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1

Introduction

Freak waves are extreme waves that occur relatively seldom, but can cause severe dam-

ages to ships in the ocean. One damage example of freak waves is the accident of Ship

”Voyager” on 14 February 2005 [1]. The ship came across a severe storm and was hit by

one or more high waves. It is observed that freak waves often occur not only in the area

whose severe storm, but also in the area where waves propagate into a strong opposing

current, for example in the ”Agulhas” current outside South Africa [3]. The strong

current going south meets strong swell from storms in the Antarctic Ocean, therefore

many large ships have encountered difficulties in that area.

In the last decade many scientists work on freak waves. They focus on many different

aspects of freak waves, such as the frequency or the probability of occurrence of freak

waves, the effects of wind on the freak waves, the wave distribution, the statistical

properties of surface gravity waves, the spectral characteristics of waves, risk analysis

on wave crest kinematics, the implication of freak waves for marine safety, etc.

Interesting questions that need to be answered in the research of freak waves are how

high is the highest wave, which properties does a freak wave have, how often and under

what circumstances do freak waves occur, and what are the physical effects of freak

waves that lead to such a focusing of wave energy in the open ocean. According to [3]

there are three possible physical effects that can lead to freak waves: focusing in time

and in space, current focusing, and nonlinear focusing. The first two are described by

so-called linear theory and have been known since the beginning of the past century.

1



1. INTRODUCTION

• Focusing in time and space

This effect is used in large wave tanks to generate very high wave to test ships

in extreme weather situations. With a wave maker at the end of the tank one

designs a signal in the form of a wave train where the wave length varies, with

the shortest waves in front. Long waves propagate faster and will catch up with

the shorter waves. Focussing of this train creates a few large waves over a short

time and within a limited area.

• Current focusing

Even though the current velocities in the open ocean (far from coastal areas)

are small, typically about 10[cm/s], they can give small deflections of the waves

when they act over long distances [3]. The deflection due to the current produces

areas of increased and areas of decreased wave intensity. The result can be local

focusing or defocusing of wave energy. This has been proposed as an explanation

of freak waves by White and Fornberg [25].

• Nonlinear focusing

As opposed to the effects above, this one cannot be explained by linear theory. It

was shown in the middle of the 1960s that if we generate uniform periodic waves

in one end of a long wave tank, the waves will spontaneously split into groups,

which get more prominent as they propagate along the tank [3]. According to

linear theory these waves should remain uniform and periodic. One developed a

wave equation (the so-called nonlinear Schr�odinger equation) capable of explain-

ing this strange behavior qualitatively. This equation has later been modified and

improved to also give good quantitative agreement with experiments. The phe-

nomenon of freak waves is essentially nonlinear. This justified the use of nonlinear

Schr�odinger equation as candidate to explain freak waves [3]. The AB equation

derived by van Groesen and Andonowati [22] is a novel wave equation that ac-

curately models the nonlinearity of water waves. Consequently, this equation

can be used to try to explain freak waves. In this thesis we would rather apply

AB equation than nonlinear Schr�odinger equation since the Schr�odinger equation

only computes the envelope of a wave group.

There are mainly two approaches that are used for the description of water waves: the

deterministic (physical) approach and the statistical one [12]. Compared to the sta-
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tistical methods, the physical analysis of freak waves is much less developed than the

statistical analysis. In the Conference proceedings of rogue waves 2008, approximately

30% of the papers discussed about physical aspects of freak waves and some were not

yet employed for the analysis of freak waves clearly [6]. This indicates that the physics

of freak waves is still poorly understood. One reason for this will be that there are only

very few reliable data available since it is very rare to detect one in the various types

of surface wave data.

Despite much research in the past two decades, not much is known yet about the mech-

anisms that lead to the appearance of freak waves. This thesis contributes to study the

mechanism of freak waves. To that end we will use data of one well known freak wave,

the so-called New Year’s Wave or Draupner wave. The information of the Draupner

wave is used in the deterministic-stochastic investigations of freak waves in this thesis.

Walker et al. [24] define a convenient ’design wave’ based on the average shape of

an extreme wave in a linear Gaussian process to reproduce the Draupner Wave. This

design is known as NewWave. In addition to this, we introduce ’maximal’, and ’pseudo-

maximal’ waves as new concepts, and test the applicability. Numerical simulations with

the AB equation provide additional insights in the spatial evolution.

The structure of this thesis consists of five chapters, starting with this Introduction.

In Chapter 2 part of the literature about freak waves is summarised and the Draupner

wave is presented. In addition the so-called NewWave is described. The maximal

wave and the pseudo-maximal wave are introduced as new concepts in Chapter 3. The

explanation of the AB equation and the spatial evolution of the Draupner wave with

the AB equation are presented in Chapter 4. Chapter 5 contains conclusions and

recommendations. Some technical details can be found in the appendices.
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2

Freak Waves in the ocean

2.1 Definition of Freak Waves

Before introducing a freak wave, we first illustrate some properties of a wave that we

will use further. Look at Figure 2.1.

Figure 2.1: Some properties of a wave

Freak waves were first recognized by Draper [2] four and a half decades ago. Freak

waves are waves of extreme, unexpectedly large height that suddenly appear in a rel-

atively mild background wave field. Sometimes freak waves are also known as rogue

waves, extreme waves, or giant waves [18]. In the last decade, freak waves have become

an important study topic in engineering and science. The most common definition of

a freak wave is a wave for which the ratio of wave height to significant wave height

exceeds 2.2 (see [7, 11]). The definition of significant wave height is given in section

2.2. Uggo Ferreira [4] defines a freak wave as a particular kind of ocean wave that

5



2. FREAK WAVES IN THE OCEAN

displays a singular, unexpected wave profile characterized by an extraordinary large

and steep crest or trough.

Another definition is based on a statistical approach. Haver [7] defines a freak wave as an

event that represents an outlier when seen in view of the population of events generated

by a piecewise stationary and homogeneous second order model of the surface process.

This second order model is explained by Forristal [5] (see also [13], [21]). In general, a

freak event is an event that would not be expected under the typical engineering models

for extreme wave predictions. In this thesis we consider the definition of an extreme

wave according to the ratio of wave height to significant wave height.

2.2 Introduction to the Draupner Wave

On January 1st 1995, an extreme wave was measured under the Draupner platform

(16/11-E) providing indisputable evidence that such waves do indeed exist [24, 12].

The Draupner platform is located in the North Sea off the coast of Norway in water

of 70[m] depth. The bathymetry of the North sea can be observed in Figure 2.2. The

precise location of the Draupner platform is 58.110N; 2.280E [19] (see the cross line in

Figure 2.2).

The weather situation at that time can be seen in Figure 2.3. The weather pattern is

dominated by a major low with center in Southern Sweden causing a strong northerly

wind field over the whole North sea and Norwegian sea [8]. In addition a smaller low

moved southwards in the North sea during the morning hours and the effect of this

smaller low is to strengthen the wind field in the western North sea. Therefore the area

with the strongest wind field moved southwards as indicated in Figure 2.3. The wind

conditions seemed to peak at hurricane level wind between 12 GMT and 18 GMT [8].

In Figure 2.3 the Draupner platform is indicated by red rectangular. It is shown that

the platform was outside the area where the wind conditions seem to have been most

extreme.

Minor damage was inflicted on the platform during the extreme wave event, confirming

the validity of the reading made by a downwards-pointing laser sensor. In an area with

6



2.2 Introduction to the Draupner Wave

Figure 2.2: The bathymetry of North sea. The Draupner platform is at the cross lines.

Image source http://amcg.ese.ic.ac.uk/ [27]

significant wave height (a well-defined and standardized statistic quantity to denote

the characteristic height of the random waves which is computed by the average wave

height of the one-third largest waves) of approximately 12 metres, a freak wave with a

maximum wave height of 25.6 metres occurred (peak elevation was 18.5 metres). This

freak wave recorded with starting time 15:20 GMT has been known in the international

scientific community as the New Year’s wave or Draupner wave. The other statistical

parameters of this waves record are the mean and variance. These can be computed by

the definition of mean and variance (see Appendix A). The mean of the amplitude of

this waves record is approximately zero and the variance is 8.88. This can be observed

in Figure 2.6. This figure also shows that the amplitude of 18.5[m] is an outlier.

7



2. FREAK WAVES IN THE OCEAN

Figure 2.3: The weather situation in North Sea, 1 January 1995 at 12 GMT. Image

source: Haver [8]
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2.2 Introduction to the Draupner Wave

Figure 2.4: Full time series signal recorded from the Draupner platform on 1st January

1995

Figure 2.5: A closer look of the freak wave event

Figure 2.6: Histogram of the amplitude of the signal record

A 20-minutes surface wave elevation time series of the Draupner signal is shown in

Figure 2.4 with a closer look of the freak event in Figure 2.5. There are approximately

100 waves in the record. Walker et al. [24] have shown that the Draupner wave displays

nonlinear behaviour. The shapes of the crests are consistently sharper and larger than
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2. FREAK WAVES IN THE OCEAN

their corresponding troughs. They proved the nonlinear behaviour by showing the

asymmetry between crests and troughs since it is the most obvious manifestation of

nonlinearity in the ocean.

Figure 2.7: The spectrum and the phases of the full time series Draupner signal

As additional information, we show the amplitude spectrum and the phases of the

full time series Draupner signal. The amplitude spectrum describes the amplitude

distribution as a function of the frequencies. It is defined by the absolute value of the

Fourier transform of a signal. Given a signal s�t�, then the amplitude spectrum, ��s�ω��,
is formulated by:

��s�ω�� � 1

2π

����
�
s�t�eiωtdt

���� (2.1)

Further we will also use the power spectrum, S�ω�, which is the squares of the ampli-

tude spectrum, i.e. S�ω� � ��s�ω��2. Figure 2.7 shows that the amplitude spectrum is

dominant in 0.25 � ω � 0.9 (we plotted the spectrum until ω � 4 and zoomed it for

0.25 � ω � 0.9). The lower plot in Figure 2.7 shows the phases of the Draupner signal.

To know how the phases are distributed, we observe the histogram of the Draupner

phases for positive ω in Figure 2.9. This figure shows that the phases are random in

10



2.2 Introduction to the Draupner Wave

Figure 2.8: The zoomed version of Figure 2.7

Figure 2.9: Histogram of the Draupner phases (full time series)

the range ��π, π�, therefore this can be estimated by uniform distribution. The max-

imum of the Draupner phases is 3.14 (approximately π) and the minimum is -3.1408

(approximately �π). The average of the Draupner phases is -0.0691 and the variance

is 3.1615 (standard deviation, σ � 1.77 � 0.56π). In this thesis we will not use this

full time series of the Draupner signal, but we only use small interval of the Draupner

signal as defined in the next section.

11



2. FREAK WAVES IN THE OCEAN

2.3 Draupner signal for simulation

Without restriction the Draupner wave is assumed to be a generated wave at position

x � 0. It is 1200[s] time signal and the maximal crest height happened at time 264.4[s].

Without restriction we take the maximal crest height at t � 0 and consider a symmetric

interval around t � 0. Hence, we do not use the full time series Draupner signal, but

take the first 528.8[s] of the signal so that the maximal crest height is at t � 0. See

Figure 2.10. The amplitude spectrum and its phases are presented in Figure 2.11.

Figure 2.10: s�t�, the time signal which we use for the simulation

Figure 2.11: The amplitude spectrum and the phases of Draupner signal (small interval)

12



2.3 Draupner signal for simulation

Figure 2.12: Histogram of the Draupner phases (small interval)

The amplitude spectrum is indeed not the same as the amplitude spectrum of the full

Draupner signal since we cut the signal for t � 528.8[s], but it is still dominant in

0.25 � ω � 0.9. Meanwhile the phases are in the range ��π, π� and are no longer

uniformly distributed. This can be observed from the histogram in Figure 2.12. The

distribution of the phases concentrates to the left (skew positive). The maximum of

the phases is 3.13 and the minimum is -3.13. The mean of the phases is -0.38 and the

variance is 1.89 (standard deviation, σ � 0.44π).

Figure 2.13: The zoomed version of Figure 2.11

Since the amplitude spectrum is dominant in 0.25 � ω � 0.9, now we observe the

13



2. FREAK WAVES IN THE OCEAN

Figure 2.14: Histogram of the Draupner phases for 0.25 � ω � 0.9 (small interval)

phases in this ω range (see Figure 2.13 and the histogram in Figure 2.14). The phases

are quite random. The maximum of the phases is 3.04 and the minimum is -3.02. The

mean of the phases is -0.27 and the variance is 3.63 (standard deviation, σ � 0.61π).

This kind of phases will be employed as the motivation to define pseudo-maximal wave

later in section 3.3.1.

2.4 Statistical properties of wave dynamics

Generally, sea waves behave irregularly and unpredictably in even rather short time

scales, although they show some periodicity. Therefore, the dynamical system in the

ocean can be modelled as random wave dynamics. The sea surface elevation at one

moment of time t0 in one point x0 is represented by the random function numbered

by the index j: ηj�x0, t0� with some statistical properties [12]. This is the approach to

study models of the evolution of statistical wave dynamics. Suppose we have the surface

elevation η�x, t�, as a function of space and time. Since we are mainly concerned with

the temporal profiles, we write η�t� instead of η�x, t�. To evaluate the cross correlation

of the profiles with themselves, we make use of the autocorrelation. The autocorrelation

is defined as the expected value of the product of a signal with the time-shifted version

of itself, at lag τ :

Rηη�τ� �

�
η�t�η�t� τ�dt. (2.2)

where η denotes the complex conjugate of η. For a real function, η � η. Applying

Parseval’s theorem and Fourier properties to the autocorrelation definition we obtain
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2.4 Statistical properties of wave dynamics

that the autocorrelation is the Fourier transform of the power spectrum of the signal

Rηη�τ� �

�
η�t�η�t� τ�dt

�

� �η�ω��η�ω�e�iωτdω
�

�
��η�ω��2e�iωτdω

(2.3)

in which ��η�ω�� is amplitude spectrum of η�t� and ��η�ω��2 is the power spectrum corre-

sponding to the signal η�t� which is usually denoted by S�ω�.

Besides the autocorrelation, with the probability function we can also define other

statistical properties. The nth statistical moment is defined by

μn � E�ηn� �

�
ηnf�η�dη, (2.4)

in which f is the probability function for η. In random sea waves, the first statistical

moment μ1 is the mean of the surface elevation. The variance σ2 is equal to the second

central moment,

σ2 � μ2 � E
�
�η � μ�2

�
(2.5)

σ is also called the standard deviation. The skewness γ and kurtosis κ are defined by

γ �
μ3

σ3
(2.6)

and

κ �
μ4

σ4
(2.7)

The skewness is usually used to estimate the vertical asymmetry of the sea surface

elevation, whereas the kurtosis corresponds to the peakedness of the distribution when

compared with the normal distribution [14].

A linear superposition of random periodic waves,

η�x, t� �
�
n

An cos�knx� Ωnt� θn� (2.8)

is a natural representation of sea waves. The amplitudes An obey a probability dis-

tribution, and the frequencies Ωn and the wave numbers kn are related by dispersion

relation; the dispersion relation of water waves will be explained in chapter 4. The wave
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2. FREAK WAVES IN THE OCEAN

phases θn are supposed to be uniformly distributed on the interval ��π, π�. According

to [12, 14] the surface wave elevation is described by the Gaussian statistics, so by a

distribution defined by:

f�η� � 1�
2πσ

exp

�
��η � μ�2

2σ2

�

Now we consider the unidirectional wave motion of a narrow-band frequency spectrum,

for instance using a frequency Ωm and wave number km which correspond to the spec-

trum peak, then the wave field may be represented in the form

η�x, t� � �B� cos�kmx� Ωmt	 ϕ� (2.9)

where �B� is a slowly varying function of x and t. The distribution of the absolute value

of the wave amplitude, �B�, and the phase, ϕ, for a narrow-band process were derived

by Massel [14]. The detailed derivation can be seen in Appendix B. The absolute

value of the linear wave amplitude is Rayleigh distributed and the phase is uniformly

distributed in the range ��π, π�.

famp��B�� � �B�
σ2

exp

�
��B�2

2σ2

�
(2.10)

fphase�ϕ� �
�

1
2π for ϕ 
 ��π, π�
0 for elsewhere

(2.11)

Since extreme waves have narrow-band frequency spectrum, the appropriate distribu-

tion to estimate the surface wave elevation of extreme waves is the Rayleigh distribution.

2.5 NewWave

As mentioned in section 2.2, the Draupner wave is obviously nonlinear. Walker et al.

[24] presented a ’design wave’ to reproduce the Draupner wave, especially the highest

crest. In offshore engineering this design wave has become known as NewWave, which

is shown to be an acceptable local model for the linear contribution to large waves [24].

The full model of NewWave is absolutely nonlinear. It is defined using Stokes regular

wave expansion up to fifth order, whereas the basis of NewWave is the linear part. It

is based on the average shape of an extreme wave in a linear random Gaussian process.

The linear NewWave is simply proportional to the auto-correlation function.
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2.5 NewWave

Definition Let S�ω� denote the power spectrum of a given signal s�t�. The linear

NewWave corresponding to the signal s�t� is:

ρ�t� � AN �

�
S�ω� cos�ωt�dω�

S�ω�dω
(2.12)

where AN is the magnitude of the maximal amplitude which can be estimated using

the Rayleigh distribution and N is the number of waves.

The magnitude of the maximal amplitude, AN can be computed as long as the prob-

ability of the maximal amplitude exceed AN is defined. On the other hand we can

compute the probability of the maximal amplitude if the maximal amplitude, AN is

given. We shall give some illustration of it.

We suppose X to be a random variable which represents the magnitude of the ampli-

tude, then X is Rayleigh distributed with mean μ and variance σ2. The probability

of the maximal amplitude exceed AN can be denoted as P �X � AN �. If the maximal

amplitude has a return rate 1 in N waves, then its probability is 1�N . Applying the

properties and the definition of distribution function (A.4), we can compute,

P �X � AN � �1� P �X � AN � � exp

�
�A2

N

2σ2

�

AN �
�
�2σ2 ln �P �X � AN ��

�
�
2σ2 ln�N�

(2.13)

In the case of the Draupner wave, the maximal amplitude is 18.5[m]. By formula (2.13)

the probability of the occurrence of Draupner wave is 4.3E-09 (approximately 1 in

2.3E+08 waves). The total wave height of somewhat less than 26[m] of the extreme

waves is estimated to have a return period of 50 years till 100 years (for wave period of

12[s] this is approximately 1 in 1.3E+08 waves till 2.6E+08), but more recent studies

based on nonlinear theory, indicate that they may occur more frequently [15]. Therefore

the linear theory confirms that the probability of 4.3E-09 is quite realistic to the 100

years wave. In contrast, the amplitude 18.5[m] is absolutely reached by including the

nonlinear contribution. The effects of including nonlinear contributions are as one

would expect: the crests become narrowed and raised, while the troughs are broadened

and raised. Therefore the maximal amplitude of the linear NewWave should be less than

18.5[m]. Walker et al. [24] choose a linear NewWave amplitude of 14.7[m], since this
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2. FREAK WAVES IN THE OCEAN

corresponds to an amplitude of 18.5[m] in the fifth order NewWave profile, matching

the amplitude of the Draupner wave. By choosing the linear NewWave amplitude to

be 14.7[m] and substituting the variance of the Draupner signal, σ2
� 8.88 in formula

2.13, it can be computed that the probability of the Draupner wave is 5.2E-06, or 1 in

200.000 waves.

Figure 2.15: The time series of the Draupner wave (blue line) and the time series of

linear NewWave (red line) after a time-shift for N � 200.000.

P �X � AN � � exp

�
�A2

N

2σ2

�

� exp

�
�

14.72

2 � 8.88

�

�5.2E� 06

(2.14)

In other words, the linear amplitude will be 14.7[m] once every 200.000 waves. It is an

unlikely occurrence in a record of 100 waves [24], however there are many other records

without this extreme crest. Thus, the validity of the probability of the occurrence of

extreme crest can be realistic by including many other records.
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3

Maximal Wave

3.1 Definition of Maximal Wave

The sea surface elevation at position x and time t will be represented by η�x, t�. The

wave evolution for which the spectrum is given, say �s�ω�, can be described by

η�x, t� �

� �s�ω�ei�k�x�x0��ωt�dω

�

�
��s�ω��eiθ�ω�ei�k�x�x0��ωt�dω

(3.1)

The wave number k, and frequency ω, are related by the dispersion relation ω � Ω�k�

and Ω�k� � �Ω��k�. In principle, Ω can be any skew-symmetric function, Ω�k� �

�Ω��k�, but in the linear theory of surface waves, Ω is given by (4.2). In the following it

is essential that the corresponding evolution is genuine dispersive, i.e that d2Ω�dk2 � 0

(so we exclude shallow water model for which Ω � c0k). We will always restrict to real

solution η, so that �s�ω� � �s��ω�, in particular θ�ω� � �θ��ω�. We aim to introduce

a design wave describing an extremal wave evolution, the so-called maximal wave. For

any signal we can define the maximal wave with respect to that signal.

Definition Suppose s�t� is a given signal at x � x0 and let S�ω� be the power spectrum

of s�t�, S�ω� � ��s�ω��2. For dispersive evolution, a maximal wave corresponding to

signal s�t� is the linear wave that is defined as:

ηmax�x, t� �

� �
S�ω�ei�k�x�x0��ωt�dω (3.2)

According to the maximal wave definition, we derive some properties of a maximal

wave. We present these properties in Proposition 3.1.1.
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3. MAXIMAL WAVE

Proposition 3.1.1 Let η�x, t� be a wave evolution as described in (3.1). η�x, t� is a

maximal wave corresponding to signal s�t� if and only if η�x, t� satisfies the following

conditions

(1) All phases of the spectrum of signal s�t� are zero

(2) η�x0, 0� �
��

S�ω�dω is maximal: η�x0, 0� � η�x, t� for all �x, t� � �x0, 0�

(3) By assuming x0 � 0 the symmetry property holds, η�x, t� � η��x,�t�.

Proof First, suppose η is a maximal wave, then η can be expressed as the form (3.2).

Then the η holds the three conditions because:

• The spectrum is real, then the phases are zero

η�x, t� �

� �s�ω�ei�k�x�x0��ωt�dω

�

� �
S�ω�ei�k�x�x0��ωt�dω

�s�ω� ��S�ω� � R

• Substituting �x0, 0� in (3.2) gives η�x0, 0� �
��

S�ω�dω which is clearly a maximal

• Substituting x0 � 0 gives

η�x, t� �

� �
S�ω�ei�K�ω�x�ωt�dω

�

� �
S��ϕ�ei�K��ϕ�x�ϕt�dϕ

�

� �
S�ϕ�ei�K�ϕ�.��x��ϕ��t��dϕ

�η��x,�t�

since the dispersion relation is skew-symmetric, K��ϕ� � �K�ϕ�.

On the other hand, suppose that the three conditions are satisfied and that η is given

by (3.1). From (1) it follows θ�ω� � 0, hence

η�x, t� �

�
	�s�ω�	ei�k�x�x0��ωt�dω

Condition (2) gives �s�ω� � �
S�ω�, while the symmetric property in (3) gives the

skew-symmetric of the dispersion relation. Consequently the η is a maximal wave and

can be expressed by

η�x, t� �

� �
S�ω�ei�k�x�x0��ωt�dω � ηmax�x, t�
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3.2 Irregular Wave

3.2 Irregular Wave

The ocean surface is often a combination of many wave components. Consequently,

most of the wave surface are ’irregular’, which is by definition (modelled) as a wave

with random phases:

Definition For given a power spectrum S�ω�, the corresponding irregular wave is

defined by:

ηirr�x, t� �

� �
S�ω�eiθ�ω�ei�kx�ωt�dω (3.3)

where θ�ω� is a random number in the range ��π, π�.

3.3 Pseudo-Maximal Wave

3.3.1 Definition of Pseudo-Maximal Wave

As investigated in section 2.3, the phases of the full time series Draupner signal are

random in the range �π, π� with mean zero and deviation 0.56π. This seems to be an

irregular wave. On the other hand the phases of the Draupner signal around highest

wave we are interested in are no longer random, so this can not be an irregular wave.

In the definition of maximal wave there is a restriction that the phases are zero, so the

Draupner wave can not be a maximal wave. Consequently, the Draupner wave is neither

an irregular nor a maximal wave. That motivates us to introduce a new design wave

that seems to be in between irregular and maximal wave, so-called pseudo-maximal

wave. The phases of this design wave are random in a restricted phase interval. We

denote θa � U��aπ, aπ� as the random phases restricted in ��aπ, aπ�.

Definition Let a be a number in �0, 1�. Suppose s�t� is a given signal at x � x0 and

θa�ω� is a random number in ��aπ, aπ�. A pseudo-maximal wave (PMW) corresponding

to a and signal s�t� is the linear wave which is defined as :

ηpmw�a��x, t� � Average
θa�U��aπ,aπ�

�� �
S�ω�eiθa�ω�ei�k�x�x0��ωt�dω

�
(3.4)

where S�ω� is the power spectrum of s�t�.

It is obvious that the first property of a maximal wave is no longer satisfied by PMW

because of the random phases of θa. However we will show that PMW satisfies the
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3. MAXIMAL WAVE

symmetry property of a maximal wave. It can be investigated by analyzing the dis-

tribution of PMW. An important property of PMW is the restriction of the random

phases in the range ��aπ, aπ�, so that the PMW also depends on a. It is interesting to

know the effect of the value of a to the PMW. We will investigate that in section 3.3.3.

3.3.2 Distribution of sin�θa�ω�� and cos�θa�ω��

Basically the PMW is the average of all waves with the same power spectrum but with

phases taken from U��aπ, aπ�. Before studying the distribution of PMW, it is essential

to study the distribution of PMW at the maximal point, i.e at �x0, 0�. From equation

(3.4) we can obtain the PMW at x � x0 and t � 0,

ηpmw�a��x0, 0� � Average
θa�U��aπ,aπ�

�� �
S�ω�eiθa�ω�dω

�
(3.5)

Initially we should study the distribution of eiθa�ω�. To simplify notation, we write θa.

Since eiθa � cos�θa� � i sin�θa�, we need to investigate the distribution of sin�θa� and

cos�θa�.

Let θa � U��aπ, aπ�. Denote the distribution function of θa by Fθa�x�, then

Fθa�x� � P �θa � x� �

���
��
0 for x � �aπ
x�aπ
2aπ for � aπ � x � aπ

1 for x 	 aπ

(3.6)

Figure 3.1: Distribution function of the phases, θa � U��aπ, aπ�

First, we look into the distribution of sin�θa�. Let Y � g�θa� � sin�θa�, then Y is also

a random variable since, for any outcome y, Y �y� � sin�θa�y��. It is not simple to
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3.3 Pseudo-Maximal Wave

define the distribution of Y since the sin�1 is only defined on ��π
2 ,

π
2 �. Consequently

we separate the distribution of sin�θa� in two cases, for a � �0, 1�2� and for a � �1�2, 1�.

In the case a � �0, 1�2� see Figure 3.2, we can compute the distribution function of Y ,

FY �y� or Fsin�θa��y� easily as:

Fsin�θa��y� �P �sin�θa� 	 y�

�P ��aπ 	 θa 	 sin�1�y��

�Fθa�sin
�1�y�� � Fθa��aπ�

�Fθa�sin
�1�y��

�

���
��

0 for y 
 sin��aπ�
sin�1�y��aπ

2aπ for sin��aπ� 	 y 
 sin�aπ�

1 for y � sin�aπ�

Figure 3.2: Sketch for computing Fsin�θa��y� with a � �0, 1�2�

On the other hand, we may compute the distribution function of Y , FY �y� or Fsin�θa��y�

for a � �1�2, 1� (see Appendix C) and we obtain

Fsin�θa��y� �

��������
�������

0 for y � �1
sin�1�y�

aπ � 1
2a for � 1 	 y � sin��aπ�

sin�1�y�
2aπ � 1

2 for sin��aπ� 	 y � sin�aπ�

1� sin�1�y�
aπ � 1

2a for sin�aπ� 	 y � 1

1 for y 
 1

Second, by the same way we derive the distribution function of cos�θa�. This is much

simpler since cosine is an even function. We consider that cos�1 is defined in �0, π�.
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3. MAXIMAL WAVE

From Figure 3.3 we can compute the distribution function of cos�θa� easily as:

Fcos�θa��y� �P �cos�θa� � y�
�2P �cos�1�y� � θa � aπ

�

�2 �Fθa�aπ� � Fθa

�
cos�1�y���

�2 �1� Fθa�cos�1�y���

�

���
��

0 for y � cos�aπ�
1� cos�1�y�

aπ for cos�aπ� � y � 1

1 for y � 1

(3.7)

Figure 3.3: Sketch for computing Fcos�θa��y� with a � �0, 1�

The probability functions of these distributions are:

fsin�θa��y� �
dFsin�θa��y�

dy
�
��
�
0 for y � sin��aπ� or y � sin�aπ� and a � �0, 1	2


1

2aπ
�

1�y2
for sin��aπ� � y � sin�aπ� and a � �0, 1	2


fsin�θa��y� �
dFsin�θa��y�

dy
�

�������
������

0 for y � �1 or y � 1 and a � �1	2, 1�
1

aπ
�

1�y2
for � 1 � y � sin��aπ� or sin�aπ� � y � 1

and a � �1	2, 1�
1

2aπ
�

1�y2
for sin��aπ� � y � sin�aπ� and a � �1	2, 1�

fcos�θa��y� �
dFcos�θa��y�

dy
�
��
�
0 for y � cos�aπ� or y � 1 and a � �0, 1�

1

aπ
�

1�y2
for cos�aπ� � y � 1 and a � �0, 1�

Applying the defined probability function above to the mean and variance definition,

we can compute the mean �μ� and the variance �σ2� of these distributions. For instance,
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3.3 Pseudo-Maximal Wave

the mean of Y � cos�θa� is computed by:

μ � E�Y � � E�cos�θa�� �
� 1

cos�aπ�
y � fcos�θa��y�dy

�
� 1

cos�aπ�
y � 1

aπ
�
1� y2

dy

� 1

aπ

�
1� cos2�aπ�

(3.8)

while the variance of Y � cos�θa� is:

Var�Y � � σ2 �E�Y 2� � E�Y �2

E�Y 2� �
� 1

cos�aπ�
y2 � fcos�θa��y�dy

�
� 1

cos�aπ�
y2 � 1

aπ
�
1� y2

dy

� 1

2aπ

�
aπ � cos�aπ�

�
1� cos2�aπ�

�

Var�Y � � Var�cos�θa�� � 1

2aπ

�
aπ � cos�aπ�

�
1� cos2�aπ�

�
� 1

a2π2

�
1� cos2�aπ��

(3.9)

For example θ 	 U��π
2 ,

π
2 �. The distribution of sin�θ� is (see Figure 3.4):

Fsin�θ.5��y� �

��	
�

0 for y 
 �1
sin�1�y�

π � 1
2 for � 1 � y 
 1

1 for y � 1

fsin�θ.5��y� �
�	


0 for y � �1 or y � 1

1

π



1�y2
for � 1 
 y 
 1

(3.10)

Figure 3.4: Distribution function of Y � sin�θ�, where θ � U��aπ, aπ�
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3. MAXIMAL WAVE

Figure 3.5: Distribution function of Y � cos�θ�, where θ � U��aπ, aπ�

The distribution of cos�θ� for which θ � U��π
2 ,

π
2 � is (See Figure 3.5):

Fcos�θ.5��y� �

���
��
0 for y � 0

1� 2 cos�1�y�
π for 0 � y � 1

1 for y � 1

fcos�θ.5��y� �
��
�
0 for y � 0 or y � 1

2

π
	

1�y2
for 0 � y � 1

3.3.3 Distribution of PMW

PMW is obviously a function of x, t, and a. As investigated in previous section we first

analyze the distribution of PMW at �x0, 0�, so that PMW will be only a function of a

as described in (3.5). By describing the distribution of ηpmw�a��x0, 0� corresponding to

the value of a we can study the effect of the phases on the PMW. Further we describe

the distribution of PMW for any �x, t� which can be used to investigate the symmetry

property of PMW.

As mentioned before the PMW is the average of a random variable, let Za be the

random variable, then we may define Za as:

Za �
� �

S�ω�eiθa�ω�dω for a 
 �0, 1� (3.11)

Analytically we compute the average of a random variable by its expected value. In

probability theory, by the strong law of large numbers (SLLN) theorem we describe the

result of performing the same experiment a large number of times. According to the

law, the average of the results obtained from a large number of trials should be close
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3.3 Pseudo-Maximal Wave

to the expected value, and will tend to become closer as more trials are performed.

Therefore, we can write the PMW (3.5) by:

Average
θa�U��aπ,aπ�

�� �
S�ω�eiθa�ω�dω

�
� Average

θa�U��aπ,aπ�
�Za� � E�Za�

Theorem 3.3.1 (Strong Law of Large Numbers) If X1, X2, ... are independent

and identically distributed with mean μ, then

P

�
lim
n��

�
X1 � ...�Xn

n

�
� μ

�
� 1

Theorem 3.3.2 (Central Limit Theorem) If X1, X2, ... are independent and iden-

tically distributed with mean μ and variance σ2, then

lim
n��

P

�
X1 � ...�Xn � nμ

σ
�
n

	 a

�
�
� a

��

1�
2π

e�x2�2dx

Thus, if we let Sn �
	n

i�1Xi, where X1, X2, ... are i.i.d, then the Central Limit Theo-

rem (CLT) states that Sn has a normal distribution as n
� [20].

Before computing the expected value of Za, we observe the distribution of Za. We

express A�ωk� �
�
S�ωk�Δωk, so we may define the integral form of Za restricted to

the real value by a Riemann sum as:

Za � lim
K��

K

k�1

�
S�ωk� cos�θa�ωk��Δ�ωk�

� lim
K��

K

k�1

A�ωk� cos�θa�ωk��
(3.12)

Applying the CLT for i.i.d random variables, A�ωk� cos�θa�ωk��, we conclude that Za

has a normal distribution. The expected value of Za can be computed by:

μa � E�Za� �E
�
lim

K��

K

k�1

A�ωk� cos�θa�ωk��
�

�E �cos�θa�ωk��� lim
K��

K

k�1

A�ωk�

�E �cos�θa��
� �

S�ω�dω
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3. MAXIMAL WAVE

By substituting (3.8) into the equation above, we obtain the mean of Za as a function

of a.

μa � E�Za� �
1

aπ

�
1� cos2�aπ�

� �
S�ω�dω (3.13)

Figure 3.6 shows the mean of Za and also the deviation of Za measured from the mean.

Meanwhile the variance of Za, Var�Za�, can be computed by:

Var�Za� �Var

�
lim

K��

K�
k�1

A�ωk� cos�θa�ωk��

�

� lim
K��

Var

�
K�
k�1

A�ωk� cos�θa�ωk��

�

�Var�cos�θa�� lim
K��

K�
k�1

�A�ωk��
2

�

�
1

2aπ

�
aπ � cos�aπ�

�
1� cos2�aπ�

�
�

1

a2π2

	
1� cos2�aπ�


�
lim

K��

K�
k�1

�A�ωk��
2

(3.14)

and it is shown in Figure 3.7 under assumption limK��
�K

k�1 �A�ωk��
2 � 1.

Figure 3.6: Expected value of PMW and deviation with standard deviation at �x0, 0� as

a function of a with
��

S�ω�dω � 1

All results in this section can be summarized by saying that the PMW at �x0, 0� corre-

sponding to a is normally distributed and it converges to E�Za�. Additionally we can

illustrate the effect of the phases to the maximum value of PMW in Figure 3.6. The

PMW at �x0, 0� decreases as the range of the phases is getting narrower. For a � 1,

the phases are in ��π, π� and the expected value of PMW are zero.
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3.4 Comparing the Draupner wave with (Pseudo-) Maximal Draupner
Wave

Figure 3.7: Variance of PMW at �x0, 0� as a function of a

In fact the time t and the space x do not change the distribution of PMW. The PMW

at �x, t� corresponding to a is still normally distributed for all �x, t�. The derivation

can be executed in the same way as derivation of the distribution of PMW at �x0, 0�

by including ei�k�x�x0��ωt� in the integral. The difference is only the parameter distri-

bution, the mean and the variance. As the generalization of (3.13), the PMW at �x, t�

will converge to μa�x, t�. Since we have proved that a maximal wave is symmetric, then

μa�x, t� will be symmetric as well. This is shown in equation below:

μa�x, t� �
1

aπ

�
1� cos2�aπ�

� �
S�ω�ei�k�x�x0��ωt�dω

�
1

aπ

�
1� cos2�aπ�ηmax�x, t�

�
1

aπ

�
1� cos2�aπ�ηmax��x,�t�

�μa��x,�t�

(3.15)

Finally we conclude that the PMW corresponding to any a holds the symmetry property

of a maximal wave.

3.4 Comparing the Draupner wave with (Pseudo-) Max-

imal Draupner Wave

3.4.1 Maximal Draupner Wave

By the definition of a maximal wave, the maximal Draupner wave at �0, t� can be

expressed as:

ηmax�t� � η�0, t� �

� �
S�ω�e�iωtdω (3.16)
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where S�ω� � ��η�x0, ω��2 is the power spectrum of the time signal s�t�. For the Draup-

ner signal as given in Figure 2.10, we get the corresponding maximal wave (maximal

Draupner wave), ηmax�t� as plotted in Figure 3.8.

Figure 3.8: The Draupner signal and the corresponding maximal wave

There is a very large differences around t � 0 if we compare the maximal Draupner wave

and the Draupner wave itself. The maximal amplitude of the Draupner wave is 18.5[m],

but the maximal amplitude of the maximal Draupner wave is about 37.25[m], about

two times larger. The reason must be because a maximal wave is valid for a wave which

has zero phases, while the Draupner wave has dominantly phases in ��0.61π, 0.61π�.

Due to the fact that the maximal Draupner wave can not model the maximal crest

of the Draupner wave, we use PMW as the extension of the maximal wave which will

indeed decrease the maximal amplitude.

3.4.2 Pseudo Maximal Draupner wave

For the Draupner wave in the interval as used in section 2.3 we define the PMW

corresponding to that, so-called pseudo-maximal Draupner wave (PMDW), as:

ηpmw�a��t� � Average
θa�U��aπ,aπ�

�� �
S�ω�eiθa�ω�e�iωtdω

�
(3.17)

We are interested in the maximal amplitude. To that end, we performed simulations

to calculate the average, and compare with analytic results. For the simulation we

choose N � 1000, i.e we take the average of 1000 trials for θ�ω�. For t � 0 we obtain

ηpmw�a��0� as shown in Figure 3.9 for discrete value of a. As N increases ηpmw�a��0�

30



3.4 Comparing the Draupner wave with (Pseudo-) Maximal Draupner
Wave

will converge to a function that we have derived before, that is (3.13). We call it the

analytic mean of PMW and the graph is also plotted in Figure 3.13. Observe that for

N � 1000 the simulation results are very close to the analytic result.

Figure 3.9: Maximal crest height of PMDW (circle red) obtained by simulation, and the

analytic value of the crest height of PMDW (blue line)

Our aim is to find the PMDW which can approximate the Draupner wave well around

the maximal amplitude. The maximal amplitude of the Draupner wave is 18.5[m], so

we want to find the appropriate value of a such that ηpmw�a��0� is exactly 18.5[m].

Analytically we can estimate the appropriate value of a by applying the Draupner

signal and substituting 18.5 into μa in the equation (3.13). The appropriate value of a

is 0.606, the solution of the equation below:

18.5 �
1

aπ

�
1� cos2�aπ�

� �
S�ω�dω

On the other hand we can also get the value of a from the simulation result as shown

in Figure 3.9. The zoomed figure is in Figure 3.10. From this figure the desired crest

height is indeed found at a � 0.606. Actually we can also find the desired crest height

18.5[m] in the range a � �0.58; 0.64� within one standard deviation. According to [24],

the amplitude of 18.5[m] is obtained with the nonlinear contribution, whereas the linear

contribution of the Draupner wave has a maximal amplitude of 14.7[m]. Consequently

the value of a corresponding to the linear amplitude is 0.68 or in the range �0.65; 0.71�

within one standard deviation.
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Figure 3.10: A closer look of maximal crest height 18.5[m]

In addition we calculate the height of PMDW as function of a at other times t, see

Figure 3.11. The graph of PMDW at time t is precisely the same as at time �t. Figure

3.11 shows that the maximal of PMDW is at t � 0.

Figure 3.11: Amplitude of PMDW (circle) obtained by simulation, and the analytic mean

of PMDW at certain t (solid line)

From Figure 3.9 we see that the maximal crest height is getting lower as a increases.

The effect of changing the phases can also be seen directly in Figure 3.12 till Figure

3.16. These figures are the PMDW corresponding to various value for a.

32



3.4 Comparing the Draupner wave with (Pseudo-) Maximal Draupner
Wave

Figure 3.12: The Draupner signal and PMDW with a � 0.1

Figure 3.13: The Draupner signal and PMDW with a � 0.5

Figure 3.14: The Draupner signal and PMDW with a � 0.606

33



3. MAXIMAL WAVE

Figure 3.15: The Draupner signal, PMDW with a � 0.68, and the linear NewWave

Figure 3.16: The Draupner signal and PMDW with a � 1

These figures show the effect of restriction of the phases. The maximal crest height

decreases rapidly and the symmetry property is obviously satisfied by PMDW which

is shown in formula (3.15). For a � 0 we obtain the maximal wave and for a � 1 we

get the mean of N irregular wave, which is zero. We observe from Figure 3.12 that for

a � 0.1 the maximal crest height is still very high, whereas Figure 3.16 shows that for

a � 1 there is almost nothing. The PMDW in Figure 3.14 has maximal crest height

18.5[m], since a � 0.606 is the appropriate value to reproduce the maximal crest height

of the Draupner wave. It is not only good for approximating the maximal crest height,

but the PMDW corresponding to a � 0.606 is also quite good to model the Draupner

wave in an interval near crest t � ��10, 10�.
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Wave

We are now interested in Figure 3.15, which shows the linear contribution of the Draup-

ner wave. The maximal amplitude of the linear NewWave is 14.7[m] [24]. The PMDW

with a � 0.68 also has maximal amplitude of 14.7[m]. By comparing the graphs plotted

in Figure 3.15 we observe that: 1) the crest of PMDW is narrower than the crest of the

linear NewWave, while the trough is broader and higher; 2) the trough of PMDW is

also broader and higher than the trough of the Draupner wave; 3) the crest of the linear

NewWave is wider than the crest of the Draupner wave, while the trough is broader

and lower.
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4

Spatial Evolution of the

Draupner Wave using AB

equation

This chapter describes the spatial evolution of the Draupner wave with the AB equation.

It also demonstrates how well Draupner wave satisfies the symmetry property. We

perform simulations of the wave evolution as a signaling problem for the linear and

the nonlinear AB equation. A signaling problem is a problem for a wave model that

specifies the surface elevation at one position as a function of time and aims to calculate

the wave elevation at every position and every time. We will take the Draupner signal

to specify the elevation at the Draupner position.

4.1 AB equation

The AB equation derived by van Groesen and Andonowati [22] is a unidirectional wave

equation above a flat bottom describing the surface wave elevation. This equation

is derived by exploiting the variational formulation of surface water wave [22]. It is

applicable for finite and infinite depth, but in this study we use only the equation for

finite depth. We describe the dynamics by the surface elevation, η�x, t�. As defined in

[22], the AB equation can be written as:

�tη � ��gA

�
η � 1

4
�Bη�2 � 1

2
B�ηBη� � 1

4
�Aη�2 � 1

2
A�ηAη�

�
(4.1)
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where A and B are the pseudo differential operators which depend on the dispersion

relation (see also [23]). The equation (4.1) is the nonlinear AB equation, while the

linear AB equation is only the first term in square brackets. The minus sign in equation

(4.1) is for the wave evolution travelling to the right and the plus sign is for the wave

evolution travelling to the left. Since we consider dispersive wave evolution, we need the

dispersion relation for water waves. According to Whitham [26], in one space dimension,

water waves on a layer of depth h in a constant gravity field g, have dispersion given

by the relation,

ω � Ω�k� � sign�k�
�
gk tanh�kh� (4.2)

where k is the wave number. The operators A and B are defined by:

A � C
�x�
g

B �
�
g

C
(4.3)

in which C is the phase velocity operator. The Fourier transfrom of C is defined by�C � Ω�k�
k , therefore we can derive the Fourier transform of operator A as:

�A � i sign�k�
�
k tanh�kh� � iΩ�k��

g
(4.4)

and the Fourier transform of operator B as:

�B �
�

k

tanh kh
(4.5)

The idea to solve the AB equation is by transforming the equation into Fourier space,

as shown in section 4.2 and 4.3 in more detail.

4.2 The Signaling problem for Dispersive AB equation

The aim of this section is to define the signaling problem that we will use in the nu-

merical simulation. There will be two cases, the signaling problem for linear dispersive

AB equation and the signaling problem for nonlinear dispersive AB equation. In the

simulation we use the Draupner signal in small interval as described in section 2.3 as

the signal to be generated at x � 0, s�t�.

Firstly, we formulate the signaling problem for the linear dispersive AB equation as:

�tη ���
gAη

η�0, t� �s�t�
(4.6)
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By solving (4.6) we obtain the signals at other places in the domain. By investigating

η�x, t� and η��x,�t�, we can observe how good the simulation satisfy the symmetry

property.

As mentioned before we want to solve the problem by Fourier transform. In Fourier

space (4.6) becomes
�t�η �� iΩ�k��η

�η�0, t� �s�t�
(4.7)

where �η�k, t� is the Fourier transform of η�x, t�. The dynamic equation has a simple

general solution,

�η�k, t� � α�k�e�iΩ�k�t

The function of α�k� depends on the initial data. α�k� � �η�k, 0�. Therefore we have

the exact solution of (4.6), that is:

η�x, t� �
� �η�k, t�eikxdk

�
�
α�k�e�iΩ�k�teikxdk

(4.8)

which has to satisfy η�0, t� � s�t�. By changing the variable k into ω using the dispersion

relation, k � Ω�1�ω�, we obtain

s�t� �
�
α�k�e�iΩ�k�tdk

�
�
α
�
Ω�1�ω�� e�iωt dω

Vgr�Ω�1�ω��
α
�
Ω�1�ω�� ��s�ω� � Vgr

�
Ω�1�ω��

Here, �s�ω� is the Fourier transform of s�t� with respect to time. Vgr denotes the group

velocity, given by Vgr�k� � dΩ�k�
dk . By substituting α into equation (4.8) we have

η�x, t� �
� �s�ω�ei�kx�ωt�dω (4.9)

Secondly we will include the nonlinear term, then the signaling problem for the non-

linear dispersive AB equation becomes:

�tη ���
gA

�
η 	 1

4
�Bη�2 	 1

2
B�ηBη� � 1

4
�Aη�2 	 1

2
A�ηAη�

�
η�0, t� �s�t�

(4.10)
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This nonlinear AB equation is very complicated, therefore we can not find the exact

solution. We solve it numerically by Fourier transform. The results can be seen in

section 4.3.

4.3 Numerical Implementation

4.3.1 Solving the Signaling Problem

In this section we will explain how we solve the signaling problem numerically. Ini-

tially we formulate the signaling problem in (4.6). Since the signaling problem has

approximately the same solution as the forced equation with area generation, we solve

it through the forced equation with vanishing initial elevation (see Appendix D), which

is:

�tη ��Aη � γ�x� � s�t�

η�x, 0� �0
(4.11)

where the function γ�x� is the inverse Fourier transform of the group velocity, Vgr�k� �

�γ�x�. In order to solve (4.11) we transfrom it into Fourier space, which becomes:

�t�η �� �Aη � Vgr�k� � s�t�

�η�k, 0� �0
(4.12)

We solve (4.12) using the time integration procedure by ODE45 in MatLab. Using

area generation means that we disturb the water to generate the wave over a certain

area. This certain (generation) area represents the extent of the disturbed area and is

determined by the function γ�x�. The function γ depends on the depth of the water.

The deeper the water, the larger is the disturbed area. For example, we compare the

γ�x� for 1[m], 5[m], and 70[m] depth in Figure 4.1.

If we confine the generation area to the area for which γ�x� � 2 � 10�3, we can get the

length of the area. See the skecth in Figure 4.2. For 1[m] depth the generation area

is 	x	 
 4[m] and for 5[m] depth it is at x 
 19. If the depth is 70[m], which is the

case for the Draupner wave, we will get a very large generation area of approximately

400[m] (	x	 
 200).
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Figure 4.1: Plots of the function γ�x� for various depths

Figure 4.2: Sketch of the function γ�x� for certain depths, showing the length of the

generation area, 2x1

4.3.2 Numerical Data and Parameters

Here we specify the precise data that are used in the simulation of the spatial evolution

of the Draupner signal.

The Draupner wave-data are:

• Full time signal as Figure 2.4

• t� � �0.4688; 1200�[s] (original time span)

• s�t� (signal which we use in the numerical evolution), as plotted in Figure 2.10,

but shifted and cut. The amplitude spectrum and the phases are given in Figure

2.11.

• t � ��263.9063; 263.9063�[s] (time span which we use in the numerical evolution)
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• dt� � 0.4688[s] (time step of the original data)

• h � 70[m] (depth of the water layer)

Figure 2.2 shows the bathymetry of North sea. According to that figure the

depth of Draupner platform is approximately 70[m]. By roughly calculating the

bathymetry around the location of Draupner is quite flat in an area nearby the

Draupner platform.

The numerical parameters are:

• g � 9.81[m/s] (acceleration of gravity)

• dt � 0.4688 (time step of the numerical output)

We can take any time step for the calculation output since the numerical output

does not depend on dt, but it depends on dx. In our simulation, we use the same

dt as the original data so that the signals at all positions have the same time step

with the Draupner signal.

• L � 1000[m] (length of the simulation domain)

As investigated before, the generation area for 70[m] depth is �x� � 200[m], there-

fore we should choose the length of simulation domain larger than 200[m]. In our

simulation we choose 1000[m] as the total domain and 800[m] as the observed

domain since the bathymetry is flat enough in radius 1000[m] and the symmetry

of the Draupner wave will be observed in the interval �0, 800�.

• x � �0, 800�[m] (observed spatial domain) and damping zone � ��100,�30� and

�830, 900� for the evolution going to the right

The restricted domain in the simulation gives a periodic solution. The wave

propagates to the right till approaching the right boundary, then it comes back to

the left boundary. To avoid the periodicity we damp the wave near the boundary,

so that the wave goes to zero in the damping zone (the area where we damp the

wave). We damp the wave by adding αη in the right hand side of the AB equation

for x in the damping zone:

�t�η �

�
��Aη 	 Vgr
k� � s
t� � βη for x 
 damping zone

��Aη 	 Vgr
k� � s
t� others
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The value of β determine how fast the wave decreases to zero. In order to

make the wave sufficiently damped, we choose β � 4 and damping zone �

��100,�30� and �830, 900�. This damping case is also used for the evolution

going to the left.

• x � ��800, 0�[m] (observed spatial domain) and damping zone � ��900,�830�

and �30, 100� for the evolution going to the left.

• N � 212 modes (dx approximate to 0.24[m])

The length of ω is 2π
dt �� 13.4�, then the maximal value of ω is 6.7. However

the spectrum of signal s�t� is almost vanishing for ω � 4, and we restrict the

frequencies until ω � 2 in Figure 4.3. According to the dispersion relation, it

means that the maximal wave number that is involved in the numerical calculation

is kmax � 1.63. By the formula λ � 2π
kmax

, we can compute the minimum wave

length, which is around 3.8[m]. For the computation, suppose we want to have

10 points in 3.8[m], then we should take the dx smaller than 0.38. Consequently

we choose N � 212 so that dx � 0.24[m] (� 0.38).

In the next two sections we will investigate whether the symmetry property of a maximal

wave is satisfied by the Draupner wave, particularly around the maximum area.

4.3.3 Simulation with the Linear AB equation

For simulation with the linear AB equation, the evolution should keep the original

spectrum: the spectrum of the signal at every position is the same as original spectrum.

Figure 4.3: Simulation with the linear dispersive AB equation. The blue line is the

original amplitude spectrum and the red line is the amplitude spectrum at x � 20[m]
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Figure 4.4: Simulation with the linear dispersive AB equation. The blue line is the

original amplitude spectrum and the red line is the amplitude spectrum at x � 200[m]

Figure 4.3 shows the amplitude spectrum of the signal at position x � 20[m] and the

original spectrum. These are not exactly the same. The amplitude spectrum of the

signal at position x � 20[m] is a bit less than the original spectrum, for instance in the

interval �0.25; 0.75�. This can be caused by two factors, a modeling and/ or a numerical

factor. To investigate the numerical error, we tried the simulation by N � 28, N � 210

and N � 212. Yet, for all these choices of N , there remains an error in the spectrum

which does not seem to decrease significantly with increasing N .

Figure 4.5: MTA of the simulation with the linear dispersive AB equation

A modeling error could be explained by the fact that the effect of the generation area

is still large at position x � 20[m] (see Figure 4.1). As explained in section 4.3.1, for

70[m] depth the effect of the generation area is substantial for x � 200[m]. Therefore,

we can expect a better agreement of the spectra if we catch the signal at a position

x � 200[m]. Figure 4.4 indeed shows that the original spectrum and the amplitude
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spectrum at x 200[m] are almost the same. A small remaining error is probably a

numerical error.

Figure 4.5 shows the maximal temporal amplitude (MTA), the maximal amplitude over

the time at each position for x 800, 800 . From this figure, the maximal amplitude

is at x 0, but we can not be sure because the MTA around x 0 is not possible to

be observed precisely. This is because of the generation area, x 200[m].

Figure 4.6: Simulation with the linear dispersive AB equation. In the upper plot, the

blue line is η 20, t and the red line is η 20, t . The lower figure is the difference

η 20, t η 20, t

We show the signals of the simulation with the linear AB equation as the solution of

(4.11) at various positions, x 20, 50, 100, 200, 400, 600[m]. In order to see the differ-

ence between η x, t and η x, t , we plot them in one figure, for instance η 20, t

and η 20, t in Figure 4.6. We also present the plot of η x, t η x, t to show

the difference.

As mentioned in section 4.3.2 the water depth for this simulation is 70[m]. By the

dispersion relation (4.2) the phase velocity of the waves corresponding to 70[m] depth

must be less than 70 g (approximately 26[m/s]). As investigated in section 2.3 the
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amplitude spectrum of the Draupner signal is dominant in the range ω 0.25; 0.9 .

The ω 0.25 corresponds to the phase velocity of 25[m/s] and the ω 0.9 corresponds

to the phase velocity of 10.89[m/s]. Consequently most of waves propagate with the

phase velocity in the range 10.89; 25 .

Numerically, we can compute the phase velocity of a wave. For instance, we will roughly

compute the phase velocity of the Draupner wave. The highest peak of the Draupner

wave propagates through 200[m] in about 11[s] (see Figure 4.9), i.e the velocity is

approximately 18.2[m/s], corresponding to the frequency ω 0.52. This is realistic ac-

cording to the depth and dispersion relation since for ω 0.25; 0.9 , the corresponding

phase velocity is in the range 10.89; 25 .

Figure 4.7: Simulation with the linear dispersive AB equation. In the upper plot, the

blue line is η 50, t and the red line is η 50, t . The lower figure is the difference

η 50, t η 50, t

The signals at position x 20[m], x 50[m], and x 100[m] show that the evolution

of the maximal wave to the right and to the left are quite similar in an interval. For

instance in Figure 4.7 the signals are quite similar in t 15, 19 , but outside that

range the signals become different. This means that the symmetry property is satisfied

only around the highest wave. To know over which distance the Draupner wave (par-
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Figure 4.8: Simulation with the linear dispersive AB equation. In the upper plot, the

blue line is η 100, t and the red line is η 100, t . The lower figure is the difference

η 100, t η 100, t

Figure 4.9: Simulation with the linear dispersive AB equation. In the upper plot, the

blue line is η 200, t and the red line is η 200, t . The lower figure is the difference

η 200, t η 200, t

ticularly around highest wave) satisfies the symmetry property, the wave evolution in

a long spatial interval is calculated.
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Figure 4.10: Simulation with the linear dispersive AB equation. In the upper plot, the

blue line is η 400, t and the red line is η 400, t . The lower figure is the difference

η 400, t η 400, t

Figure 4.11: Simulation with the linear dispersive AB equation. In the upper plot, the

blue line is η 600, t and the red line is η 600, t . The lower figure is the difference

η 600, t η 600, t
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Figure 4.12: Simulation with the linear dispersive AB equation. In the upper plot, the

blue line is η 800, t and the red line is η 800, t . The lower figure is the difference

η 800, t η 800, t

From these numerical results the symmetry of η x, t around the highest wave is satisfied

well until x 200[m]. For position x 400 and higher (Figure 4.10-4.12), the

period of wave around the highest wave is still almost similar, but the amplitude of the

upstream, η x, t is getting larger than the downstream, η x, t , which means the

symmetry property is gradually lost with increasing distance.

4.3.4 Simulation with the Nonlinear AB equation

In the simulation with the nonlinear AB equation we solve equation (4.10) in the same

way as the linear case. We only add the nonlinear term of the AB equation into

(4.11). The results of the simulation with the nonlinear AB equation are not different

significantly from the linear simulation (see Figure 4.13 and 4.14). This also happens

in the nonlinear case that the amplitude spectrum of the signal at x 20[m] in Figure

4.13 is a bit different from the original spectrum and the amplitude spectrum of the

signal at x 200[m] in Figure 4.14 is approximately the same as the original spectrum.

The difference is because of the numerical and modeling factor as explained in previous

section.

49



4. SPATIAL EVOLUTION OF THE DRAUPNER WAVE USING AB
EQUATION

Figure 4.13: Simulation with the nonlinear dispersive AB equation. The blue line is

original amplitude spectrum and the red line is the amplitude spectrum at x � 20[m]

Figure 4.14: Simulation with the nonlinear dispersive AB equation. The blue line is

original amplitude spectrum and the red line is the amplitude spectrum at x � 200[m]

Here, we present the MTA of the simulation with the linear and nonlinear AB equation

in Figure 4.15, so that we can compare them. Excluding the area at �x� � 50, this

figure shows that the nonlinear simulation gives the amplitude a bit higher than the

linear one at each position x[m].

Figure 4.15: The MTA of the simulation with the linear and nonlinear AB equation
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Figure 4.16: Simulation with the nonlinear dispersive AB equation. The blue line is

η 20, t and the red line is η 20, t

Figure 4.17: Simulation with the nonlinear dispersive AB equation. The blue line is

η 100, t and the red line is η 100, t

Figure 4.18: Simulation with the nonlinear dispersive AB equation. The blue line is

η 400, t and the red line is η 400, t

The signals simulated by the nonlinear AB equation at several positions are presented

in Figures 4.16-4.19. The signals are not different significantly as the linear case, also

for the symmetry property. We observe the symmetry property of the Draupner wave

around maximum area. At x 20[m] and x 100[m] the maximal crest of the Draup-
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Figure 4.19: Simulation with the nonlinear dispersive AB equation. The blue line is

η 800, t and the red line is η 800, t

ner wave still keeps the symmetry property, see Figure 4.16 for t 10, 10 and Figure

4.17 for t 0, 20 . Figure 4.18 in the range (20,50) shows that the periods of the waves

are still symmetric, but the amplitudes are somewhat different. For larger x, see Figure

4.19 the waves are only symmetric in a very small range, t 35, 45 . Furthermore, the

waves gradually lose the symmetry property as distance increases.
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5

Conclusions and

Recommendations

This chapter will summarize our results and also give some recommendation for further

investigation related to this thesis.

In this thesis we introduced the (pseudo-) maximal wave as a new concept to describe a

freak wave appearance and apply it to the Draupner signal. The defined maximal wave

has three properties, which are zero phases, maximal at �x0, 0�, and symmetry. Our

observation gives as result that the Draupner wave does not have zero phases, but ran-

dom phases when we consider a large time interval around the Draupner wave. When

the time interval is restricted to �0; 528.8�, the phases are no longer random but show

some restriction. The maximal Draupner wave which is shown in Figure 3.8 has an

extremely high maximal crest height. It is about twice of the maximal crest height of

the Draupner wave. Therefore the maximal Draupner wave can not be an appropriate

design wave to approximate Draupner wave. The appropriate one which we found is

pseudo-maximal Draupner wave corresponding to a � 0.606 presented in Figure 3.14.

Around the maximal crest it almost models the Draupner wave. The highest peak

of the pseudo-maximal Draupner wave is exactly the same as the highest peak of the

Draupner wave. It indicates that the pseudo-maximal Draupner wave can locally be

used to describe the maximal crest of Draupner wave.

A maximal wave and a pseudo maximal wave have a symmetry property. The Draupner
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wave satisfies this property for t around the maximal crest. The numerical simulations

with the AB equation in chapter 4 provides additional insights of Draupner wave evo-

lution. The spatial evolution by either linear or nonlinear AB equation shows that the

maximal crest of Draupner wave has the symmetry property in some approximation in

a spatial domain of length about 200[m], but the symmetry property is gradually lost

for increasing distance.

Future work could be to take nonlinear effects in the design of (pseudo-) maximal

wave, just as has been done for fifth order NewWave. Another work is to do the spatial

evolution of the Draupner signal using AB equation by point generation instead of area

generation.
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Appendix A

Statistical Distribution Theory

The distribution of a stochastic variable is a description of the relative number of times

each possible outcome will occur in a number of trials. It can be either continuous or

discrete, but we only consider the continuous distribution. The function describing the

probability that a given value will occur is called the probability function (or proba-

bility density function), and the function describing the cumulative probability that a

given value or any value smaller than it will occur is called the distribution function

(or cumulative distribution function). The mathematical definition of a continuous

probability function, f�x�, is a function that satisfies the following properties:

• It is non-negative for all real x

• The probability that x is between two points a and b is

P �a � x � b� �

� b

a
f�x�dx

• The integral of the probability function is one, that is
�
�

��

f�x�dx � 1

Since continuous probability functions are defined for an infinite number of points over

a continuous interval, the probability at a single point is always zero. In the continuous

case, probabilities are measured over intervals, not single point. Thus the area under

the curve between two distinct points defines the probability for that interval. This

means that the height of the probability function can in fact be greater than one, but

the total area under the probability function is one.
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A. STATISTICAL DISTRIBUTION THEORY

Definition Let X be a random variable. For every real number x, the distribution

function of a real-valued random variable X is given by

FX�x� � P �X � x�

where the right-hand side represents the probability that the random variable X takes

on a value less than or equal to x.

The probability that X lies in the interval �a, b� is therefore FX�b� � FX�a� if a � b.

By definition the distribution function of X can be defined in term of the probability

function f as:

F �x� �

� x

��

f�t�dt

Every distribution function F is monotone non-decreasing and right-continuous. Fur-

thermore, we have

lim
x���

F �x� � 0, lim
x��

F �x� � 1

The most important parameters of statistical distribution are the mean and the vari-

ance. The mean or expected value is the average of all realizations of the random

process. Variance is a measure of the dispersion of a set of data points around their

mean value. In other words, variance is a mathematical expectation of the average

squared deviations from the mean. If a random variable X is given and its distribution

admits a probability function f , then the expected value of X can be calculated as

μ � E�X� �

�
�

��

xf�x�dx

and it has some basic properties, which are:

(1) Constant

The expected value of a constant is equal to the constant itself, i.e. if c is a

constant, then E�c� � c.

(2) Monotonicity

If X and Y are random variables and X � Y , then E�X� � E�Y �.

(3) Linear

The expected value operator E�X� is linear in the sense that

E�X 	 c� �E�X� 	 c

E�X 	 Y � �E�X� 	 E�Y �

E�aX� �aE�X�

60



(4) If X and Y are independent random variables then E�XY � � E�X� � E�Y �

Independent means the occurrence of one event makes it neither more nor less

probable that the other occurs

The variance of a random variable X with probability function f is defined by

Var�X� � σ2 � E�X2� � E�X�2 �

��
�

��

x2f�x�dx

�
� μ2

Similarly to the mean, the variance also has some basic properties, which are:

(1) Non-negative

For any random variable X, Var�X� � 0.

(2) The variance of a constant random variable is zero

If c is a constant, then Var�c� � 0

(3) The variance of a variable in a data set is 0 if and only if all entries have the same

value.

(4) Variance is invariant with respect to changes in a location parameter

If a constant is added to all values of the variable, the variance is unchanged,

Var�aX 	 b� � Var�aX�

(5) If all values are scaled by a constant, the variance is scaled by the squares of that

constant

Var�aX� � a2Var�X�

For the sum of N stochastic variables, Y �
�N

i�1Xi, the variance is:

Var�Y � �
N�
i�1

Var�Xi� 	 2
�
i�j

Cov�Xi, Xj�

in which Cov denotes the covariance. It is defined by

Cov�X,Y � � E�XY � � E�X� � E�Y �

As consequence of the fourth mean property, if X and Y are independent, then their

covariance is zero. Not only independent, but two random variables can also be iden-

tical. In particular cases we define some random variables which are independent and

61



A. STATISTICAL DISTRIBUTION THEORY

identically distributed (i.i.d). A sequence or other collection of random variables is i.i.d

if each random variable has the same probability distribution as the others and all are

mutually independent. Consequently they have the same mean and variance.

A.1 Uniform Distribution

In general, if all simple events X are assigned the same probability, we say that the

probability model is uniform, i.e this X holds uniform distribution [9]. Uniform dis-

tribution can be discrete or continuous. Here, we only give some background about

the continuous uniform distribution. The continuous uniform distribution is a family

of probability distributions such that for each member of the family, all intervals of the

same length on the distribution’s support are equally probable. The support is defined

by the two parameters, a and b, which are its minimum and maximum values. The

distribution is often abbreviated by U�a, b�. For a � 0 and b � 1, the distribution is

called a standard uniform distribution.

Figure A.1: The Uniform probability function

The probability function of uniform distribution is:

f�x� �

�
1

b�a for a � x � b

0 for x � a or x � b
(A.1)

The distribution function of uniform distribution is:

F �x� �

���
��

0 for x � a
x�a
b�a for a � x � b

1 for x � b

(A.2)
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A.2 Rayleigh Distribution

Figure A.2: The Uniform distribution function

The mean and the variance of the uniform distribution can be expressed as:

μ �
1

2
�a� b�

σ2 �
1

12
�b� a�2

A.2 Rayleigh Distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability

distribution. The Rayleigh distribution is frequently used to model wave heights in

oceanography [28] (see also Appendix B). The Rayleigh probability function of the

random variable X with parameter r is defined by

f�x; r� �
x

r
exp

�
�x2

2r2

�
(A.3)

for x � �0,��, then the probability for x � �a, b	 can be computed by:

P �a 
 X 
 b� �

� b

a

x

r
exp

�
�x2

2r2

�
dx

Figure A.3 shows various Rayleigh distribution. From that figure we can observe that

the maximum of the probability function is at x � r. The distribution in blue is

Rayleigh(1), sometimes referred to as the standard Rayleigh distribution. The distri-

bution function, F �x, σ�, is:

F �x; r� � P �X 
 x� � 1� exp

�
�x2

2r2

�
(A.4)
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A. STATISTICAL DISTRIBUTION THEORY

Figure A.3: The Rayleigh probability function

Figure A.4: The Rayleigh distribution function

The plot of the distribution function can be seen in Figure A.4. The other main

properties, the mean and variance, of a Rayleigh random variable can be expressed as:

μ�X� �r
�

π

2
� 1.253r

Var�X� �4� π

2
r2 � 0.429r2

A.3 Normal Distribution

The normal distribution is also a continuous probability distribution. The continuous

probability function of this distribution exists only when the variance σ2 is not equal

to zero and is given by Gaussian function:

f�x;μ, σ2� � 1�
2πσ

e��x�μ�2��2σ2� (A.5)
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A.3 Normal Distribution

When the variance is equal to zero, the probability function can be represented as a

Dirac delta function:

f�x;μ, 0� � δ�x� μ�

Figure A.5: The normal probability function

Characteristics features of a normal distribution are that its form in bell-shaped curve

and that it is symmetric around the mean value. These characteristics can be observed

in Figure A.3. The distribution function shown in Figure A.6 can be expressed as:

F �x;μ, σ2� � 1

2

�
1� erf

�
x� μ

σ
�
2

��

where erf is the error function defined by:

erf�x� � 2�
π

� x

0
e�t

2
dt

The normal distribution, also called Gaussian distribution, is the most used statistical

Figure A.6: The normal distribution function
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A. STATISTICAL DISTRIBUTION THEORY

distribution. The principal reasons are that normality arises naturally in many physical,

biological, and social measurement situations and that normal is the most important

distribution in statistical inference process[17]. The normal distribution is characterized

by two parameters: the mean μ and the variance σ2. Each possible value of μ and σ2

defines a specific normal distribution. There is a special normal distribution, so-called

standard normal distribution. It has a mean zero and a variance one. All normal

distributions can be transformed to standard normal distributions by the formula:

Z �
X � μ

σ
(A.6)

where X is the original normal distribution, μ is the mean of the original normal distri-

bution, and σ is the standard deviation of the original normal distribution. As a result

Z is a standard normal distribution.
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Appendix B

Derivation of the distribution of

Narrow Band process

We will show that the wave amplitude of Narrow Band process is Rayleigh distributed

and the phases are Uniformly distributed in the range ��π, π�. We refer to [14] for the

material summarized here. Consider the unidirectional wave motion of a narrow-band

frequency spectrum at a given point x � 0. We write η�t� instead of η�0, t�.

η�t� �
�

n

Bn cos�Ωnt� θn� (B.1)

We suppose the spectrum is narrow banded with frequency Ωm. Then we can rewrite

(B.1) as:

η�t� �
�

n

Bn cos��Ωn � Ωm�t� θn� cos�Ωmt� �
�

n

Bn sin��Ωn � Ωm�t� θn� sin�Ωmt�

�Ac�t� cos�Ωmt� �As�t� sin�Ωmt�
(B.2)

where

Ac�t� �
�

n

Bn cos��Ωn � Ωm�t� θn�

As�t� �
�

n

Bn sin��Ωn � Ωm�t� θn�
(B.3)

Define Ac�t� � B�t� cos�ϕt� and As�t� � B�t� sin�ϕt� in which

B�t� �
�
A2

c�t� �A2
s�t�

ϕ�t� � tan�1�As�t��Ac�t��
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B. DERIVATION OF THE DISTRIBUTION OF NARROW BAND
PROCESS

Hence
η�t� �B�t� cos�ϕt� cos�Ωmt� �B�t� sin�ϕt� sin�Ωmt�

�B�t� cos�Ωmt� ϕt�
(B.4)

For a narrow band spectrum, the amplitude B is the amplitude of the wave envelope,

which varies slowly in time. For random phases θn, in virtue of the Central Limit

Theorem, Ac and As are Gaussian processes with mean value equal to zero and variance

σ2
η as:

E�A2
c� � E�A2

s� � E�η2� � σ2
η

Since Ac and As are independent variables, the two-dimensional probability function

becomes:

f2�Ac, As� � f1�Ac�f1�As� �
1

2πσ2
η

exp

�
�
A2

c �A2
s

2σ2
η

�
(B.5)

Using equation (B.5) and the Jacobian of the variable transformation J � ��Ac,As�
��B,ϕ� � B,

we represent f2 as a function of variables B and ϕ, i.e.:

f3�B,ϕ� � f2�Ac�B,ϕ�, As�B,ϕ��J �
B

2πσ2
η

exp

�
�

B2

2σ2
η

�
. (B.6)

Observe that this probability function is independent of ϕ. Finally, the one dimensional

probability function for amplitude B and phase ϕ are obtained through integration of

equation (B.6), with respect to phase ϕ and amplitude B, respectively:

f4�B� �

� π

�π
f3�B,ϕ�dϕ �

B

σ2
η

exp

�
�

B2

2σ2
η

�
(B.7)

f5�ϕ� �
1

2π

� �

0

B

σ2
η

exp

�
�

B2

2σ2
η

�
dB �

1

2π
(B.8)

Expression (B.7) is the well known Rayleigh distribution for wave amplitude. Expres-

sion (B.8) indicates that for a narrow band process, the phases are uniformly distributed

in the range ��π, π�.
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Appendix C

Derivation of Distribution

Function of sin�θa� for a � �1�2, 1�

The distribution function of sin�θa� for a � �1�2, 1� can be computed through the

sketch of the sine function. We suppose sin�θa� is defined in ��π
2 ,

π
2 � and we separate

the domain in five intervals.

• y � �1

Since sin�θa� is only in the range ��1, 1�, it is clear that

Fsin�θa��y� 	 P �sin�θa� 
 y� 	 0

• y � 1

It is also clear that

Fsin�θa��y� 	 P �sin�θa� 
 y� 	 1

• �1 
 y � sin��aπ�

From Figure C.1, we compute the required distribution function as:

Fsin�θa��y� 	P �sin�θa� 
 y�

	P ��π � sin�1�y� 
 θa 
 sin�1�y��

	Fθa�sin
�1�y�� � Fθa��π � sin�1�y��

	
sin�1�y� � aπ

2aπ
�
�π � sin�1�y� � aπ

2aπ

	
sin�1�y�

aπ
�

1

2a
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C. DERIVATION OF DISTRIBUTION FUNCTION OF SIN�θA� FOR
A � �1�2, 1�

Figure C.1: Sketch for computing Fsin�θa��y� with a � �1�2, 1�

• sin��aπ� � y � sin�aπ�

From Figure C.2, we compute the required distribution function as:

Figure C.2: Sketch for computing Fsin�θa��y� with a � �1�2, 1�

Fsin�θa��y� �P �sin�θa� � y�

�P ��aπ � θa � sin�1�y��

�Fθa�sin
�1�y�� � Fθa��aπ�

�
sin�1�y� 	 aπ

2aπ

�
sin�1�y�

2aπ
	

1

2

• sin�aπ� � y � 1

From Figure C.3, we compute the required distribution function as:
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Figure C.3: Sketch for computing Fsin�θa��y� with a � �1�2, 1�

Fsin�θa��y� �P �sin�θa� � y�

�P ��aπ � θa � sin�1�y�� � P �π � sin�1�y� � aπ�

�Fθa�sin
�1�y�� � Fθa��aπ� � Fθa�aπ� � Fθa�π � sin�1�y��

�
sin�1�y� � aπ

2aπ
�
�aπ � aπ

2aπ

�
sin�1�y�

2aπ
�

1

2
� 1�

π � sin�1�y� � aπ

2aπ

�
sin�1�y�

aπ
�

1

2a
� 1
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A � �1�2, 1�
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Appendix D

Signaling problem versus Forced

equation with area generation

Here we will show our agreement in section 4.3.1 that the signaling problem has ap-

proximately the same solution as the forced equation with area generation.

The signaling problem is formulated by:

�tη ���
gAη

η�0, t� �s�t�

while the forced equation with area generation and vanishing initial elevation is:

�tη ��Aη � γ�x� � s�t�
η�x, 0� �0

in which A is a pseudo differential operator with �A � iΩ�k� � iω and �γ�x� � Vgr�k�.

The signaling problem is approximately equivalent to forced equation, since the exact

solutions of those problems are approximately equal. As derived in section 4.2 the exact

solution of the signaling problem is:

η�x, t� �
� �s�ω�ei�kx�ωt�dω

�
� �� �

0
s�τ�eiωτdτ

�
ei�kx�ωt�dω

�
� � �

0
s�τ�ei�kx�ω�t�τ��dτdω
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D. SIGNALING PROBLEM VERSUS FORCED EQUATION WITH
AREA GENERATION

This solution is not causal, because to get the solution at time t, we need all the

informations of initial signal, so also the information for time in the future τ � t. For

this reason we use the causal expression and neglect the contribution for τ � t. The

signaling problem becomes approximately

η�x, t� �

� � t

0
s�τ�ei�kx�ω�t�τ��dτdω (D.1)

We will prove that (D.1) is precisely the solution of the forced equation.

• Substitution of t � 0 in (D.1) gives η�x, 0� � 0 (the initial elevation vanishes)

• By computing the derivative of (D.1) with respect to t, we show that the forced

equation is satisfied:

�tη �

� �
�

�t

� t

0
s�τ�e�iω�t�τ�dτ

�
eikxdω

�

� �� t

0
�iω � s�τ�e�iω�t�τ�dτ 	 s�t�

�
eikxdω

�

� � t

0
�iω � s�τ�ei�kx�ω�t�τ��dτdω 	

�
s�t�eikxdω

�

�
�iω � �s�ω�ei�kx�ωt�dω 	 s�t�

�
Vgr�k�e

ikxdk

�

�
� �A�ηeikxdk 	 s�t�

�
Vgr�k�e

ikxdk

��Aη 	 γ�x� � s�t�

• For x � 0 we get the required signal:

η�0, t� �

� � t

0
s�τ�e�iω�t�τ�dτdω

�

� �s�ω�eiωtdω
�s�t�
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