further, this simulation has to demonstrate the
effect of changes made in the algorithm. As said, in silico testing requires a model
that simulates the physiologic systems of glucose control: the glucose, insulin and
glucagon kinetics and dynamics. Kinetics describe the reaction of the body to the
substrate using the concentrations in the body fluids and tissue which vary over
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time and in intensity of the response. Dynamics describe the substrates effect to
the body and the different mechanisms by which the substrate acts. In glucose
kinetics, it is important to distinguish the blood plasma and the interstitial space
kinetics of glucose for the sensors. The CGM’s measure glucose subcutaneously in
the interstitial space. Furthermore, the liver has a major influence on the glucose
dynamics. The liver affects the blood plasma glucose positively and negatively.
Therefore, the liver has to be considered in the model. In addition, the utilization of
glucose during physical activity is also essential for the glucose dynamics and are
part of the simulation. Next, the absorption by the gastrointestinal(GI) tract after
carbohydrate intake has to be included in the model.

Insulin and glucagon kinetics and dynamics are two important physiological systems.
Insulin is administrated subcutaneously and therefore the absorption of insulin and
peak activity is delayed compared to the normal insulin release of the pancreas.
Therefore, the pharmacokinetics and pharmacodynamics of insulin need to be con-
sidered. Glucagon is also administrated subcutaneously, which should be considered
in the model. Another requirement is the possibility to change parameters and to
create inter-patients differences like insulin sensitivity.

1.6 Purpose

To provide insight in the human glucose regulation, several existing models are
reviewed, each having their own strengths and limitations. The UVA/Padova and
the Cambridge model are considered the most complete models for testing the AP.
In both models the glucogon subsystem is not included. In an extension of the
UVA/Padova model the glucagon subsystem is added [15]. This model part is based
on non-published assumptions and it remains to be seen whether this part of the
model is accurate. The insulin effect on the glucagon response in this study remains
unclear. The study of Blauw et al. shows the pharmacokinetics and pharmacody-
namics of various glucagon dosages at different blood glucose levels [3]. This study
measured the glucagon kinetics and dynamics without the effect of insulin. This
gives the opportunity to model the glucagon submodel according to these clinical
data, providing the information to estimate the parameters for the glucagon part
without the effect of insulin. Developing a proprietary model provides more insight
in the human glucose regulation and a glucagon subsystem can be added to glucose
regulation in the model.
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The purpose of this thesis is to design a simulation model of patients with Type 1
Diabetes Mellitus (T1DM) suitable for testing the AP’s algorithm of Inreda Diabetic
BV. This provides more insight in the human glucose regulation and a proprietary
model is easier to verify and control than the existing models.
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2Model development

In this study a model was designed to test the algorithm of the artificial pancreas.
Figure 2.1 schematically gives an overview of the closed-loop system. It represents a
common control system, in which the controller, the sensor and the process are con-
nected and form the closed-loop system. In case of the AP, the controller represents
the algorithm, the sensor consists of continuous glucose sensors and the process is
the (virtual) patient. The controller delivers an amount of either insulin or glucagon
to the virtual patient. The virtual patient is susceptible to disturbances from outside
the system, like the intake of carbohydrates.

The process has 2 outputs: the plasma glucose concentration and subcutaneous glu-
cose concentration. The plasma glucose value was only used as a control parameter,
not as feedback loop. Plasma glucose level is a commonly used expression for the
glucose value of the body. The CGM sensors measure the subcutaneous glucose
value provided by the process and calculate the change of glucose, i.e. the slope.
The glucose value and slope are sent to the algorithm that calculate the amount
of administrated insulin or glucagon. This study focused on modeling the virtual
patient.

Figure 2.1: Overview of the closed loop system with the AP’s algorithm as controller, the virtual
patient as process and the CMG as sensor.
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The virtual patient represents the glucose regulation system in T1DM patients. To
simulate the glucose regulation, glucose, insulin and glucagon dynamics are repre-
sented in the model. These dynamics are the three main physiological subsystems
that are modeled. Numbers in the upper right corner of the boxes in Figure 2.2
indicates these subsystems. The boxes with the number 1 are part of the glucose
dynamics, number 2 represents part of insulin dynamics and the boxes with num-
ber 3 are part of the glucagon dynamics. Affix a describes absorption, transport
and degradation of the three substrates. In box 1a the plasma glucose and the
subcutaneous glucose are described. These two glucose values are the subsystem
outputs. Three boxes connect to this first subsystem indicated with the affixes b,
c and d. These boxes describe the dynamics of endogenous glucose production
(1b), the utilization of glucose (1c) and the glucose rate of appearance (1d). The
pancreatic insulin and glucagon secretion are represented in boxes 2b and 3b. The
boxes 2c and 3c describe the subcutaneous administration route of these hormones.
The administrated insulin and glucagon provided by the AP enter the system i.e.
the virtual patient by these two boxes. The arrows indicate the fluxes between the
subsystems. The dotted arrows indicate the signals that influence the subsystems.

2.1 Glucose

Box 1a First the glucose kinetics are modeled, in box 1a of Figure 2.2. Glucose
concentrations fluctuate during the day. The amount of glucose increases and de-
creases respectively by intake of carbohydrates and utilization by the body. Glucose
enters the body by the intake of food as carbohydrates. Eating food that contains
carbohydrates increases the glucose in the blood plasma. Glucose is a major source
of fuel for the body; the body organs need glucose to function. This utilization by
the body is explained in detail in section 2.1.2. The body stores glucose that is not
directly required. This storage happens in the liver and is released in fasting to
increase the plasma glucose. The contribution of the liver to the glucose regulation
is described in detail in section 2.1.1.

The changes in glucose concentration do not only occur in the blood plasma, but also
in tissues and the interstitial space. The absorption of glucose is not directly from
the blood plasma, but by a diffusion gradient. The tissues cells absorb the glucose
through facilitated diffusion from this space. Box 1a consists of both the glucose
plasma and the interstitial glucose. Dividing these two spaces was also important for
the sensor application in the closed loop system of Figure 2.1. The changes in the
subcutaneous glucose concentration is measured with CGM sensors and is necessary
for modeling.
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Figure 2.2: The specification of the virtual patient. The boxes indicated with 1 are part of the
glucose dynamics. The boxes with 2 are part of the insulin dynamics and the boxes
with 3 are part of the glucagon dynamics. The green lines which end in a point
indicate the interaction with the closed-loop system. The AP infusion points are
indicated, this is the input for the virtual patients provided by the AP. The plasma
glucose and subcutaneous glucose are the output of the virtual patient.

2.1 Glucose 11



In conclusion, box 1a is modeled as a two compartment model [13, 39]. The
first compartment describes glucose mass changes in the plasma. The second com-
partment describes the glucose mass changes in the interstitial space. Between
these compartments the transport of glucose takes place by diffusion, therefore the
assumption is that the compartment volumes are constant. The conversion from
mass to concentration is made at the end of the modeling.

The two compartments are presented in Figure 2.3. This figure shows the in-
puts and outputs as discussed above. The glucose rate of appearance (Ra) from
digested food and the endogenous glucose production (EGP ) by the liver enter the
left compartment. In this compartment the glucose diffuses to organs that can take
up glucose without the use of insulin (insulin independent utilization, Uii). The
renal excretion of glucose is modeled as variable E. Renal excretion occurs if the
plasma glucose levels reaches a certain threshold. The kidneys filter glucose and
reabsorbs it to prevent lost. If the threshold is reached the reabsorption is limited
and the glucose will be excreted with the urine. Glucose leaves to insulin dependent
organs from the second compartment (Uid).

Figure 2.3: The two compartment model for glucose kinetics of box 1a.

Figure 2.3 helps to formulate the differential equations. The glucose mass in the
compartments were used as quantities. The change in mass was determined by
the input and output of glucose. These changes over time were expressed for both
plasma and interstitial space as qgp(t) and qgt(t) respectively. This resulted in the
following differential equations:{

q̇gp(t) = EGP (t) +Ra(t) − Uii(t) − k1qgp(t) + k2qgt(t) (2.1a)

q̇gt(t) = −Uid(t) + k1qgp(t) − k2qgt(t). (2.1b)

Each equation describes the glucose dynamics in the blood plasma compartment
Eq. (2.1a) and interstitial space compartment Eq. (2.1b). The rate parameters k1

and k2 in both equations determine the velocity of glucose exchange between the
compartments.
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2.1.1 Endogenous Glucose Production

Box 1b The liver plays an important role in the glucose regulation. At high levels
of glucose plasma it stores glucose and at low levels of plasma glucose it releases
glucose. The liver is both a source and a sink for glucose. After the intake of food,
the liver stores the glucose absorbed by the gastrointestinal tract as glycogen. If there
is no intake of carbohydrates, for example during a night sleep, the liver releases
glucose from glycogen. The storage is stimulated by the hormone insulin. This
hormone is released by the pancreas in response to high levels of blood glucose.
This storage process is called glycogenesis. The hormone glucagon is released by
the pancreas during low levels of blood glucose. Glucagon stimulates the liver
to breakdown the glycogen into glucose. The glucose is subsequently released
by the liver into the blood plasma. The breakdown process of glycogen is called
glycogenolysis. Figure 2.4 shows the two processes schematically.

Figure 2.4: The left organ is the liver, where the conversion from glucose to glycogen and the
other way around occurs. The pancreas is presented on the right. This is the organ
that releases the hormones insulin and glucagon. The insulin stimulates glycogen
formation and the glucagon stimulates the breakdown of glycogen.

Both glycogenesis and glycogenolysis affect the amount of glucose that passes the
liver. The net result of these processes is the hepatic glucose production or EGP.
Glycogenesis decreases the EGP, whereas glycogenolysis increases it. EGP is the result
of the glucose regulation by the liver, and depends on the glucose mass in the plasma.
The level of glucose determines the secretion of certain hormones by the pancreas.
Insulin is secreted during hyperglycemia and stimulates the glycogenesis. Glucagon
is secreted during hypoglycemia and stimulates glycogenolysis, subsequently the EGP.
Besides these two liver processes, the liver is able to auto-regulate these processes.
This auto-regulation is controlled by the glucose mass in the plasma. Hyperglycemia
inhibits the rate of glycogenolysis, which is a negative feedback regulation [24,
27].
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Figure 2.5: A compartment overview of the EGP regulation. There are three inputs into the
liver which influences the EGP. The plasma insulin concentration (Cip), the plasma
glucagon concentration (Chp) and the plasma glucose mass (qgp). The Cip follows
the route where it passes twice an ODE. The Chp passes once an ODE and the qgp

has a direct effect on the EGP.

Figure 2.5 is an overview of the model for EGP. It shows three inputs for this part of
the system. Namely, the plasma insulin concentration (Cip(t)), the plasma glucagon
concentration (Chp(t)) and the plasma glucose mass (qgp(t)). Cip(t) follows the
route where it is differentiated twice. The Chp(t) is once differentiated and the qgp(t)
has a direct effect on the EGP.

The ordinary differential equations (ODEs) in Figure 2.5 cause a smooth reaction of
the liver to the changes in hormone concentrations. The reaction is not immediately
after a change of concentration. Eqs. (2.2a), (2.2b) and (2.2c) describe the reaction
of the liver to the changes in hormone concentrations. An immediate response to
a change is physiologically impossible. The insulin concentration in blood plasma
(Cip(t)) either increases or decreases. If the insulin increases, it still needs to reach
the site of action, which is in this case the liver. These kinetics are represented by
the ODEs and described by Eq. (2.2a) and Eq. (2.2b). This is in accordance with the
study of Dalla Man et al. This study describes the insulin action on the liver by two
differential equations, which seemed to be the best fit to describe the clinical data. A
possible explanation can be that first, the insulin has to diffuse from the portal vein
to the interstitial space of the liver tissue. And secondly, it has to bind to certain
receptors located at the cell membranes. The parameter kid is a rate parameter
and determine the time between the insulin signal and the insulin action on the
liver. The interaction of glucagon with the liver is represented with one differential
equation. The glucagon concentration (Chd(t)) passes one ODE in Figure 2.5 and
is described by Eq. (2.2c). This is the hepatic reaction to glucagon. The reaction
of the liver is stronger when it crosses the basal value (Chp,b). The parameter khd is
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again a rate parameter and describe the time between the glucagon signal and the
glucagon action on the liver.

Ċx(t) = −kid(Cx(t) − Cip(t)) (2.2a)

Ċid(t) = −kid(Cid(t) − Cx(t)) (2.2b)

Ċhd(t) = −khdChd(t) + khd max[(Chp(t) − Chp,b), 0] (2.2c)

The Cid(t) of Eq. (2.2b) and the Chd(t) in Eq. (2.2c) together with the qgp(t) affect
the EGP (t). This is described by

EGP (t) = EGP0 − kgeqgp(t) − kilCid(t) + khlChd(t) (2.3)

and represents the changes as a result of the liver processes. In Eq. (2.3), EGP0 is
the constant release of EGP. The other terms in Eq. (2.3) are negatively or positively
affecting the total EGP as function of time. kgeqgp(t) is the inhibition of glucose on
EGP. More specifically, the inhibition of glycogenolysis. The parameter kge represents
the reaction strength of glucose on the liver, or liver glucose effectiveness. kilCid(t)
describes the hepatic insulin sensitivity, where the parameter kil is the hepatic
responsivity of insulin. This describes the storage of glucose by the glycogenesis
process. khlChd(t) in Eq. (2.3) represents the stimulation of EGP by glucagon, which
is the stimulation of the glycogenolysis process. The khl is the hepatic responsivity
to glucagon.

Eq. (2.3) describes the changes in the EGP, which is a reflection of the glucose
processes in the liver described by Figure 2.4. However, this is not the only glucose
metabolic process that occurs in the liver. The stored glycogen can be exhausted
if glycogen is not supplemented by glycogenesis. This happens when fasting is
prolonged. In that situation, the source of available glucose changes, it is constructed
from the breakdown of proteins. This process is called gluconeogenesis and is auto
regulated by the liver instead of by hormones. Hypoglycemia stimulates the rate of
gluconeogenesis when the glycogen reserves are depleted. This process is important
to maintain the blood glucose level. In this model, the gluconeogenesis is not
modeled as it is assumed that the patient in the model does not have prolonged
hypoglycemia. Therefore, gluconeogenesis is omitted from the model.

2.1.2 Glucose utilization

Box 1c Glucose is one of the sources for energy in the body. The utilization of
glucose occurs in the cells of the organs via the interstitial space. The glucose absorp-
tion into the cells is facilitated by membrane transporter proteins, so called GLUT
proteins. This transport is either insulin dependent or insulin independent. The
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insulin dependent transport occurs in cells where GLUT-4 transporters are present.
Insulin works as a key to open the locked cells in order to store the glucose. The
GLUT-4 transporters are mainly found in adipocytes and myocytes. The transporters
are not always present on the cell membrane. During euglycemia the GLUT-4 trans-
porters are concealed in vesicles inside the cell, about 90% of the transporters are
concealed in this manner [31]. This means that relatively few transporters are active
on the surface of the cell. Hence, the transport of glucose is kept at a low speed.

During hyperglycemia insulin is secreted in the blood plasma. Insulin binds to
its receptor on the cell surface. This activates the migration of the GLUT-4 trans-
porter. The vesicle with the GLUT-4 transporter migrates from inside the cell to the
cell membrane. Exocytosis allows the transporter to facilitate the glucose. Exocytosis
is the fusion of the vesicle with the membrane of the cell. The mechanism of the
glucose uptake by the GLUT-4 transporter is shown in Figure 2.6.

Figure 2.6: On the left side the insulin binds to the insulin receptor. This activates the signal
transduction cascade. The cascade provides the vesicle with the GLUT-4 transporter
to migrate to the cell membrane. On the right side the vesicle fused with the cell
membrane, the exocytosis. GLUT-4 transports the glucose from outside the cell to
inside the cell.

Figure 2.6 shows an example of a transporter that migrates to the cell membrane.
As long as the insulin concentration is high, more vesicles migrate to the membrane.
This increases the transport capability of the cell, and subsequently an increase in
glucose transportation. It is assumed that the glucose transport is limited to the
rate of glucose utilization. This transport is included in the model. Furthermore,
the adipocytes and myocytes were assumed to have the same behavior in this part
of the model. Both cells use the GLUT-4 transporters for the purpose of glucose
absorption. The difference between the cells is the storage of glucose. Adipocytes
convert glucose to triglycerides, where myocytes store glucose as glycogen.

A consequence of the assumption that adipocytes and myocytes are the same cell
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types, is that the effect of physical activity is not present in the model. Physical
activity augment GLUT-4 transporters in myocytes [23, 29]. The translocation and
transcription increase by frequently exercise. The effect of muscle contraction, which
stimulates migration of GLUT-4 transporters as well, is also ignored in this model.

In conclusion, the facilitated GLUT-4 glucose transport is mediated by insulin. This
influences the rate of glucose absorption by the cells. The Michaelis-Menten equation
is commonly used to describe this phenomenon. This equation describes how the
velocity of an enzymatic reaction depends on the substrate concentration. The enzy-
matic reaction is the binding of glucose to the GLUT-4 transporter, with glucose as
the substrate. A higher concentration of extracellular glucose increases the transport
velocity. The velocity is also depending on the insulin concentration. The total
glucose utilization is represented by:

U(t) = F + Vm0 + VmciiCii(t)qgt(t)
Km0 + qgt(t)

. (2.4)

The fraction in the equation is the Michaelis-Menten representation. Vm0 is the max-
imal glucose absorption rate at the maximal level of glucose and Km0 is Michaelis-
Menten’s constant at which the glucose utilization is half the Vm0 at the basal level
of insulin. The Michaelis-Menten’s constant expresses the affinity to bind glucose to
the transporter. The lower the value, the higher the affinity for glucose. qgt(t) is the
amount of glucose in the interstitial space. F is the glucose utilization of the central
nervous system and the erythrocytes, the red blood cells. The term VmciiCii(t) is the
influence of insulin on the transport sites, where Cii(t) is the insulin concentration
in the interstitial space. This concentration depends on the insulin concentration
of the blood glucose plasma. Furthermore, the insulin bound to its receptor on the
cell membrane is utilized. The insulin concentration in the interstitial space was
described by:

Ċii(t) = −pCii(t) + p(Cip(t) − Cip,b). (2.5)

The minus p parameter describes the uptake of insulin by the cells. The plus
parameter p represent the diffusion of insulin from the blood to the interstitial space.
This diffusion occurs when the plasma insulin concentration (Cip(t)) is higher than
the basal level (Cip,b).

2.2 Insulin

Box 2a Insulin is a hormone secreted by the pancreas during hyperglycemia. The
insulin effect is to lower the glucose levels. It facilitates glucose transport in cells,
as explained in the previous section 2.1.2. In a healthy person, insulin is secreted
in the splenic vein by the pancreatic β-cells during hyperglycemia. This vein drains
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into the portal venous system of the liver and thereafter in the systemic circulation
and body. The anatomical representation is shown in Figure 2.7. The consequence
of the anatomical location of the liver and the pancreas is the insulin extraction by
the liver. Not all the secreted insulin will reach the rest of the body. A part of the
secretion is cleared by the liver and a part stimulates glycogenesis, as discussed in
the section 2.1.1. The liver is responsible for the breakdown and excretion of insulin.
The liver regulates the insulin extraction, which results in the regulation of glucose.
The insulin regulation by the liver is important to include in the model.

Figure 2.7: The anatomical representation of the organs: liver, pancreas and spleen. Further
the veins of the organs are shown. This shows that the splenic vein flows into the
portal vein. The portal vein flows to the liver.

The insulin is described by a two compartment model, shown in Figure 2.8. The
compartments describe the insulin dynamics in the liver and plasma. The first
compartment represents the liver and the second compartment the plasma. In the
liver compartment the insulin extraction is presented by the arrow m3. The arrow
m4 is the insulin excretion that occurs in the plasma. This is the insulin extraction
by the kidneys.

Figure 2.8: The two compartment model for insulin.
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The insulin model is described by the differential equations:{
q̇il(t) = −(m1 +m3(t))qil(t) +m2qip(t) (2.6a)

q̇ip(t) = m1qil(t) − (m2 +m4)qip(t) +Rip(t). (2.6b)

Eqs. (2.6a) and (2.6b) describe the insulin dynamics of the two compartments. The
first compartment was presented by Eq. (2.6a) and describes the insulin mass in the
liver (qil(t)). In these equations the rate parameters (m1,m2) represent the exchange
between the two compartments. The second compartment describes the insulin mass
in the blood plasma (qip(t)). In this compartment the subcutaneously administered
insulin (Rip) is entering this part of the system. m3(t) is the insulin extraction by
the liver and is described by:

m3(t) = HE(t)m1
1 −HE(t) . (2.7)

HE(t) in Eq. (2.7) is the hepatic extraction. This is a time varying parameter. More
insulin is secreted during hyperglycemia, because the insulin is needed by the body
and hence the liver will excrete more insulin. This is described by Eq. (2.7). The
hepatic extraction of the insulin is described by:

HE(t) = −m5Si(t) +m6. (2.8)

In Eq. (2.8) the study of Meier et al. was followed [26]. That study indicates
that the insulin secretion Si(t) linearly correlates with the hepatic extraction. The
parameter m5 determined the amount of secreted insulin that is extracted by the
liver. Parameter m6 is the amount of insulin that passes the liver. Substituting Eq.
(2.8) in Eq. (2.7) gives

m3(t) = (−m5Si(t) +m6)m1
1 − (−m5Si(t) +m6) . (2.9)

Eq. (2.9) describes the amount of insulin extraction from the blood. The equation
shows that if the insulin secretion increases, the proportion of insulin extraction by
the liver is less. More insulin will pass the liver and enter the systemic circulation.
During hyperglycemia more insulin reaches the body organs and subsequently more
glucose is utilized and the plasma glucose returns to euglycemia.

The second compartment in Figure (2.8) describes the plasma insulin and is pre-
sented by Eq. (2.6b). Again both rate parameters (m1,m2) are present. The
parameter (m4) describes the insulin clearance from the plasma.

Eq. (2.9) describes the situation for a healthy person. The secreted insulin en-
ters the liver compartment. Only, in a T1DM patient the pancreatic β-cells are
dysfunctional. The insulin enters the model as a subcutaneous administration. This
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is explained in the next section 2.2.1. The insulin input appears in the second
compartment and is shown in Eq. (2.6b) with the term (Rip). Insulin follows a
different route compared to a healthy person. It enters the blood circulation after the
subcutaneously administration. The physiological first-pass effect is bypassed. The
first-pass effect is the effect of the extraction of, in this case, the hormone by the liver.
The concentration that enters the liver is lower for the subcutaneous administered
insulin and, therefore, the liver extraction is lower. This changes Eq. (2.9), because
the secretion (Si(t)) is not present in T1DM patients. For the model this was changed
to the amount of insulin in the plasma (qip(t)). The equation for m3(t) becomes
now:

m3(t) = (−m5qip(t) +m6)m1
1 − (−m5qip(t) +m6) . (2.10)

2.2.1 Insulin administration

Box 2c In T1DM patients the β-cell is destroyed and the patients are dependent of
exogenous insulin that is administered subcutaneously. This insulin is a synthetic
recombinant insulin. Most of this short acting insulin is a polymer build up from
multiple monomers with substrates to conserve the fluid. A small part is dimer
because of the immediately effect of the short acting insulin. If administered,
the insulin degrades to dimers. The dimers diffuse to the blood plasma. This
subcutaneously administered insulin consist of polymers and dimers and therefore a
three-compartment model is built, Figure 2.9. The first compartment is the depot of
the polymer insulin and the second compartment represents the depot of the dimers,
the third compartment is the plasma.

Figure 2.9: The representation of the subcutaneous administration route of insulin.

The subcutaneous administration is described by three equations:
q̇Isc1(t) = IIR(t) − ap1qIsc1(t) − diq

2
3
Isc1(t) (2.11a)

q̇Isc2(t) = diq
2
3
Isc1 − ap2qIsc2 (2.11b)

Rip(t) = ap1qIsc1(t) + ap2qIsc2. (2.11c)
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Eqs. (2.11a) and (2.11b) describe the absorption of the administered insulin. q̇Isc1(t)
in Eq. (2.11a) represents the compartment with the polymers. q̇Isc2(t) is the
compartment with the dimers represented by Eq. (2.11b). It is assumed that the
injected fluid forms a sphere at the subcutaneous site and that the absorption starts
at the surface of the sphere. The decreasing volume of the sphere is described
with a power of 2

3 . Insulin absorption in the plasma (Rip(t)) is represented by Eq.
(2.11c).

2.3 Glucagon

Box 3b Glucagon is secreted by α- cells when the glucose level is low and counter-
acts the effect of insulin. Glucagon is secreted into the splenic vein. The splenic vein
ends up in the portal vein of the liver. The anatomical proximity of the pancreas
and liver is advantageous for glucagon’s desired effects. The liver is the main target
organ for glucagon. Glucagon regulates the hepatic metabolism of glycogen. It
stimulates the liver to release glucose into the circulation by glycogenolysis and
gluconeogenesis.

The glucagon concentration in the blood plasma increases by the secretion rate
of α-cells. The glucagon concentration decreases by the transport between the
plasma and interstitial space. The equilibrium of glucagon is very fast due to its
extremely rapid kinetics [16]. The changes in glucagon plasma concentration is
described by:

Ċhp(t) = −nChp(t) + Sh(t) +Rhp(t). (2.12)

The glucagon removal in the plasma is determined by the rate parameter n. nChp(t)
represents the decreasing term of the glucagon concentration in Eq. (2.12). The
Sh(t) is the secreted glucagon by the pancreatic α-cells. The glucagon secretion is
explained in the next section 2.3.1. The glucagon concentration is also increased
by the subcutaneously administered glucagon Rhp(t). This is explained in section
2.3.2.

2.3.1 Glucagon secretion

Box 3b During hypoglycemia the α-cells sense the low glucose level in blood
plasma. A signal enters the cell through the GLUT-2 transporter, which activates the
KAT P channel to actively transport potassium ions. This depolarizes the membrane
potential, establishing a less negative potential across the cell membrane. This
results in an influx of sodium ions and influx of calcium ions. The increase of calcium
activates the glucagon release. This process is shown in Figure 2.10. The glucagon
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secretion depends on the depolarization of the α-cell membrane. In the opposite case,
the hyperpolarization of the cell membrane reduces the glucagon release. For higher
glucose concentration there is no signal given by the GLUT-2 transporter, which
prevents the KAT P channel to excrete potassium. The intracellular concentration
becomes more negative, reducing the glucagon release.

Figure 2.10: The action potential of the alpha cell and secretion pathway of glucagon. During
low levels of glucose the alpha cell senses this and allows KAT P to secrete K+,
this depolarizes the cell. Na+ enters the cell, followed by Ca2+. The calcium
activates the secretion of glucagon. The release of glucagon happens pulsatile.

Glucagon secretion follows an episodic secretion. This pattern is described by two
phases, the static and dynamic phase. The two phase secretion is represented by the
equations: 

Ṡh,static(t) = −ρ[Sh,static(t) − max[σ(h− Cgp(t)) + Sh,b, 0)] (2.13a)

Sh,dynamic(t) = δmax[−Ċgp(t), 0] (2.13b)

Sh(t) = Sh,static(t) + Sh,dynamic(t). (2.13c)

If the glucose concentration gets below a certain glucose level, glucagon is secreted.
This moment is indicated in Eq. (2.13a) by [h − Cgp(t)], where h is the threshold.
This applies for the static part. Parameter ρ is the rate parameter for the static
release. σ is the α- cell responsivity to the glucose level in the plasma. The static part
was limited by the max function. If the condition σ[h− Cgp(t)] + Sh,b is higher than
zero, the condition contributes to the secretion, otherwise this part of the equation
is zero. The Sh,b is the basal glucagon secretion. The dynamic part described by Eq.
(2.13b) depends on the decreasing rate of the plasma glucose concentration. δ is the
rate parameter for the dynamic part. Again, this equation was limited by the max
function. The total secretion is the addition of the static (Sh,static(t)) and dynamic
secretion (Sh,dynamic(t)).
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2.3.2 Glucagon administration

Box 3c The subcutaneous administration of glucagon is assumed to follow the
same pathway as the subcutaneous administration of insulin. The study of Lv et
al. indicates that a three-compartment model is the best way to describe glucagon
dynamics of the subcutaneous route. The compartments are represented in Figure
2.11. Again, the assumption is made that the fluid forms a sphere once administered.
This is in contrast to the study of Lv et al.

Figure 2.11: Representation of the subcutaneous administration route of glucagon.

The subcutaneous administration of glucagon is described by three equations:
q̇Hsc1(t) = HIR(t) − bp1qHsc1(t) − dhq

2
3
Hsc1(t) (2.14a)

q̇Hsc2(t) = dhq
2
3
Hsc1 − bp2qHsc2 (2.14b)

Rhp(t) = bp1qHsc1(t). (2.14c)

Eqs. (2.14a) and (2.14b) describe the absorption of the subcutaneously administered
glucagon. q̇Hsc1(t) represents the changes of administered glucagon in the first
compartment and q̇Hsc2(t) the changes in the second compartment. The decrease
in volume of glucagon is also described with a power of 2

3 . Glucagon absorption in
the blood plasma (Rhp(t)) is represented by Eq. (2.14c). This is slightly different
compared to insulin. The glucagon absorption in the plasma is only from the second
compartment. In contrast to the insulin, where the absorption is from the first and
the second compartment. The outflow from the first compartment is lost.

2.4 Model

A virtual patient is modeled by the submodels indicated in Figure 2.2. These
submodels are explained in the previous sections, except for the GI tract. This
is discussed in section 5.1. The submodels describe the three main physiological
subsystem of the glucose regulation, the glucose, insulin and glucagon. The glucose
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subsystem consists of 4 parts and the first 3 are modeled during this study by 8
mathematical equations. The insulin subsystem is divided into 3 parts and 2 are
modeled in this study, because the β-cell part is assumed to be zero. 6 mathematical
equation are used to describe the insulin subsystem. The glucagon subsystem
consists of 3 parts and are all modeled in this study by 7 mathematical equation.
In summary, the total model is divided into 10 parts as Figure 2.2 shows and exists
of 14 differential equations and 7 mathematical equations. The model consists
of 35 parameters that need to be estimated and calculates 28 output values. The
parameters and outputs are listed in Table 2.1. The abbreviations used in the
equations are explained by the quantity and the unity.
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Table 2.1: The outputs and parameters used in the model consisting of 21 equations. The
abbreviations used in the equations are explained by the quantity and the unity.

Abbreviation Quantity Unity

ap1 Rate parameter subcutaneous insulin transport min−1

ap2 Rate parameter subcutaneous insulin transport min−1

bp1 Rate parameter subcutaneous glucagon trans-
port

min−1

bp2 Rate parameter subcutaneous glucagon trans-
port

min−1

Chd Concentration of delayed glucagon in the inter-
stitial space

ng/L

Chp Concentration of glucagon in the blood plasma ng/L

Chp,b Concentration of basal glucagon in the blood
plasma

ng/L

Cid Concentration of delayed insulin in the intersti-
tial space

pmol/L

Cii Concentration of insulin in the interstitial space pmol/L

Cip Concentration of insulin in the blood plasma pmol/L

Cip,b Concentration of basal insulin in the blood
plasma

pmol/L

Cx Concentration of insulin in the liver pmol/L

dh Rate parameter absorption of subcutaneous
glucagon

min−1

di Rate parameter absorption of subcutaneous in-
sulin

min−1

E Excretion of glucose by the kidneys mg/kg/min

EGP Endogenous glucose production mg/kg/min

EGP0 Extrapolated EGP at zero glucose and insulin mg/kg/min

F Glucose absorption by the brain and erythrocytes mg/kg/min

h Glucose threshold level for glucagon secretion mg/dL

HE Hepatic Extraction of insulin dimensionless

HIR Glucagon infusion rate ng/kg/min

IIR Insulin infusion rate pmol/kg/min

k1 Rate parameter of glucose transport to the inter-
stitial space

min−1

k2 Rate parameter of glucose transport to the blood
plasma

min−1

kge Liver glucose effectiveness min−1

khd Rate parameter between insulin signal and in-
sulin action in the liver

min−1
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Table2.1 – continued from previous page

Abbreviation Quantity Unity

khl Glucagon action on the liver mg/kg/min

per ng/L

kid Delay parameter between insulin signal and in-
sulin action

min−1

kil Insulin action on the liver mg/kg/min

per pmol/L

Km0 Michaelis-Menten constant for GLUT-4 mg/kg

m1 Rate parameter of insulin transport to the blood
plasma

min−1

m2 Rate parameter of insulin transport to the inter-
stitial space

min−1

m3 Rate parameter of insulin transport from the liver min−1

m4 Rate parameter of insulin from the blood plasma min−1

m5 Rate parameter of secreted insulin to the blood
plasma

min−1

m6 Rate parameter of hepatic insulin extraction min−1

n Rate parameter of glucagon from the blood
plasma

min−1

p Rate parameter of insulin to the interstitial space min−1

qgp Mass of glucose in the blood plasma mg/kg

qgt Mass of glucose in the interstitial space mg/kg

qHsc1 Mass of glucagon in the subcutaneous space ng/kg

qHsc2 Mass of glucagon in the subcutaneous space ng/kg

qil Mass of insulin in the liver pmol/kg

qip Mass of insulin in the blood plasma pmol/kg

qIsc1 Mass of insulin in the subcutaneous space pmol/kg

qIsc2 Mass of insulin in the subcutaneous space pmol/kg

Ra Rate of appearance of glucose in the blood
plasma after carbohydrate intake

mg/kg/min

Rhp Rate of appearance of glucagon in the blood
plasma

ng/kg/min

Rip Rate of appearance of insulin in the blood plasma pmol/kg/min

Sh Secretion of glucagon by the pancreatic alpha
cells

ng/kg/min

Sh,dynamic Secretion of dynamic phase of glucagon by the
pancreatic alpha cells

ng/kg/min

Sh,static Secretion of static phase of glucagon by the pan-
creatic alpha cells

ng/kg/min
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Table2.1 – continued from previous page

Abbreviation Quantity Unity

Sh,b Basal glucagon secretion by the pancreatic alpha
cells

ng/kg/min

Si Secretion of insulin by the pancreatic beta cells pmol/kg/min

U Total utilization of glucose mg/kg/min

Uid Insulin dependent utilization of glucose mg/kg/min

Uii Insulin independent utilization of glucose mg/kg/min

Vm0 Maximal velocity of glucose mg/kg/min

Vmcii Maximal velocity of glucose transport dependent
on insulin

mg/kg/min

per pmol/L

δ Sensitivity parameter of the alpha cell to glucose ng/L per

mg/dL

ρ Rate parameter of the glucagon secretion into
the blood plasma

min−1

σ Alpha cell responsivity to glucose level ng/L/min

2.4 Model 27





3Simulation

In chapter 2 the mathematical description of the model is described. The model is
designed to simulate T1DM patients suitable for testing the AP’s algorithm. It repre-
sents the glucose regulation system by describing the glucose, insulin and glucagon
dynamics. These are the three subsystems and their interaction are modeled.

As mentioned before, the model reacts on the administered hormones received
from the AP as an input. The model provides the simulated glucose values. The
glucose values are the output of the model. These values are shown in a graph.
Furthermore, it is interesting to monitor additional parameters to serve as valuable
feedback for the researcher. Plasma insulin and glucagon concentration affect the
EGP and glucose utilization, all of which influence the glucose concentration in the
blood plasma. These four additional parameters are also plotted in graphs.

In this chapter an example is given of simulation result. Figure 3.1 shows the
outputs of the simulation. For the simulation the values presented in the study of
Dalla Man et al. are used. The parameter values for a healthy person are used
because of the missing values of T1DM patients. A signal is reconstructed to simulate
the glucose appearance in the blood plasma. This is the effect of the intake of a
mixed meal containing 78 g of glucose [13]. The model does not simulate the β-cell.
Therefore, the insulin is simulated similar to the MDI therapy and thus provided by
1 subcutaneously insulin injection. This administration is also modeled as a short
impulse to the system by 100 units of insulin an equivalent to 3.5 mg insulin.

Three simulations are performed. The first simulation is an example of a glu-
cose input by a meal. The insulin is subcutaneous injected and at the same time
the intake of carbohydrates is started. This is normal procedure for T1DM patients.
When a T1DM patient eats, he or she should count the amount of carbohydrates
before the meal. Patients have to inject a calculated amount of insulin corresponding
to the amount of carbohydrates. Secondly, a simulation is performed of a patient
who injected the same calculated amount of insulin, but administered it 30 minutes
after the start of the glucose appearance. This can occur if a patient forgets to inject
the insulin in time. The third simulation represents an injection of insulin, while
the patient did not eat in time and eats less carbohydrates than anticipated. The
patient started eating 30 minutes after the injected insulin and eat 39 g of glucose,
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which is half the meal. Therefore, the amount of administrated insulin is higher than
required. This happens when something interrupts diner time and the patient eat
less than expected. These three situation are represented in Figure 3.1. Where the
blue line is simulation 1, the red dashed line is simulation 2 and the green dotted
line is simulation 3.

Figure 3.1b is the input to the system, the glucose appearance in the blood plasma
from a digested meal. It shows an impulse response that slowly decreases over
the hours. Figure 3.1c shows the hepatic EGP. Figure 3.1d represents the insulin
concentration in the blood plasma as a result of the subcutaneously administered
insulin. Figure 3.1e presents the total utilization of glucose. Figure 3.1f shows the
plasma glucagon. The glucagon is secreted by the α-cells in reaction to low plasma
glucose levels. Glucagon is not subcutaneously administered in these simulations.
The EGP and utilization influence the plasma glucose level and are affected by the
hormones insulin and glucagon. Furthermore, each graph of Figure 3.1 shows the 3
simulated situations.

Looking at the first simulation. Figure 3.1a shows a peak in glucose concentra-
tion. The glucose plasma concentration returns to its steady state with a small
fluctuation after 2 hours. A small increase is seen from 2 to 4 hours, after which it
increases again. While glucose is still available up to 6 hours after eating, see Figure
3.1b. The slightly elevated glucose concentration after the main peak starts at the
same time as the EGP increases. The plasma insulin reaches a peak within an hour
and disappears within 2 hours. Only, the effect of insulin is longer present. This is
seen in Figure 3.1e. The peak of the glucose utilization starts at the same time as
the plasma concentration peak of insulin. After 3 hours the utilization is back to the
basal state, which is longer than the present of insulin in the plasma. As soon as
the glucose concentration decreases, the plasma glucagon increases. This is seen in
Figure 3.1f, where at 1 hour the increase in plasma glucagon is shown.

Next simulation 1 and 2 are compared with each other. In Figure 3.1 these sit-
uations are represented by the blue and red curves, respectively. The red curve
in Figure 3.1a shows what happens with the plasma glucose, when the insulin
injection is administered after a meal. The glucose concentration increases more
than for simulation 1 and reaches a higher maximum. The administered insulin after
the meal results in a later utilization peak. At the time the insulin concentration
increases in the blood plasma and utilization increases at the same time as Figure
3.1e shows. Noticeable is that the utilization peak reaches a higher level for the
same amount of insulin. This higher level is caused by the higher level of glucose
concentration. Figure 3.1c shows that the suppression of EGP differs for the later
administered insulin. The suppression is immediately present, this is caused by the
increase of glucose. The higher glucose peak also decreases faster, this results in a
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stronger glucagon reaction. Figure 3.1f shows this stronger increase in the glucagon
concentration.

Finally the third situation is simulated. This is the situation where a smaller meal
is taken at a later time. Figure 3.1a shows a decrease of glucose. This decrease is
the effect of the administered insulin without intake of carbohydrates. The insulin
in Figure 3.1d follows the same curve as in the first simulation. The reaction in
glucose utilization starts at the same moment. Only, this time the utilization does not
reach a level as high as for the first simulation. This is expected, since the glucose
appearance is not present yet. Due to a decrease in glucose, the plasma glucagon
increases. This effects the EGP, as is seen in Figure 3.1c. Contrary to simulations 1
and 2, the EGP increases. The higher EGP and glucose appearance both increase the
glucose plasma concentration.
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(a) Plasma glucose (b) Rate of appearance of glucose

(c) Endogenous glucose production (d) Plasma insulin

(e) Utilization of glucose (f) Plasma glucagon

Figure 3.1: Output of the three simulations. The first simulation shows the insulin injected
before eating, after which the glucose appearance started. The second simulation
is the situation, where the insulin is injected after eating the meal. The third
simulation, the meal is delayed. The insulin is injected and the meal appears
minutes later. As input signal the rate of appearance is given. The input is shown
in the right upper plane.
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4Parameter estimation

In Table 2.1, there are 35 parameters that need to be estimated. The other 28 are
output values and are calculated by the model. This is a large number of parameters
and can’t be estimated at once all together. Estimation of the glucagon subsystem
was approached first. The glucagon subsystem comprises of the subcutaneous ad-
ministration of the glucagon, the glucagon kinetics in the plasma and the glucagon
secretion by the α-cells. With the available clinical data provided by the study of
Blauw et al. the glucagon secretion by the α-cells cannot be estimated [3]. The
glucagon estimation is done for the subcutaneous administration and the plasma
glucagon.

The clinical data considered 6 T1DM patients, who each visited a clinical research
centre three times. Patients underwent a glucose clamp procedure to establish a
certain blood glucose level during these visits. When the required blood glucose
level was reached, a glucagon dose was administered. A blood sample was taken
to analyze the glucagon pharmacokinetics every 10 minutes. 4 tests per visit were
performed. The study schedule is shown in Table 4.1. For every subject there are 12
measurements.

9 data points were collected during each measurement. For one measurement
the data points are depicted in red in Figure 4.1. The y-values are the glucagon
concentration in the blood and were shifted, so that the y0 starts at 0. This means
y0 = 60.8 is substracted from every y-value At t = 0 the glucagon was subcutaneously
administered and data points were collected every 10 minutes.

Table 4.1: The schedule for the glucagon data collection in the study [3].

Visit Blood
glu-
cose
level
(mmol/L)

Glucagon
dose
(mg)

Blood
glu-
cose
level
(mmol/L)

Glucagon
dose
(mg)

Blood
glu-
cose
level
(mmol/L)

Glucagon
dose
(mg)

Blood
glu-
cose
level
(mmol/L)

Glucagon
dose
(mg)

A 8 0.11 6 0.11 4 0.11 2.8 1.0
B 8 0.22 6 0.22 4 0.22 2.8 0.66
C 8 0.44 6 0.44 4 0.44 2.8 0.33
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Figure 4.1: The scaled glucagon data of one measurement and the new calculated y from the
parameter estimation.

These three differential equation were used for the parameter estimation:
Ċhp(t) = −nChp(t) + Sh(t) + bp1qHsc1(t) (4.1a)

q̇Hsc1(t) = HIR(t) − bp1qHsc1(t) − dhq
2
3
Hsc1(t) (4.1b)

q̇Hsc2(t) = dhq
2
3
Hsc1 − bp2qHsc2. (4.1c)

These are Eqs. (2.14a) and (2.14b) as mentioned in the section 2.3.2. The Eq.
(2.14c) is substituted in to Eq. (2.12), which gives Eq. (4.1a).

Due to the power of 2
3 , the equations are non-linear. The equations were linearized

by the Taylor polynomial method in the equilibrium point to estimate the parameters
(bp1, bp2, dh, n) in Eqs. (4.1a), (4.1b) and (4.1c). This equilibrium point is found by
setting the input to 0, when there is no glucagon subcutaneously administered. The
equilibrium point is represented in Eq. (4.2).

Chp,eq = ( dh

−bp1
)3 (4.2)

With the Eqs. (4.1a), (4.1b) and (4.1c) the following transfer function from the
input HIR to the output Chp was found:

H = 2bp2d
4
h

b3
p1(bp2 + s)(n+ s)(bp1 + 3s)

. (4.3)

With this transfer function the parameters can be estimated using the ARX method
in Matlab. This function uses the least squares method. The transfer function shows
that the A-polynomial, the denominator in the fraction, is of the third order. The
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B-polynomial, the numerator of the fraction, is a zero order polynomial. The ARX
mathematical representation is:

yk = B(z)
A(z)uk + 1

A(z)ek. (4.4)

Furthermore, there is a delay in the input-output relation. This can be seen in the
data of Figure 4.1. The input starts at t0 and the first output is seen at t1. This
accounts for a delay of one sample time and limits the possibilities of the estimation.
As presented in Figure 4.1, 2 data points are added in the past. The estimation with
ARX is an estimation in the z-transform. The ARX needs data points in the past, due
to the order of the A-polynomial. These extra data points are assumed to be zero,
because the system reacts after the given input. For the z-transform the following
equations present the polynomial of the ARX in this case:{

A(z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 (4.5a)

B(z) = b0. (4.5b)

The estimation is performed in Matlab and is presented in Figure 4.1. The blue
dashed line is the new y-values for the estimated parameters and follows the data
points. This is an example of one measurement in a single subject. There are 12
data sets for each patient where the conditions vary. As indicated in Table 4.1 the
blood glucose levels and the glucagon dosages are different for every measurement.
The estimation as described above were done for every data set. These different
conditions need to indicate if the parameters are dependent on the blood glucose
value or the glucagon dosages. The three A-polynomial parameter values (a1, a2, a3)
with their standard deviation are plotted in Figure 4.2. At this point the parameter
of the B-polynomial is leaved out of consideration. There are 12 measurements
shown in Figure 4.2 all from 1 subject. The parameters show a varied pattern. This
indicates that the conditions of the measurements influence the model parameters.
The ideal pattern is a horizontal line, this indicates than that the blood glucose and
glucagon dosage does not influence the glucagon pharmacokinetics in 1 patient.

Looking at Figure 4.1 the estimation seems a good representation of the data.
Only, the parameters values that are estimated to describe the results are complex
numbers. This is inconsistent with the model equations. The expectation is that the
human physiology is described by real numbers instead of complex numbers. The
results with complex numbers are a structurally estimation error and appears in all
measurements and in all subject.
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Figure 4.2: Parameters of A-polynomial (a1, a2, a3) with the standard deviation for 1 subject
the 12 measurements are present.

36 Chapter 4 Parameter estimation



5Discussion

This study provides insight in the human glucose regulation by designing a simulation
model to test the algorithm of the AP of Inreda Diabetic BV. A simulation model was
designed to test the algorithm of the AP of Inreda Diabetic BV. This model represents
the glucose regulation system of T1DM patients. This representation is achieved by
modeling three main physiological subsystems, the glucose, insulin and glucagon
dynamics. For all the subsystems the physiological processes are explained. In
addition, a major part of this study was obtaining the mathematical representation
of the physiology. First simulation results proved that the model can simulate the
glucose regulation, albeit with parameters from the literature.

5.1 Glucose

The glucose subsystem is described in several parts, namely the glucose regulation by
the liver, the blood plasma glucose, the glucose utilization and absorption of glucose.
The liver plays an important role in the glucose regulation and when diabetes pro-
gresses, the regulation by the liver changes [24]. This crucial role justifies to model
the liver as a separate part. The EGP is influenced by glucose and two hormones,
insulin and glucagon. The effects of the two hormones on the EGP are described
by ODEs. Insulin’s effect is described by two ODEs and the effect of glucagon is
described by one ODE. In Figure 3.1c, the inhibition of EGP by glucose seems the
strongest regulator. When the insulin is administered after the appearance of glu-
cose, simulation 2, hardly any difference is seen in the decrease of EGP between
simulation 1 and simulation 2. This is in contrast with the study of Dalla Man et al.
[13]. Besides this, the stimulating effect of glucagon on EGP seems lower than the
inhibiting effect of glucose and insulin together. The EGP is increased by glucagon,
but this effect is not as strong as the decrease of EGP by glucose. This indicates that
the implementation of EGP in the model might need adjustments to balance the
influences on EGP of glucose and both hormones.

The glucose utilization is represented by the well-known Michaelis-Menten equation.
This standard equation described the glucose transport into a cell by the GLUT-4
transporters. Figure 3.1e shows a good response to the insulin. It responses mainly to
insulin and only slightly to glucose. The glucose utilization model could be expanded
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by including physical activity. In section 2.1.2 the muscles and adipose tissues are
assumed the same and the effect of physical activity was omitted. Nevertheless, phys-
ical activity has a major effect on the glucose utilization [5, 14, 30] and should be
implemented in this model. The adipose tissue and muscles should be modeled sep-
arately. The GLUT-4 transporters in myocytes migrate under the influence of insulin
and by contracting the muscles [29]. The response to this contraction depends on
the intensity level of the physical activity. The GLUT-4 migration by the contracting
muscles influences the Michaelis-Menten curve and should be implemented in the
model. The process of gluconeogenesis in the liver is important during prolonged
fasting and it becomes beneficial during physical activity. The glycogen source is
rapidly exhausted by the energy demand of the muscles. If the physical activity is
implemented in the model the contribution of gluconeogenesis has to be investigated.

The part that was not described in the chapter 2 is the GI tract. This must be
modeled to simulate the glucose regulation in T1DM patient for different meals.
Modeling of the GI tract can be done using compartments, i.e. considering the
liquid and solid phase and the content of the meal. These influence the gastric
emptying and therefore the glucose absorption in the blood plasma. This method is
implemented in the study of Dalla Man et al. [13]. Another possible method is the
simulation of glucose absorption from the food according to the glycemic index. The
glycemic index ranks the carbohydrates in food by the extent to which they raise
blood glucose levels after eating on a scale from 0 to 100 [18]. Food with a higher
peak in postprandial blood glucose and a greater elevated blood glucose level, two
hours after the intake, has a high glycemic index. These carbohydrates are rapidly
digested and absorbed, hence result in fluctuating blood glucose levels. Food with a
low glycemic index is slowly digested and absorbed, resulting in a lower peak and
a steady rise of the blood plasma. An attempt was made to simulate the glucose
absorption using the glycemic index. However, connecting the GI tract to the glucose
subsystem proved to be difficult. The meal volume settings and the meal glycemic
index seems to be inaccurate. The rate of glucose appearance in the blood plasma
was mainly affected by the meal volume and less by the glycemic index of the meal.
The expectation is that the glycemic index mainly determines the glucose appearance
in the blood plasma. Therefore, changing the parameter settings could be a solution.
Otherwise the mathematical submodel of the GI tract should be reconsidered.

5.2 Insulin

At this moment, the AP is designed for and tested with T1DM patients, however the
AP might also treat type 2 diabetes mellitus (T2DM) patients in the future. At this
point the model does not contain β-cells, because the pancreatic insulin secretion
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is assumed to be zero for T1DM patients. Ideally, the AP will be tested with the
simulation model, before the clinical trials with T2DM. β-cell must be modeled to
perform this simulation. It is important to consider the two phasic secretion of
insulin by β-cells [4, 36]. The first phase is a fast insulin release and the second
phase a slower insulin release. Although the secretion phases are impaired in T2DM
patients [26], both phases still need to be modeled. The plasma insulin in T2DM
patients still shows the two phased secretion. The liver also contributes to the insulin
regulation [6, 35]. The anatomical location of the liver and the pancreas results in
the insulin extraction by the liver. Not all the secreted insulin will reach the rest of
the body. This regulation by the liver is already implemented in the model, which
makes the extension of β-cell a small step.

The subcutaneous route of insulin is implemented with a spherical release of the
administered insulin. The study of Lv et al. concludes that the subcutaneous admin-
istration route shows a delayed clearance of insulin and a biphasic appearance in the
blood plasma [25]. The delayed clearance is partly met by the spherical release in
the model, due to the slower absorption. Simulation with a spherical release shows
that the administered insulin is longer present in the blood plasma. The biphasic
appearance is not simulated and can be implemented by a fourth order polynomial.
This makes the model more complex and affects the parameter estimation for this
part of the model. The data has to be sufficiently rich, e.g. contain the biphasic
appearance to estimate the unknown parameters. The available clinical data cannot
describe the unknown parameters [7]. The spherical release is the best solution to
this point.

Figure 3.1d shows the rise in the plasma insulin and a return back to zero af-
ter 1.5 hours. This is a quickly return compared to other studies [12, 25] and seems
unrealistic. Insulin used in the AP has a duration of effectiveness between 2 and 5
hours. The simulated insulin in the plasma is cleared in 2 hours and is faster than
expected. Next, the simulation used 100 units of administered insulin. This is an
unlikely amount of insulin. The parameters values found in the literature can cause
this effect. Using other parameter settings might slow the insulin clearance.

5.3 Glucagon

As mentioned in chapter 1, the glucagon kinetics and dynamics are important to
simulate in the model. The review of Wilinska et al. and the review of Colmegna et al.
indicate that there was no existing model that simulates the glucagon subsystem [11,
38]. After the published reviews, the UVA/Padova model is expanded by including
the glucagon kinetics and dynamics. Since the extension of this model is based on
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non-published assumptions, there is uncertainty about its accuracy. In this study the
designed model for testing the AP also considers the glucagon part for the simulation.
Compared to the UVA/Padova model the subcutaneous administration for glucagon
is added in the same way as the subcutaneous administration for insulin in this
study. In addition, the glucagon secretion by the α-cells are differently modeled.
This is a second difference to the UVA/Padova model. The results show the glucagon
secretion, which consists of the static and dynamic secretion as explained in section
2.3.1. The static part reacts on the plasma glucose concentration and the dynamic
part to the change of plasma glucose concentration. This is in consistence with the
insulin secretion modeled in other studies [4, 13, 26, 36] and the base for the α-cell
secretion. Figure 3.1f indicates that the glucagon secretion is primarily regulated
by the dynamic part. This is shown in the last part of the curve after 4 hours

where the secretion increases. This increase is the result of the secretion stimulated
by the dynamic part of the glucagon secretion. The dynamic part reacts on the
change of the glucose level. This indicates that the dynamic part of the secretion
reacts on the fluctuations in the blood glucose, even if there is hyperglycaemia.
The glucagon secretion in this model should be reconsidered. Furthermore, the
insulin level inhibits the glucagon secretion. This negative feedback is not covered
by mathematical representation.

The effect of glucagon on EGP is shown in Figure 3.1c in the third simulation. It
shows an increase in EGP as reaction to the increased glucagon secretion. Only,
the result of the increased EGP on the blood plasma glucose is not clearly seen in
Figure 3.1a. The increase of the glucose concentration in the blood plasma seems to
be a result of the glucose appearance after the intake of carbohydrates instead of
an increase of EGP. The expectation was that the EGP is able to drive the glucose
level back to the steady state. A possible explanation for the weak reaction is the
use of the parameters values for this simulation. The parameters are based on the
literature. The parameters for the glucagon part are provided by another study than
the parameters of the other model parts. This can explain the weak reaction to the
glucagon concentration, because the parameters are not estimated based on the
same clinical data.

5.4 Parameters

At this moment the model consists of 35 parameters, which may increase as the
model changes. Ideally these parameters all need to be estimated. However, this
is difficult due to the poorly available clinical data. Therefore, some parameters
are searched for in the available literature. Notice that these are mostly the mean
values for a parameter. To provide the inter and the possible intra patient differences,
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using the mean values for the parameters is unreliable. A first step was made to
estimate the parameters of the model. The estimation started with the glucagon
part. This choice was made due to the available clinical data. This study used
the ARX method to estimate the parameters, which uses the linear least square
method. Surprisingly, this method provides complex numbers, which was not to be
expected. Physiologically, the parameter values are real numbers. According to the
fit, represented in Figure 4.2, it seemed a good method. The first attempt indicates
that the parameter estimations are not straightforward and that further work should
focus on the estimation of the parameters.

A possibility can be to force the ARX method to return real values. Another pos-
sibility is reconsidering the method to estimate the parameters. Alternatively, the
Output-Error method was tried, this is another method to estimate the parameters.
This method does not consider the disturbance to the system. It assumes that the
disturbance is a white noise signal. The Output-Error method gave similar values
for the estimated parameters as the ARX model gave. And the fit does not show a
great difference to the ARX fit. The ARX method was chosen, because it considered
the disturbance term 1

A(z)ek. The disturbance is important to account for, because
because in the model, different assumptions were made and the collection of the
data is expected to cause disturbance in the model. This disturbance is also part of
the estimation.

It is a challenge to acquire the necessary clinical data. In general, the data has
to be rich enough to contain the unknown parameters for the estimation. The data
need to be sufficiently rich for the model considered. The clinical data might be
enriched by measuring additional variables. Finding clinical data for the submodels
as the liver and utilization and the secretion of both hormones will be difficult. For
example, to estimate the EGP parameters it is ideally required to known the plasma
glucose in the portal vein and the plasma glucose in the hepatic vein. In this way
the effect of the EGP can be estimated by the change of the glucose level.
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6Conclusion

This study provides a substantial basis for the in silico testing of the AP developed by
Inreda Diabetic BV. The model provides more insight in the human glucose regulation
and can be helpful in the development and testing processes for the AP. The model
represents the glucose regulation system in T1DM patients. The model consist of
10 submodels, that describe the three main physiological subsystems, the glucose,
insulin and glucagon processes. These processes are described by fifteen differential
equations and the seven mathematical equations. In total there are 35 parameters
and 28 outputs. First simulation results proved that the model can simulate the
glucose regulation. Therefore, this model is a valuable tool for preclinical testing of
the AP.
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Appendix A

Table 6.1: The parameters values used for the simulations.

Abbreviation Value Unity

ap1 0.5 min−1

ap2 0.13 min−1

bp1 0.03 min−1

bp2 0.09 min−1

Chp,b 50 ng/L

Cip,b 2.48 pmol/L

dh 2.05 min−1

di 0.081 min−1

E 0 mg/kg/min

EGP0 2.5 mg/kg/min

F 1.1 mg/kg/min

h 98.94 mg/dL

k1 0.065 min−1

k2 0.079 min−1

kge 0.0021 min−1

khd 0.093 min−1

khl 0.05 mg/kg/min per ng/L

kid 0.0079 min−1

kil 0.009 mg/kg/min per pmol/L

Km0 225.59 mg/kg

m1 0.190 min−1

m2 0.484 min−1

m4 0.194 min−1

m5 0.0304 min−1

m6 0.6471 min−1

n 0.22 min−1

p 0.0331 min−1

Sh,b 5 ng/kg/min

Vm0 2.50 mg/kg/min
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Table6.1 – continued from previous page

Abbreviation Value Unity

Vmcii 0.047 mg/kg/min per pmol/L

δ 3.01 ng/L per mg/dL

ρ 0.86 min−1

σ 0.41 ng/L/min
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