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Abstract

There are many reasons to investigate the propagation of surface water waves in the sea. In
this report Boussinesq models are studied, that can be applied for modeling free-surface waves
propagating from the deep sea up into the surf zone. These models can become fairly complex
and improving linear frequency dispersion properties of these Boussinesq models often invoke
difficult higher-order terms in the resulting partial differential equations [18].
Among others, Broer [7, 8], Broer et al.[9]and Klopman et al.[19] propose, based on the vari-
ational principle for potential flows proposed by Luke [27], variational Boussinesq models
to describe potential flows with dispersion. The advantage of these models is that energy
is conserved and guaranteed to be positive, while mixed higher order spatial and temporal
derivatives are avoided. The cost of this is that we additional unknown quantities, with as-
sociated elliptic partial differential equations, that are relatively simple to solve numerically
[20].
In this report three variational models are considered, namely those of Luke [27], Klopman et
al. [19] and Whitham [37], and they are extended including surface tension effects. Addition-
ally, we integrated the motion of the fluid domain boundaries with our variational principles
describing the fluid motion. We compare the linear dispersion relations of the three models
and draw the conclusions that the Klopman variational Boussinesq model approximates the
exact linear dispersion obtained from Luke variational principle for potential flow, better than
the Whitham model.
We numerically solve the Whitham and Klopman variational Boussinesq models in time using
a continuous Galerkin finite element method. To simulate the propagtion of the discontinu-
ous jump that occurs when waves are breaking, we propose a discontinuous Galerkin finite
element method. In this progress of this report, a discontinuous Galerkin approach was suc-
cesfully applied to the linear Klopman variational Boussinesq model. This approach can be
followed to formulate a discontinuous Galerkin finite element discretization to solve the fully
nonlinear model.
In this report it is shown that breaking waves do not occur in Whitham’s variational Boussi-
nesq model for waves propagating over a horizontal seabed. Further, we consider the weakly
nonlinear Klopman VBM, i.e. neglecting higher-order waves-slope effects, and it is shown that
waves described by this model can not break as well. Further research on the fully nonlinear
Klopman variational Boussinesq model is required. In this report we draw some conclusions
and state recommendations, particularly on how to construct a discontinuous Galerkin FEM
to solve the fully nonlinear Klopman variational Boussinesq model numerically.
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1 Introduction 1

1 Introduction

1.1 Motivation

There are many reasons to investigate free-surface water waves propagation in the sea, such
as the necessity to predict the motion of the water-surface at a certain place and time and
to deduce the effects when waves reach shores which is of much interest for coastal defenses.
Waves reaching the entrance of a harbor are of much interest for both harbor designers and
vessel constructors. Propagating waves may threaten offshore oil rigs.
The recent devastation of the shores and cities of South-Asia and East-Africa by a tsunami
(December 2004) is a striking example where the origination and propagation of waves is
of particular interest. The tsunami was excited by a fault movement1 in the Indian Ocean
near the Indonesian island of Sumatra. Reconstruction of the seabed movement at the time
of fault motion is crucial for scientific understanding of tsunami excitation and developing
coastal warning systems. Furthermore, predicting the propagation of tsunamis and tsunami
wave trains may indicate which regions are relatively safe and which coastal regions are
threatened the most when tectonic activity is measured.
Wave prediction and reconstruction can be achieved in various ways. Field data can be
observed to gain real scale statistical information. A laboratory setting can be used to simulate
a full-scale problem and to validate theoretical models. Lastly, mathematical models can be
developed to understand and predict water waves.
In this report we consider Boussinesq models that aim to accurately model waves propagation
from the deep sea to the surf-zone [25]. An important question is, whether waves in the
Boussinesq models are capable to break, i.e. develop jumps in the surface elevation. Further
challenges will then be to cope with the breaking of the waves numerically and to model
flooding and drying of waves reaching the shore.

1.2 Mathematical model

Waves of Boussinesq type account for dispersion2 and nonlinearity [17]. Ideally, Boussinesq
models can be applied to water waves occurring from deep water to the surf zone, without any
extensions of the model. The model is valid for long waves with a depth to wavelength ratio of
h/λ << 1 [25]. Over the years the original Boussinesq formulation (Peregrine, 1967 [30]) has
been extended to improve the dispersion properties of the model and to adapt for bathymetric
influences. See for an overview the work of Madsen et al. [25] and Kirby [17]. Extensions are
generally made by introducing complex high-order mixed spatial and temporal derivatives.
Further, many Boussinesq-type models are not derived from variational principles and do not
satisfy positive-definite energy conservation [19], while the original (potential-flow) models do
conserve positive-definite energy [27].
Therefore, we start from a variational approach to account for the conservation of energy
[19]. The complete complex dynamics of the system is now captured in two scalar quantities,
namely the velocity potential and the kinematic energy [21]. Furthermore, the variational
principle provides a weak formulation, which is easily transferred into a finite element weak
formulation.
In this report three variational Boussinesq models are studied. Firstly, Luke’s variational
principle [27] for the full three dimensional potential flow is investigated. Luke’s variational
principle allows us to compare the dispersion relations of the two Boussinesq models with the
exact dispersion relation of the potential flow model.
The second variational model is derived by Klopman et al. [19] and is an approximation of

1Fault movement was the actual cause of both the tsunami and the earth quake.
2Dispersion is a phenomenon that causes the wave to separate into components with different frequencies

and wavelengths, due to the dependency of the celerity of these components on its wavelength and/or it’s
frequency.



2 1 Introduction

Luke’s variational principle. Within this model energy is conserved and is positive-definite.
This model is applicable for fully non-linear water waves of Boussinesq-type and has im-
proved dispersion characteristics for propagating wave-groups such as tsunami wave-trains as
compared to classical Boussinesq-type equations.
The third variational Boussinesq model is derived by Whitham [37], resulting (under addi-
tional approximations) in the original Boussinesq (partial differential) equations formulated
by Peregrine [30]. It is a further simplification relative to Luke’s and Klopman’s variational
principle.
In this report surface tension effects are included in the three variational models. These
effects are not negligible in small water-depths [23] and are easily included in a variational
principle. This has the advantage that the mathematical models can be validated eventually
with a laboratory test in which surface tension is imporatant.
In this report we introduce moving boundaries for the Klopman’s variational Boussinesq
model in order to capture flooding and drying effects in the model.

1.3 Numerical computation

The wave propagation described by the two variational Boussinesq models is solved numer-
ically. The variational models lead to weak variational forms, that are used to conduct the
weak formulations of the continuous Galerkin finite element method. We compare the numer-
ical results with approximate the original Boussinesq equations [11], called cnoidal waves3.
Instead of investigating shoaling effects we will simulate breaking waves by initially considering
very steep linear wave solutions in our non-linear model [36]. When a wave is breaking,
the water surface shows a discontinuous jump. To be able to solve the propagation of a
discontinuous jump numerically we propose a discontinuous Galerkin method.

3A cnoidal wave is a periodic analytical solution to the Korteweg-de Vries (KdV) euations, which is a
propagating, shape invariant solution in both space and time.
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2 Variational principles for water waves

2.1 Introduction

Considering fluids with the assumption of conservation of energy enables us here to formulate
a variational principle. We assume the fluids to be incompressible. Neglecting air pressure,
Luke’s principle [27] varies the total energy for potential flow, which is the addition of the
kinetic energy Ek and potential energy Ep as the basis of his principle. This principle com-
pletely describes the fluid motion at the free surface and incorporates appropriate boundary
conditions for free surface flows. Taking variations results in partial differential equations,
which are called the Euler-Lagrange equations and which are the governing equations of mo-
tion for our system. In the next section §2.2, we consider Luke’s principle including surface
tension for nonlinear potential flow. Thereafter, we will derive the exact linear dispersion
relation for potential flow.
In section 2.3, we consider a variational principle for Klopman et al.’s [19] nonlinear con-
servative Boussinesq equations extended with surface tension. This variational principle is
deduced by approximating the vertical structure of the velocity potential. As a result, the
kinetic energy term is changed relative to Luke‘s variational principle. Surface tension effects
are included in the model and the linear dispersion relation is derived.
In section 2.4 we consider the simpler Whitham Boussinesq model. We again include surface
tension in the model and we derive the linear dispersion relation.
Finally, in section 2.5 the three dispersion relations are compared for deep water and for
relatively small water depth, as compared with the wave length. For long waves the surface
tension effects can be neglected, for short waves the effects of surface tension must be in-
cluded.
Finally, in section 2.7 some conclusions are drawn.

2.2 Luke’s variational principle for free-surface potential flow

We consider a fluid layer with surface tension in three dimensions extending over a horizontal
domain (x, y) ∈ Dh and in the vertical direction z, see figure 2.2.1. The solenoidal4 velocity is

x0

fluid

air

z

0 y

−d

0
η(x, y, t)

∂yφ

−h0

∂xφ(x, y, z, t)

seabedseabed

Figure 2.2.1: Parameters describing the free surface η(x, y, t) of the fluid moving in a hori-
zontal velocity v = ∇φ(x, y, z) above a varying seabed z = −d(x, y) in an horizontal domain
(x, y) ∈ Dh.

given by v = ∇φ(x, y, z, t), where φ(x, y, z, t) is the velocity potential and ∇ = (∂x, ∂y, ∂z)
T

the three dimensional gradient. We write |∇φ|2 = (∂xφ)2+(∂yφ)2+(∂zφ)2. Surface tension is
a force that tends to minimize the area of the free surface. The surface tension γ is measured
in Newton per meter [Nm−1] and is defined as the intensity of the molecular attraction per

4The divergence of a vector in a solenoidal field ∇ · v is equal to zero; the fluid is irrotational.
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unit length along any line in the surface [29]. In the following we will write γ = γ′/ρ. The
kinetic Ek and potential energy Epot are of the form

ρEk =

∫∫

Dh

η(x,y,t)∫

−d

1

2
ρ|∇φ|2 dz dxdy (2.1)

ρEpot =

∫∫

Dh

η(x,y,t)∫

−d

ρgz dz + γρ(
√

1 + (∂xη)2 + (∂yη)2 − 1) dxdy (2.2)

with ρ the constant density of the fluid, η(x, y, t) the surface elevation, d(x, y) the still water
depth at (x, y), and g the gravitational acceleration. The first order horizontal derivatives
are denoted as ∇ = (∂x, ∂y)

T , with the transpose (·)T . We define Hamilton’s principle for
potential flow with the action functional Lf :

0 = δLf (φ, φs, η) = δ

t1∫

t0

Lf (φ, φs, η) dt (2.3)

with Lf =

∫∫

Dh

ρφs∂tη dxdy −H (2.4)

and H = Ek + Epot. (2.5)

Here, φs = [φ]z=η is the evaluation of φ on the free surface z = η [27] and Lf is the Lagrangian.
This action functional is known as Luke’s principle (Luke, 1967) for γ = 0, in the form as
given by Miles [27]. We vary (2.3):

0 = δ

t1∫

t0

Lf (φ, φs, η) dt (2.6)

= lim
ǫ↓0

1

ǫ






t1∫

t0

Lf (φ+ ǫδφ, φs + ǫδφs, η + ǫδη) − Lf (φ, φs, η) dt




 (2.7)

= lim
ǫ↓0

1

ǫ






t1∫

t0

∫∫

Dh

[(φs + ǫδφs)∂t(η + ǫδη)︸ ︷︷ ︸
A

−
η+ǫδη∫

−d

1

2
|∇(φ+ ǫδφ)|2
︸ ︷︷ ︸

B

dz

−1

2
g(η + ǫδη)2

︸ ︷︷ ︸
C

− γ
√

1 + |∇(η + ǫδη)|2︸ ︷︷ ︸
D

] dxdy (2.8)

−
∫∫

Dh

[φs∂tη︸ ︷︷ ︸
A

−
η∫

−d

1

2
|∇φ|2
︸ ︷︷ ︸

B

dz − 1

2
gη2

︸ ︷︷ ︸
C

+ γ
√

1 + |∇η|2︸ ︷︷ ︸
D

] dxdy dt





.

The linearity property of variational problems allows us to write out expressions per term
more elaborately [35]. Integrating with respect to time, terms A in (2.8) can be rewritten as:

t1∫

t0

∫∫

Dh

δφs∂tη + φs∂tδη dxdy dt =

t1∫

t0

∫∫

Dh

δφs∂tη − δη∂tφs dxdy dt, (2.9)

where we used that δη(t0) = δη(t1) = 0, since δη belong to the set of test functions C∞
0 (Dh),

which is the set of admissible elements. We rewrite terms B by splitting the integration
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domain [−d, η + ǫδη] in the two intervals [−d, η] and [η, η + ǫδη]. We get for the first interval
[−d, η] using Gauss’s law:

∫∫

Dh

η∫

−d

(∇φ · ∇δφ) dV = −
∫∫

Dh

η∫

−d

δφ∇
2φ dV +

∮

S̄

δφ∇φ · n dS, (2.10)

with S̄ the (closed) surrounding boundaries of the volume V = [Dh] × [−d, η] and with
dV = dxdy dz. The boundary S̄ includes the seabed, the vertical boundaries on the edges
of the horizontal domain Dh (for example a wall at x = x0), and the free surface boundary
Sf at z = η. We adjust our infinitesimal surface element dS with respect to the surface we
are integrating over. We again evaluate δφ at the free surface with δφs. The free surface
parametrized as the surface s = 0 with s = η− z and we obtain for the normal vector on the
free surface the following expression:

n =
∇s

|∇s| =
(∂xη, ∂yη,−1)T√

(∂xη)2 + (∂yη)2 + 1
. (2.11)

Combining this with evaluating δφ on the free surface, the boundary integral of equation
(2.10) becomes:

∮

S̄

δφ∇φ · n dS =

∫∫

S̄\Sf

δφ∇φ · n dS +

∫∫

Sf

δφs [∇φ · ∇η − ∂zφ] dxdy (2.12)

For the second contribution to B, i.e. the interval [η, η + ǫδη], we obtain:

lim
ǫ↓0

1

ǫ

∫∫

Dh

η+ǫδη∫

η

1

2
|∇(φ+ ǫδφ)|2 dV (2.13a)

= lim
ǫ↓0

1

ǫ

∫∫

Dh

η+ǫδη∫

η

1

2
|∇φ|2 dV + lim

ǫ↓0

∫∫

Dh

η+ǫδη∫

η

∇φ · ∇δφ dV (2.13b)

=

∫∫

Dh

δη

2
|∇φ|2z=η dxdy, (2.13c)

where we applied Taylor expansions around z = η in going from (2.13b) to (2.13c). Terms D
in equation (2.8) are approximated with Taylor expansions around ǫ = 0:

lim
ǫ↓0

1

ǫ

∫∫

Dh

γ
√

1 + |∇(η + ǫδη)|2 − γ
√

1 + |∇η|2 dxdy (2.14a)

= lim
ǫ↓0

∫∫

Dh

γǫ

ǫ

(
∇(η + ǫδη) · ∇(δη)√

1 + |∇(η + ǫδη)|2

)
dxdy (2.14b)

=

∫∫

Dh

γ
∇η · ∇(δη)√

1 + |∇η|2
dxdy (2.14c)

= −
∫∫

Dh

γδη

[
ηx√

1 + |∇η|2

]

x

+ γδη

[
ηy√

1 + |∇η|2

]

y

dxdy, (2.14d)
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where ηx = ∂η/∂x. We used Gauss’ law from (2.14c) to (2.14d) and used that δη is arbitrary.
With the (derived) expressions for A to D, we obtain for equation (2.8):

0 =

t1∫

t0

∫∫

Dh

−δη∂tφs + δφs∂tη − gηδη − δη
1

2
|∇φ|2z=η

+δφs [∇φ · ∇η − ∂zφ]z=η +

η∫

−d

δφ∇
2φ dz − [δφ∇φ · n]S̄\s (2.15)

+γδη




[

ηx√
1 + |∇η|2

]

x

+

[
ηy√

1 + |∇η|2

]

y



 dxdy dt.

Note that the subscript Sf indicates the free surface, while S̄ denotes all the surrounding
surfaces. The variational problem states that L(φ, φs, η) is stationary with respect to the
independent variables δφ, δφs and δη [35], and thus we obtain the following expressions:

t1∫

t0

∫∫

Dh

η∫

−d

δφ∇
2φ dz dxdy + [δφ∇φ · n]S̄\Sf

dt = 0

⇒ δφ : ∇
2φ = 0 for z ∈ [−d, η] ∩ (x, y) ∈ Dh (2.16)

and δφ : ∇φ · n = 0 at S̄\Sf (2.17)

t1∫

t0

∫∫

Dh

δφs(∂tη + ∇φ · ∇η − ∂zφ) dxdy dt = 0

⇒ δφs : ∂tη + ∇φ · ∇η − ∂zφ = 0 at z = η; (2.18)

t1∫

t0

∫∫

Dh

δη{−∂tφs − gη − 1

2
|∇φ|2z=η

+γ




[

ηx√
1 + |∇η|2

]

x

+

[
ηy√

1 + |∇η|2

]

y



} dxdy dt = 0

⇒ δη : ∂tφ+ gη +
1

2
|∇φ|2

−γ
[

ηx√
1 + |∇η|2

]

x

− γ

[
ηy√

1 + |∇η|2

]

y

= 0 at z = η. (2.19)

Expression (2.16) implies that the fluid is incompressible (Laplace’s equations) and denotes
conservation of mass. Expression (2.17) states that no particle of the fluid can move through
the seabed and the wall. The natural boundary condition (2.17) is also known as Neumann’s
boundary condition. In expression (2.18) the free surface kinematic free surface boundary
condition [16] is given, which expresses that matter does not leave the fluid through the free
surface (for example, there is no evaporation). Expression (2.19) represents the free surface
dynamic free boundary condition, which is the so-called Bernouilli equation, evaluated at the
free surface [16].

2.2.1 Linear dispersion for potential flow

We sketch the derivation of the exact linear dispersion relation for potential flow over a
horizontal seabed, as in [23], but now with surface tension. We translate the surface elevation
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η to h + hb, see figure 2.3.1, and the seabed −d to hb in order to compare the models later.
The two boundary conditions in one dimension regarding the free surface in potential flow
read, as seen in section 2.2:

∂th+ ∂xφ∂xh− ∂zφ = 0 at z = h0, (2.20)

∂tφ+ gh +
1

2
(∂xφ)2 − γ

[
hx√

1 + (hx)2

]

x

= 0 at z = h+ hb. (2.21)

We rewrite the γ−term

γ

[
hx√

1 + (hx)2

]

x

= γ
hxx

(1 + (hx)2)
3

2

(2.22)

and we linearize around the free surface z = h0:

∂th− ∂zφ = 0 at z = h+ hb (2.23)

∂tφ+ g(h − h0) − γhxx = 0 at z = h0. (2.24)

Combining the two linear boundary conditions and with a constant seabed, such that ∂thb = 0,
we obtain

∂2
t φ+ g∂zφ− γ∂z∂

2
xφ = 0 at z = h0. (2.25)

With Stokes’ first-order theory [23] we can write the velocity potential as

φ(x, z, t) = Φ(z)ei(κx−ωt), (2.26)

which satisfies Laplace’s equation ∇
2φ = 0 and we may write

Φ(x, z, t) = Φ0 cosh[κz], (2.27)

since as φ is a solution to Laplcace’s equation, so is its complex conjugate. Substituting this
in the free-surface boundary condition (2.25) yields the exact linear dispersion relation

−ωφ+ g tanh[κz]φ+ γκ3 tanh[κz]φ = 0 at z = h0 ⇔ (2.28)

ω2 = (g + γκ2)κ tanh(κh0). (2.29)

We get the following Taylor expansion in κ, around the long-wave limit κ = 0:

ω2 = gh0κ
2 − (

1

3
gh3

0 − γh0)κ
4 + (

2

15
gh5

0 −
1

3
γh3

0)κ
6

−(
17

315
gh7

0 −
2

15
γh5

0)κ
8 + O(κ10). (2.30)

2.3 Klopman’s variational Boussinesq model (KVBM)

We consider the fluid layer in two dimensions with horizontal x–axis and vertical z–axis, see
figure 2.3.1. The fluid velocity is now given by (u, v) ≡ (∂xφ, ∂zφ) and we change the definition
for the free surface elevation η(x, t) to the total water height h(x, t)+hb(x) by translation over
h0, such that −d equals the seabed height hb(x). This choice is convenient when modeling
free surface waves that may run up, for example, beaches, or where dry patches of land may
appear. Now we make the following Ansatz for the potential φ(x, z, t), motivated by the
parabolic vertical structure of the velocity potential found in conventional Boussinesq models
for water waves over a horizontal bed [19]:

φ(x, z, t) = ϕ(x, t) + f(z)ψ(x, t), (2.31)
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z

x

0

0

h0
fluid

∂xφ(x, t)

seabed

h(x, t)

hb(x)

air

Figure 2.3.1: Parameters describing the free surface h(x, t) of the fluid moving with horizontal
velocity ∂xφ above a varying seabed hb(x) in an horizontal domain x ∈ Dh for the Klopman
and Whitham variational Boussinesq model.

where φ = ϕ at the free surface z = h(x, t) + hb(x) and

f(z) = (z − h− hb)(z + h− hb). (2.32)

We take this choice because we only want time derivatives of h(x, t) and ϕ(x, t) to appear
in the Euler-Lagrange equations. Further, the form of the vertical structure function f(z) is
motivated by the fact, that for long waves over a horizontal bed, the cosh–function of equation
(2.27) becomes, to a good approximation, a parabolic function with its derivative equal to
zero at the sea bed. The assumption that ∂zφ = 0 at z = hb for a (locally) horizontal seabed is
a good approximation for small bottom slopes [19]. Under the assumption of a mildly sloping
bottom, i.e. assuming spatial derivatives of hb(x) are small and thus neglected, and under
the assumption that wave slopes are small ∂x(h+ hb − h0)) << 1 we have a weakly nonlinear
model and the velocity components become:

∂xφ = ∂xϕ+ f(z)∂xψ and ∂zφ = 2(z − hb)ψ. (2.33)

When we substitute these expressions into the energy H in (2.3):

H =

∫

Dh

{∫ h+hb

hb

1

2
[(∂xφ)2 + (∂zφ)2] dz +

1

2
g(h − h0)

2
}

dx. (2.34)

we find for the modified energy Hb in the two dimensional case:

H =

∫

Dh

{∫ h+hb

hb

1

2
[(∂xϕ+ f(z)∂xψ)2 + f ′(z)2ψ2] dz +

1

2
g(h − h0)

2
}

dx (2.35a)

=

∫

Dh

{1

2
h∂xϕ− 2

3
h3∂xϕ∂xψ +

4

15
h5(∂xψ)2 +

2

3
h3ψ2 +

1

2
g(h− h0)

2
}

dx (2.35b)

=

∫

Dh

{1

2
h

[
∂xϕ− 2

3
h2∂xψ

]2

+
2

45
h5(∂xψ)2 +

2

3
h3ψ2 +

1

2
g(h− h0)

2
}

dx. (2.35c)

We can define the action functional Lb for the energy Hb and the first variation is

0 = δ

t1∫

t0

{ ∫

Dh

ϕ∂th dx−H
}
dt. (2.36)
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Taking variations with respect to ϕ, h and ψ gives:

0 =

t1∫

t0

∫

Dh

δϕ∂th− ∂xδϕ

[
h∂xϕ− 2

3
h3∂xψ

]
(2.37a)

+ϕ∂tδh − δh

(
1

2
(∂xϕ)2 − 2h2∂xϕ∂xψ +

4

3
h4(∂xψ)2 + 2h2ψ2 + g(h − h0)

)
(2.37b)

+∂xδψ

[
2

3
h3∂xϕ− 8

15
h5∂xψ

]
− 4

3
δψh3ψ dxdt. (2.37c)

Partial integration with respect to time and space results in the variational derivative:

0 =

t1∫

t0

∫

Dh

δϕ

(
∂th+ ∂x

[
h∂xϕ− 2

3
h3∂xψ

])
(2.38a)

−δh
(
∂tϕ+

1

2
(∂xϕ)2 − 2h2∂xϕ∂xψ +

4

3
h4(∂xψ)2 + 2h2ψ2 + g(h− h0)

)
(2.38b)

−δψ
(
∂x

[
2

3
h3∂xϕ− 8

15
h5∂xψ

]
+

4

3
h3ψ

)
dxdt, (2.38c)

where we used that δϕ and δh are elements of C∞
0 (Dh). The variational principle states that

Lb is stationary with respect to the independent variables ϕ, h and ψ. We replace the flow
velocity variable u ≡ ∂xφ and obtain the Euler-Lagrange equations, from (2.38a)

δϕ : ∂th+ ∂x

[
hu− 2

3
h3∂xψ

]
= 0, (2.39)

from (2.38b), and differentiating with respect to x,

δh : ∂tu+ ∂x

[
1

2
u2 − 2h2u∂xψ +

4

3
h4(∂xψ)2 + 2h2ψ2 + g(h− h0)

]
= 0, (2.40)

and from (2.38c)

δψ : ∂x

[
2

3
h3u− 8

15
h5∂xψ

]
+

4

3
h3ψ = 0. (2.41)

2.3.1 Klopman Variational Boussinesq model including surface tension

We now consider the expressions derived previously including surface tension. Note that
∇η = ∇h = ∂xh in the one dimensional case. The energy equation (2.35a) now reads:

H =

∫

Dh

{h+hb∫

hb

1

2
[(∂xϕ+f∂xψ)2 + (f ′ψ)2]dz +

1

2
g(h−h0)

2 + γ(
√

1 + (∂xh)2 −1)
}

dx. (2.42)

Analogous to Luke’s variational principle, due to the linearity property [35], this contributes
in a term which occurs in the first variation of δh. The governing equations now read (with
the respective variated variables):

δϕ : ∂th+ ∂x

[
hu− 2

3
h3∂xψ

]
= 0, (2.43a)

δh : ∂tu+ ∂x

[1
2
u2 − 2h2u∂xψ +

4

3
h4(∂xψ)2 + 2h2ψ2

+g(h− h0) − γ

[
hx√

1 + (∂xh)2

] ]
= 0 (2.43b)

δψ : ∂x

[
2

3
h3u− 8

15
h5∂xψ

]
+

4

3
h3ψ = 0. (2.43c)
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2.3.2 Linear dispersion for Klopman Variational Boussinesq model

We obtain the following linearized equations of the Boussinesq model of subsection 2.3.1, for
a constant mean-water depth h0:

∂th+ h0∂xu− 2

3
h2

0∂
3
xψ = 0, (2.44a)

∂tu+ g∂xh− γ∂3
xh = 0, (2.44b)

2

3
h3

0∂xu− 8

15
h5

0∂
2
xψ +

4

3
h3

0ψ = 0. (2.44c)

We introduce solutions h(x, t) = h̃ei(κx−ωt), u(x, t) = ũei(κx−ωt) and ψ = ψ̃ei(κx−ωt) to the
linear system (2.44), and to find the dispersion relation:

h0ω
2

g
=
(
1 +

γκ2

g

)
(κh0)

2 1 + 1
15 (κh0)

2

1 + 2
5(κh0)2

. (2.45)

We get the following Taylor expansion in κ

ω2 = gh0κ
2 − (

1

3
gh3

0 − γh0)κ
4 + (

2

15
gh5

0 −
1

3
γh3

0)κ
6

−(
4

75
gh7

0 −
2

15
γh5

0)κ
8 + +O(κ10). (2.46)

2.4 Whitham’s variational Boussinesq model (WVBM)

Finally, we consider the following one dimensional simplified variational principle Ls intro-
duced by Whitham [37], equation (1.7):

Ls(h, ∂th, ∂xφ) =

t1∫

t0

∫

Dh

φ∂th− 1

2
h(∂xφ)2 +

1

6
h0(∂th)

2 − 1

2
g(h− h0)

2 dxdt (2.47)

with h0(x) the height of the water when the fluid is at rest. Taking variations with respect
to φ and h, we obtain the Euler-Lagrange equation:

0 = δ

t1∫

t0

∫

Dh

φ∂th− 1

2
h(∂xφ)2 +

1

6
(∂th)

2 − 1

2
g(h− h0)

2 dxdt

=

t1∫

t0

∫

Dh

δφ∂th− h∂xφ∂xδφ+ φ∂tδh− 1

2
δh(∂xφ)2 +

1

3
h0∂th∂tδh− g(h − h0)δh dxdt

=

t1∫

t0

∫

Dh

δφ (∂th+ ∂x[h∂xφ]) − δh

(
∂tφ+

1

2
(∂xφ)2+ g(h−h0)+

1

3
h0∂

2
t h

)
dxdt,

(2.48)

where we integrated by parts with respect to time and space from (2.4) to (2.48) and we used
the arbitrariness of δφ and δh. Taking the first variations we obtain the following governing
equations:

δφ : ∂th+ ∂x[h∂xφ] = 0, (2.49a)

δh : ∂tφ+
1

2
(∂xφ)2 +

1

3
h0∂

2
t h+ g(h − h0) = 0. (2.49b)
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Introducing the horizontal velocity u ≡ ∂xφ we rewrite the equations of motion in the form:

∂th+ ∂x[hu] = 0, (2.50a)

∂tu+ ∂x[
1

2
u2 + g(h− h0) +

1

3
h0∂

2
t h] = 0. (2.50b)

Note that expression (2.50a) is a kinematic condition concerning conservation of mass and
expression (2.50b) is a dynamic condition, which denotes conservation of momentum. Without
the term 1

3∂
2
t h we have the non-linear shallow water equations:

∂th+ ∂x[hu] = 0, (2.51a)

∂tu+ ∂x[
1

2
u2 + g(h− h0)] = 0. (2.51b)

2.4.1 Whitham variational Boussinesq model including surface tension

Analogous to the derivation in section 2.3.1 we obtain for the Whitham Boussinesq model
the following equations:

∂th+ ∂x[hu] = 0, (2.52a)

∂tu+ ∂x[
1

2
u2 + g(h− h0) +

1

3
h0∂

2
t h− γ

[
hx√

1 + (hx)2

]
] = 0. (2.52b)

2.4.2 Linear dispersion for the original Whitham Boussinesq-model

We linearize the governing equations of the Whitham Boussinesq-model, in the same way as
considered in section 2.4:

∂th+ h0∂xu = 0, (2.53a)

∂tu+ g∂xh+
1

3
h0∂

2
t ∂xh− γ∂3

xh = 0. (2.53b)

We introduce solutions h(x, t) = h̃ei(κx−ωt) and u(x, t) = ũei(κx−ωt). Substituting these into
the linear system (2.53) we observe that they satisfy the dispersion relation:

h0ω
2

g
=
(
1 +

γ

g
κ2
) (κh0)

2

1 + 1
3(κh0)2

. (2.54)

We get the following Taylor expansion in κ, around κ = 0:

ω2 = gh0κ
2 − (

1

3
gh3

0 − γh0)κ
4 + (

1

9
gh5

0 −
1

3
γh3

0)κ
6

−(
1

27
gh7

0 −
1

9
γh5

0)κ
8 + +O(κ10). (2.55)

2.5 Comparison of dispersion relations

In this subsection we compare the three models derived for 2D. The Taylor expansions around
κ = 0 of the linear dispersion relations of the three models that we studied, are the following:

1. Full potential flow5, as derived from Luke’s variational principle:

ω2
Pot =

g

h0

(
(h0κ)

2 − 1

3
(h0κ)

4 +
2

15
(h0κ)

6 − 17

315
(h0κ)

8
)

+
γ

h3
0

(
(h0κ)

4 − 1

3
(h0κ)

6 +
2

15
γ(h0κ)

8
)

+ O(κ10), (2.56)

5Taylor approximation of the exact linear dispersion relation.



12 2 Variational principles for water waves

2. Klopman variational Boussinesq Model (KVBM):

ω2
K =

g

h0

(
(h0κ)

2 − 1

3
(h0κ)

4 +
2

15
(h0κ)

6 − 17

315
(h0κ)

8
)

+
γ

h3
0

(
(h0κ)

4 − 1

3
(h0κ)

6 +
2

15
(h0κ)

8
)

+ O(κ10) and (2.57)

3. Whitham variational Boussinesq Model (WVBM):

ω2
W =

g

h0

(
(h0κ)

2 − 1

3
(h0κ)

4 +
1

9
(h0κ)

6 − 1

27
(h0κ)

8
)

+
γ

h3
0

(
(h0κ)

4 − 1

3
(h0κ)

6 +
1

9
(h0κ)

8 + O(κ10). (2.58)

2.5.1 Comparison of dispersion relations without surface tension effects

We neglect surface tension effects, γ = 0. When comparing the Taylor expansions of the dis-
persion relations, we see that the Klopman variational Boussinesq model is of order O(κ10)
and the original Whitham Boussinesq-model is of order O(κ4) compared with the exact dis-
persion relation. In fact, the linear dispersion relation of the KVBM is the same relation as
for the Boussinesq equations with improved linear dispersion of Madsen et al. [25].
We will first consider the dispersion relations without surface tension effects, γ = 0. In figure
2.5.1 we plot the dispersion relations6 of the three models for small κh0, where κ = 2π/λ.
Long waves are represented by κh0 → 0 and for κh0 >> 1 we have short waves relative to
the water depth. For long waves the three dispersion relation denoted by defining Ω(κ) = ω

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

kh
0

ω
 (

h 0/g
)1/

2

 

 

Exact
Klopman VBM
Whitham VBM

Figure 2.5.1: Dispersion relations: ω
√
h/g as a function of κh0, for the Klopman and

Whitham Boussinesq-models and the exact dispersion relation. water depth h0 = 10m.

of equations (1)-(3) yield a group velocity Vgroup(κ) equal to ∂Ω(κ)/∂κ. For infinitesimal
waves it is shown by Klopman et al. [19] that for waves up to κh0 = π the phase speed
ΩK(κ)/

√
(gh0) of the Klopman variational Boussinesq model has a relative error,

ΩK(κ)/κ

Ωexact(κ)/κ
− 1, (2.59)

6Partly reconstruction of figure 5.1a in [20].
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less than 3%7 compared to the exact phase speed. For the original Whitham variational
Boussinesq model we have that the relative error,

ΩW (κ)/κ

Ωexact/κ
− 1, (2.60)

is equal to 15%8 for κh0 = π. The equality κh0 = π is particularly important if we like
to investigate breaking waves. For smaller water depths and around this κ it is where we
consider waves propagating from deep water into shallow water. For the nonlinear shallow
water-wave model propagating waves will break eventually. Note that Vinje and Brevig [36]
investigated the breaking of nonlinear shallow water waves with an initial sinusoidal wave
profile, at a ratio of κh0 = 0.53 ∗ (2π) [36]. Due to the accurate approximation of the exact
phase speed we have that the linear Klopman variational Boussinesq model holds for waves
propagating up to the edge of the deep-water zone. Moreover, it is particularly interesting to
investigate within the non-linear Klopman variational Boussinesq model whether waves will
eventually start to break in the presence of dispersion.

2.5.2 Comparison of dispersion relations with surface tension effects

Now we include surface tension effects in our dispersion relations. We investigate surface
tension effects since they affect the velocity of propagating waves. In figure 2.5.2 we plot the
linear dispersion relations for γ′ = 7.4 · 10−2 Nm−1 and γ = γ′/ρ, since we eliminated the
water density ρ previously. This is an experimental value for water in contact with air at
15.6◦C [29]. We take ρ = 1.0 · 10−3. This figure is partly a reproduction of fig. 57 in [23].
We observe that the Klopman variational Boussinesq model more closely resembles the exact
dispersion relation including surface tension. In table 2.5.1 and figure 2.5.2 this has been

made more explicitely. In table 2.5.1 the relative error of the phase speeds of the KVBM C
(γ)
k

and WVBM C
(γ)
w with the exact phase speed C

(γ)
e are given:

Observe that in the KVBM with surface tension the error is bigger, as compared with the
Whitham formulation for longer waves.
Now the question arises if it is always appropriate to include surface tension effects. Denoting
the phase speed when neglecting surface tension effects by C(0) and the phase speed with
surface tension effects by C(γ), we can calculate the relative error by

C
(γ)
e

C
(0)
e

− 1 =
g + κ2γ

g
− 1 (2.61)

since C
(0)
e ∼ g and C(γ) ∼ g + κ2γ for a certain waterdepth h0 and wavenumber κ and

again γ = γ′/ρ with γ′ = 7.4 · 10−2 Nm−1 and ρ the water density, here 1000 kgm−3. For
wavelengths λ equal to 2π/κ the relative error is : We added the third column (h0 = 5 cm)
in table to compare the results with figure 2.5.1. Lighthill [23] states that in general surface
tension is negligible for water waves λ > 7 cm; from (2.5.2) we see that the phase speed has
a relative error of 0.061 %. Longer waves propagate as pure gravity waves.
When including surface tension effects we may conclude that for the region where surface
tension effects are important, the KVBM including surface tension shows smaller relative
errors than the WVBM.

7We found a relative error of 2.79%.
8The actual error was −14.7%, which implicitly yields that propagating waves will be dissipated and will

not be dispersed.
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(b) Water depth 1 cm.
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(c) Water depth 5 cm.
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Figure 2.5.2: Phase speed ω/(κ
√
gh) plotted against the ratio 2π/(κh0) = λ/h0 for small

water depths h0. Here: Surface tension (st.) parameter γ = 7.4 ∗ 10−2Nm−1 for water in
contact with air at 15.6◦C. For reference the pure gravity wave at this water depth is plotted.
(a) the exact dispersion relation including surface tension effects for various water dephts.
Presented are the dispersion relations for the KVBM, WVBM and the exact model including
surface tension effects at depth b) h0 = 1 cm, c) h0 = 5 cm and d) h0 = 10 cm.
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h0 [cm] λ [cm] C
(γ)
e [m/s] C

(γ)
k C

(γ)
k /C

(γ)
e − 1 C

(γ)
w C

(γ)
w /C

(γ)
e − 1

1.0 1.0 0.125 0.146 16.578 % 0.083 -33.386 %
2.0 0.176 0.181 2.794 % 0.151 -14.264 %
4.0 0.239 0.240 0.187 % 0.232 -3.059 %
7.0 0.280 0.280 0.012 % 0.278 -0.530 %

10.0 0.295 0.295 0.002 % 0.294 -0.148 %
14.0 0.303 0.303 0.000 % 0.303 -0.042 %
20.0 0.308 0.308 0.000 % 0.308 -0.010 %

5.0 1.0 0.125 0.288 130.264 % 0.039 -69.1449 %
2.0 0.177 0.293 65.810 % 0.077 -56.5613 %
4.0 0.250 0.313 25.057 % 0.151 -39.6463 %
7.0 0.331 0.356 7.761 % 0.252 -23.7148 %

10.0 0.394 0.405 2.794 % 0.338 -14.2638 %
14.0 0.462 0.466 0.847 % 0.428 -7.4348 %
20.0 0.535 0.536 0.187 % 0.519 -3.0586 %

1.0 1.0 0.125 0.405 224.116% 0.0273 -78.157%
2.0 0.177 0.407 130.264% 0.0545 -69.145%
4.0 0.250 0.414 65.810% 0.1086 -56.561%
7.0 0.331 0.434 31.191% 0.1877 -43.235%

10.0 0.395 0.461 16.578% 0.2632 -33.386%
14.0 0.467 0.504 7.761% 0.3566 -23.715%
20.0 0.558 0.573 2.794% 0.4782 -14.264%

Table 2.5.1: Phase speeds of the exact dispersion relation including surface tension effects

C
(γ)/κ
e compared with the phase speed of the KVBM C

(γ)/κ
k and WVBM C

(γ)/κ
wk . The relative

errors are computed for several wavelengths at various water depths. Here h0 is the water
depth, κ the wave number and λ the wavelength.

λ [cm] C
(γ)
e /C

(0)
e − 1 κh0

1.0 2.978 % 31.4159
2.0 0.745 % 15.7080
4.0 0.186 % 7.8540
7.0 0.061 % 4.4880

10.0 0.030 % 3.1416
14.0 0.015 % 2.2440
20.0 0.007 % 1.5708

Table 2.5.2: Relative error of the exact phase speeds compared with the exact wavespeed
including surface tension effects.
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2.6 Moving boundaries in the KVBM

The three variational models that we investigated previously were all considered on a horizon-
tal domain with a fixed horizontal extent. When we consider a fluid layer which is flooding
and drying on a seabed hb(x) with a slope, the fluid boundaries may not be fixed in time.
Moreover, a part of the seabed may fall dry when the fluid is moving away creating distinct
patches of fluid. On the other hand, distinct fluid patches may merge and flood a land patch
in between. The horizontal domain now becomes Dh = [xL(t), xR(t)] for example and the
action functional becomes

0 = δL(ϕ, h, ψ, xL, xR) = δ

∫ t1

t0

L(ϕ, h, ψ, xL, xR) dt. (2.62)

We illustrate the moving boundary condition for the Klopman Boussinesq-model [19]. We
choose the Lagrangian density L as

L(φ, h, ψ, xL, xR) =

∫ xR(t)

xL(t)
φ∂th−H dx, (2.63)

where H was derived in equation (2.35c):

H(ϕ, hψ) =
1

2
h

[
∂xϕ− 2

3
h2∂xψ

]2

+
2

45
h5(∂xψ)2 +

2

3
h3ψ2 +

1

2
g(h+ hb)

2 − 1

2
gh2

b .

(2.64)

Taking variations with respect to φ, h, ψ, xL and xR we have

0 =

t1∫

t0

∫ xR(t)

xL(t)
δϕ∂th− ∂xδϕ

[
h∂xϕ− 2

3
h3∂xψ

]
(2.65a)

+ϕ∂t(δh)︸ ︷︷ ︸
E

−δh
(

1

2
(∂xϕ)2 − 2h2∂xϕ∂xψ +

4

3
h4(∂xψ)2 + 2h2ψ2 + g(h + hb)

)
(2.65b)

+∂xδψ

[
2

3
h3∂xϕ− 8

15
h5∂xψ

]
− 4

3
δψh3ψ dx (2.65c)

+ lim
ǫ↓0

1

ǫ

∫ xR+ǫδxR

xR

(ϕ+ ǫδϕ)∂t(h+ ǫδh) −Hb(ϕ+ ǫδϕ, h + ǫδh, ψ + ǫδψ)dx (2.65d)

+ lim
ǫ↓0

1

ǫ

∫ xL

xL+ǫδxL

(ϕ+ ǫδϕ)∂t(h+ ǫδh) −Hb(ϕ+ ǫδϕ, h + ǫδh, ψ + ǫδψ)dx dt. (2.65e)

For the integrals terms at the boundaries xL(t) and xR(t), terms (2.65d) and (2.65e) we have:

t1∫

t0

lim
ǫ↓0

1

ǫ

∫ xR+ǫδxR

xR

(ϕ+ ǫδϕ)∂t(h+ ǫδh) −Hb(ϕ+ ǫδϕ, h + ǫδh, ψ + ǫδψ)dx

+ lim
ǫ↓0

1

ǫ

∫ xL

xL+ǫδxL

(ϕ+ ǫδϕ)∂t(h+ ǫδh) −Hb(ϕ+ ǫδϕ, h + ǫδh, ψ + ǫδψ)dx dt

=

t1∫

t0

[
ϕ∂th

]
x=xR(t)

δxR −
[
ϕ∂th

]
x=xL(t)

δxL dt. (2.66)

since the water levels h(xR(t), t), h(xL(t), t) are equal to zero at the fluid boundary. The
term E, ϕ∂t(δh) requires special treatment, since the boundaries are now time dependent.
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We have the following relation to rewrite term ϕ∂t(δh):

t1∫

t0

d

dt

∫ xR(t)

xL(t)
ϕδh dx =

t1∫

t0

{∫ xR(t)

xL(t)
δh∂tϕ︸ ︷︷ ︸

F

+ ϕ∂t(δh)︸ ︷︷ ︸
E

dx

+
[
ϕδh

]
x=xR(t)

dxR(t)

dt
−
[
ϕδh

]
x=xL(t)

dxL(t)

dt

}
dt, (2.67)

where F is the term that completes the terms (2.65a)-(2.65c) to regain the variational deriva-
tive resulting in the governing equations in the fluid domain, as collected in (2.38). We express
E explicitely using the above relation and we substitute E in (2.65b).
We combine the terms at the boundaries with the boundary terms (2.65d) and (2.65e). At
the boundary xR(t), we have for δxR and δh the following relation:

δh
∣∣
xR(t)

= ∂xh
∣∣∣
x=xR(t)

δxR(t), (2.68)

and similarly for x = xL(t). Combining the remaining terms with respect to (2.38), we have:

0 =

xR(t)∫

xL(t)

ϕδh dx
∣∣∣
t1

t0
+

∫ t1

t0

δxR

[
ϕ∂th+ ϕ∂x(h)

dxR(t)

dt

]

x=xR(t)
(2.69a)

−δxL

[
ϕ∂th+ ϕ∂x(h)

dxL(t)

dt

]

x=xL(t)
dt. (2.69b)

Observe that everywhere in the fluid we have conservation of mass

∂th+ ∂x(h∂xϕ) = 0 (2.70)

and we have that h(xR(t), t) = h(xL(t), t) = 0 at the boundaries. Substitution of the above
relations and using the arbitrariness of the variables δxL, δxR we obtain conditions for the
moving boundaries

δxR : ϕ (∂xϕ)(∂xh) − ϕ (∂xh)
dxR(t)

dt
= 0 at x = xR(t), (2.71)

δxL : −ϕ (∂xϕ)(∂xh) + ϕ (∂xh)
dxL(t)

dt
= 0 at x = xL(t), (2.72)

which is simplified to

δxR : ∂xϕ− dxR(t)

dt
= 0 at x = xR(t), (2.73)

δxL : ∂xϕ− dxL(t)

dt
= 0 at x = xL(t). (2.74)

Together with equations (2.39), (2.40) and (2.41) these conditions govern the Klopman vari-
ational Boussinesq model for fluid boundaries that can move in time.



18 2 Variational principles for water waves

2.7 Conclusion

In this section we have studied variational principles for free surface water waves, where
the total energy H is the basis of an action functional and where H varies per model. The
following three variational principles have been studied:

1. Luke’s variational principle for (3D) non-linear potential flow [27].

2. Klopman’s variational Boussinesq model (1D) [19].

3. Whitham’s variational Boussinesq model (1D) [37]

We have included surface tension effects by adding an extra term in the total energy H.
For all three principles the Euler-Lagrange equations were derived which govern the fluid sur-
face motion. Comparing the linear dispersion relations we conclude that the Klopman varia-
tional Boussinesq model approximates the exact dispersion relation better than the Whitham
variational Boussinesq model.
In the region where initial sinusoidal waves start to break [36], we find that the relative error
of the KVBM is small compared to the exact linear dispersion relation.
Furthermore, surface tension effects can be approximated more accurately with the KVBM
in water depths where surface tension effects may not be neglected, i.e. for short waves with
λ < 10 cm.
We conclude that for longer waves propagating over deeper water the Klopman Boussinesq
variational is equivalent to the Boussinesq formulations of Madsen [25]. The advantage of
the KVBM is that energy is conserved and guarantueed to be positive-definite. Furthermore,
moving boundaries of the fluid domain can be nicely incorporated, such that the physics of
flooding and drying is described easily.
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3 Numerical modeling: continuous Galerkin

3.1 Introduction

To approximate the solutions of the governing equations derived in section 2 we use the
continuous Galerkin finite element method, which is also know as Ritz-Galerkin method.
In this method we formulate a weak formulation of the Boundary Value Problems that we
observe. Discretizing the equations offers the possibility to obtain the approximated solution
numerically.
First we discretize Whitham’s variational Boussinesq formulation by using the arbitrariness
of the variational derivatives with respect to each variable. Note that they are elements of the
test function-space C∞

0 (Dh) on the domain, which can be restricted to the test functions on
each element Ki with the test function space C∞

0 (Ki). Hereby we then formulate the finite
element weak formulations.
In section 3.3 the assembly of the discretized system is considered. First the linearized shallow
water model is considered, then the nonlinear shallow water model and finally the Boussinesq
term is included, where we used an auxiliary variable to treat the second-order time derivative.
Then a non-flat seabed is introduced, which enables us to test if waves will start to break.
In section 3.6 time-integration methods are proposed, namely the total variation diminishing
Runge-Kutta 3 and 4 method and the symplectic Störmer-Verlet method.
In section 3.7 some conclusion are drawn.

3.2 Whitham’s Boussinesq variational principle

For the Whitham Boussinesq-model including surface tension (including the γ-term, section
2.4) the variational formulation Ls was

0 = δ

t1∫

t0

∫

Dh

Ls(h, φ) dxdt (3.1)

= δ

t1∫

t0

∫

Dh

φ∂th− 1

2
h(∂xφ)2 +

1

6
h0(∂th)

2 − 1

2
g(h−h0)

2 −γ(
√

1 + (∂xh)2 − 1) dxdt. (3.2)

Solving the system with a finite element method requires that we partition the horizontal
domain Dh = x ∈ (xL, xR) with elements to approximate the solution. We introduce the
partitioning Th existing of N open elements Kj = {x|x ∈ (xj , xj+1)} where xi and xj+1 are
the so-called nodes. The result is a tessalation

Th = {Ki

∣∣ ∪N
i=1 K̄i = D̄h and Ki ∩Kj = ∅ if i 6= j, 1 ≤ i, j ≤ N} (3.3)

with K̄i the closure of element Ki. This discretization is illustrated by figure 3.2.1.

x1

xL K1

x2

K2

x3 xj

Kj

xj+1 xN

KN
xR

xN+1

Figure 3.2.1: Subdivision into N elements Kj of the horizontal domain Dh.

We introduce global Galerkin basis-functions χj(x) ∈ Pn(Dh), which means that they are
continuous, have compact support on Dh and are polynomials of degree n [6]. We choose
linear basis-functions χj(x) = 1 on global node j and zero at the other nodes, see figure 3.2.2.
For convenience we consider periodic boundaries, such that node x1 = xN+1 and we consider
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Kj−1
xj−1 xj xj+1

Kj

χj χj+1

Kj−2 Kj+1

χj−1

θ0 θ1

Figure 3.2.2: Linear basis functions for continuous Galerkin finite element methods; thick line
is χj(x).

the surrounding elements KN and K1 for node x1. We approximate the unknown functions
of the system on the nodes xj, j = 1, ..,N + 1 with trial-functions ĥ(t) and φ̂(t) for h(x, t)
and φ(x, t) respectively in terms of the basis-functions χj [5]

h(x, t) ∼= ĥ(x, t) =
N+1∑

j=1

χj(x)Hj(t), φ(x, t) ∼= φ̂(x, t) =
N+1∑

j=1

, χj(x)Φj(t) (3.4)

where χj is only non-zero in the elements Kj−1 and Kj . In element Kk the basis-functions χk

and χk+1 are considered, since the other basis-functions are zero. It is convenient to introduce
the element basis functions θm (m = 0, 1), such that θ0(x) = χk(x) and θ1(x) = χk+1(x) for
x ∈ Kk. The representation of the trial functions φ̂(x, t) and ĥ(x, t) can now be written as

φ̂(x, t) = Φk(t)θ0(x) + Φk+1(t)θ1(x) x ∈ Kk, (3.5a)

ĥ(x, t) = Hk(t)θ0(x) +Hk+1(t)θ1(x) x ∈ Kk. (3.5b)

When we consider a non-flat seabed, we may represent the still water level h0(x) with:

ĥ0(x) = H0,kθ0(x) +H0,k+1θ1(x) x ∈ Kk. (3.6)

3.2.1 Discretized variational formulation

Neglecting surface tension, the discretized variational formulation is the substitution of (3.5)
and (3.6) in (3.1):

0 = δ

t1∫

t0

N∑

k=1

xk+1∫

xk

(Φkθ0 + Φk+1θ1)(
dHk

dt
θ0 +

dHk+1

dt
θ1)

−1

2
(Hkθ0 +Hk+1θ1)(Φk

dθ0
dx

+ Φk+1
dθ1
dx

)2 +
1

6
h0(

dHk

dt
θ0 +

dHk+1

dt
θ1)

2

−1

2
g(Hkθ0 +Hk+1θ1 − h0(xk)θ0 − h0(xk+1)θ1)

2 dxdt. (3.7)

We may now vary with respect to the variables Hk(t), Hk+1(t),Φk(t) and Φk+1(t) over the
elements Kk. The first variation with respect to δΦk(t) and δΦk+1(t) is:

0 =

N∑

k=1

∫

Kk

(δΦkθ0 + δΦk+1θ1)
(dHk

dt
θ0 +

dHk+1

dt
θ1)

−
(
Hkθ0 +Hk+1θ1

)(
Φk

dθ0
dx

+ Φk+1
dθ1
dx

)(
δΦk

dθ0
dx

+ δΦk+1
dθ1
dx

)
dx (3.8)
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and with respect to δHk(t) and δHk+1(t) is:

0 =

N∑

k=1

∫

Kk

(δHkθ0 + δHk+1θ1)(
dΦk

dt
θ0 +

dΦk+1

dt
θ1)

+
1

2
(δHkθ0 + δHk+1θ1)(Φk

dθ0
dx

+ Φk+1
dθ1
dx

)2

+
1

3
h0(δHkθ0 + δHk+1θ1)(

d2Hk

dt2
θ0 +

d2Hk+1

dt2
θ1)

+g(δHkθ0 + δHk+1θ1)(Hkθ0 +Hk+1θ1 −H0,kθ0 −H0,k+1θ1) dx. (3.9)

3.3 Assembly of global nodes

In this section an assembly framework is created that we can use to calculate the fully dis-
cretized variational formulation. The assembly framework results in an algebraic system.
Using the arbitrariness of the variational derivatives, δHk, δΦk ∈ C∞

0 (Kk−1 ∪ Kk), we are
able to collect the function values in element Kk−1 and Kk that contribute to the function
values at node xk.
We start with the linearized shallow water model. Then we include nonlinear terms that
play a role in the shallow water formulations. Thereafter we consider the discrete variational
formulation for the Boussinesq model as derived in the previous section. For each step the
total energy of the system is considered.

3.3.1 Discrete linearized shallow water variational formulation

When we linearize the system (3.8, 3.9) around the still water position z = h0 and neglect
the higher order time derivatives, we obtain the following discrete system principle for the
linearized shallow water equations;

0 =
N∑

k=1

∫

Kk

(θ0 + θ1)
(dHk

dt
θ0 +

dHk+1

dt
θ1)

−h0

(
Φk(

dθ0
dx

)2 + Φk+1(
dθ1
dx

)2 + (Φk + Φk+1)
dθ0
dx

dθ1
dx

)
)

dx (3.10a)

0 =

N∑

k=1

∫

Kk

(θ0 + θ1)(
dΦk

dt
θ0 +

dΦk+1

dt
θ1)

+g(θ0 + θ1)(Hkθ0 +Hk+1θ1 −H0,kθ0 −H0,k+1θ1) dx, (3.10b)

where we used the arbitrariness of the variational derivatives. These relationships can be
simplified as follows. We transform the integrals over the element Kk into integrals over the
reference element K̃ = [0, 1] with local basis-functions θ̂0 = 1− ξ, θ̂1 = ξ, ξ ∈ K̃. We are now
able to reformulate the integrals over elements Kk with respect to the reference element K̃:

Ak
mn = |Kk|

1∫

0

θ̂mθ̂n dξ, Bk
mn = |Kk|

1∫

0

dθ̂m

dx

dθ̂n

dx
dξ, (3.11)

with |Kk| = xk+1 − xk the length of the element Kk and {m,n} = {0, 1}. These integrals
over the reference element can be computed with Gauss’ two-point formula, which is exact
for linear polynomials [24]. The representations φ̂ and ĥ in (3.5) evaluated on the elements
Kk, together with the evaluation of the inner-products on the reference element (3.11), gives
us a linear system per node k:

Ak−1
10

dHk−1

dt
+ (Ak−1

11 +Ak
00)

dHk

dt
+Ak

01

dHk+1

dt
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= h0

(
Bk−1

10 Φk−1 + (Bk−1
11 +Bk

00)Φk +Bk
01Φk+1

)
, (3.12a)

Ak−1
10

dΦk−1

dt
+ (Ak−1

11 +Ak
00)

dΦk

dt
+Ak

01

dHk+1

dt
(3.12b)

= −g
(
Ak−1

10 (Hk−1 −H0,k−1) + (Ak−1
11 +Ak

00)(Hk −H0,k) +Ak−1
01 (Hk+1 −H0,k+1)

)

whit the stillwater height h0 constant in time. We can write this system using mass matrix
MA and stiffness matrix MB as follows:

MA
dH

dt
= h0MB Φ (3.13a)

MA
dΦ

dt
= −gMA (H − h0), (3.13b)

where MA and MB are tri-diagonal matrices with the exception of the first and last row,
where boundary condition are playing a role. Since MA is invertible we can write the system
as follows:

dH

dt
= h0M

−1
A MB Φ (3.14a)

dΦ

dt
= −g(H − h0), (3.14b)

Integration over time can be done using the third-order Runge-Kutta method, see §3.6. The
spatial averaged energy H̄(t) for the linearized shallow water variational formulation is given
by:

H̄(t) =
1

λ

∑

k

∫

Kk

1

2
h0(Φk

dθ0
dx

+ Φk+1
dθ1
dx

)2

+
1

2
g(Hkθ0 +Hk+1θ1 −H0,kθ0 −H0,k+1θ1)

2dx. (3.15)

3.3.2 Discrete shallow water variational formulation

The discrete nonlinear shallow water system can be obtained from the discretized variational
formulation described by system (3.8, 3.9). The discretized shallow water system reads:

0 =
N∑

k=1

∫

Kk

(δΦkθ0 + δΦk+1θ1)
(dHk

dt
θ0 +

dHk+1

dt
θ1)

−
(
Hkθ0 +Hk+1θ1

)(
Φk

dθ0
dx

+ Φk+1
dθ1
dx

)(
δΦk

dθ0
dx

+ δΦk+1
dθ1
dx

)
dx (3.16a)

0 =
N∑

k=1

∫

Kk

(δHkθ0 + δHk+1θ1)(
dΦk

dt
θ0 +

dΦk+1

dt
θ1)

+
1

2
(δHkθ0 + δHk+1θ1)(Φk

dθ0
dx

+ Φk+1
dθ1
dx

)2

+g(δHkθ0 + δHk+1θ1)(Hkθ0 +Hk+1θ1 −H0,kθ0 −H0,k+1θ1) dx. (3.16b)

For convenience we introduce the element integration

Dk
mnp = |Kk|

1∫

0

θ̂m
dθ̂n

dx

dθ̂p

dx
dξ. (3.17)
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Assembly of the elements Kk−1 andKk around xk ∈ Dh using the arbitrariness of the variables
δΦ and δH results in the following system:

Ak−1
10

dHk−1

dt
+ (Ak−1

11 +Ak
00)

dHk

dt
+Ak

01

dHk+1

dt
(3.18a)

= h0

(
Bk−1

10 Φk−1 + (Bk−1
11 +Bk

00)Φk +Bk
01Φk+1

)

+Dk−1
010 Hk−1Φk−1 +Dk−1

011 )Hk−1Φk +Dk−1
110 HkΦk−1 +Dk−1

111 HkΦk,

+Dk
000HkΦk +Dk

001HkΦk+1 +Dk
100Hk+1Φk +Dk

101Hk+1Φk+1,

Ak−1
10

dΦk−1

dt
+ (Ak−1

11 +Ak
00)

dΦk

dt
+Ak

01

dHk+1

dt
(3.18b)

= −g
(
Ak−1

10 (Hk−1 −H0,k−1) + (Ak−1
11 +Ak

00)(Hk −H0,k) +Ak−1
01 (Hk+1 −H0,k+1)

)

−1

2
Dk−1

100 (Φk−1)
2 − 1

2
Dk−1

101 Φk−1Φk − 1

2
Dk−1

110 ΦkΦk−1 −
1

2
Dk−1

111 (Φk)
2

−1

2
Dk

000(Φk)
2 − 1

2
Dk

001ΦkΦk+1 −
1

2
Dk

010Φk+1Φk −
1

2
Dk

011(Φk+1)
2

We rewrite this assembly in terms of solution vectors as follows

MA
dH

dt
= h0MB Φ +MD(H) Φ (3.19a)

MA
dΦ

dt
= −gMA(H − h0) −

1

2
ME(Φ)Φ, (3.19b)

where MD(H(t)) is denoted for periodic boundaries (x1 ≡ xN+1) by

MD = (3.20)



MD1
2 MD1

3 0 . . . . . . 0 MDN
1

MD2
1 MD2

2 MD2
3 . . . . . . . . . ∅

. . . . . . . . . . . . . . . . . . . . .
∅ . . . MDk

1 MDk
2 MDk

3 . . . ∅
. . . . . . . . . . . . . . . . . . . . .

∅ . . . . . . . . . MDN−1
1 MDN−1

2 MDN−1
3

MD1
3 0 . . . . . . 0 MDN

1 MDN
2




with

MDk
1 (H(t)) = Dk−1

010 Hk−1(t) +Dk−1
110 Hk(t) (3.21a)

MDk
2 (H(t)) = Dk−1

011 Hk−1(t) +Dk−1
111 Hk(t) +Dk

000Hk(t) +Dk
100Hk+1(t) (3.21b)

MDk
3 (H(t)) = Dk

001Hk(t) +Dk
101Hk+1(t). (3.21c)

Similarly, matrix ME(Φ(t)) is denoted by MEi,j(∗) = MDi,j(∗), i, j ∈ [1, ..,N ] with coeffi-
cients computed as follows:

MEk
1 (Φ(t)) = Dk−1

100 Φk−1(t)D
k−1
110 Φk(t) (3.22a)

MEk
2 (Φ(t)) = Dk−1

101 Φk−1(t) +Dk−1
111 Φk(t) +Dk

000Φk(t) +Dk
010Φk+1(t) (3.22b)

MEk
3 (Φ(t)) = Dk

001Φk(t) +Dk
011Φk+1(t). (3.22c)

Note that in the assembly of the nonlinear terms in (3.19a) and (3.19b), the matrix coefficients
MDk

1 (3.21a) and MEk
1 (3.22a) are multiplied by Φk−1. Similarly, the coefficients MDk

2

(3.21b) and MEk
2 (3.22b) are multiplied by Φk and finally MDk

3 (3.21c) and MEk
3 (3.22c)

are multiplied by Φk+1.
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The spatial averaged energy H̄(t) for the shallow water variational formulation is given by:

H̄(t) =
1

λ

∑

k

∫

Kk

1

2
(Hkθ0 +Hk+1θ1)(Φk

dθ0
dx

+ Φk
dθ0
dx

)2

+
1

2
g(Hkθ0 +Hk+1θ1 −H0,kθ0 −H0,k+1θ1)

2 dx. (3.23)

3.3.3 Discrete Whitham variational Boussinesq formulation

Equivalently to the previous formulations for the shallow water model the Whitham Boussi-
nesq model can be discretized. The Boussinesq model includes the second-order time deriva-
tive of the wave elevation, ∂2

t η(x, t) in (3.9). The system to be solved now reads:

MA
dH

dt
= h0MB Φ +MD(H) Φ (3.24a)

MA
dΦ

dt
+

1

3
h0MA

d2H

dt2
= −gMA(H − h0) −

1

2
ME(Φ)Φ, (3.24b)

For convenience, write d2H
dt2

= d
dt(

dH
dt ) and introducing F = Φ + 1

3h0
dH
dt yields the following

system:

F = Φ +
1

3
h0M

−1
A (h0MB Φ +MD(H)Φ)

=

(
IN +

1

3
h0M

−1
A (h0MB +MD(H)

)
Φ (3.25a)

MA
dH

dt
= h0MB Φ +MD(H)Φ (3.25b)

MA
dF

dt
= −gMA(H − h0) −

1

2
ME(Φ)Φ. (3.25c)

where IN is the [N ×N ] unity matrix. When H(tn), F (tn) known, we can solve (3.25a) and
obtain Φ(tn). We then can compute (3.25b, 3.25c) in time using an explicit time stepping
method.
The spatial averaged energy H̄(t) for the Whitham Boussinesq variational formulation is given
by:

H̄(t) =
1

λ

∑

k

∫

Kk

1

2
(Hkθ0 +Hk+1θ1)(Φk

dθ0
dx

+ Φk
dθ0
dx

)2

+
1

2
g(Hkθ0 +Hk+1θ1)

2 dx− 1

6
(
dHk

dt
θ0 +

dHk+1

dt
θ1)

2 (3.26)

3.4 Klopman’s variational Boussinesq model

In order to solve the weakly nonlinear Klopman variational Boussinesq model numerically we
introduce the following expansions for the trial and test functions

h(x, t) =
∑N+1

j=1 χj(x)Hj(t), δh(x, t) =
∑N+1

j=1 χj(x)Vj ,

φ(x, t) =
∑N+1

j=1 χj(x)Φj(t), δφ(x, t) =
∑N+1

j=1 χj(x)Wj ,

ψ(x, t) =
∑N+1

j=1 χj(x)Ψj(t), δψ(x, t) =
∑N+1

j=1 χj(x)Zj .

(3.27)

where χj are linear basisfunctions of degree dp = 1 that are only non-zero in the elements
Kj−1 and Kj as introduced in section 3.2. The seabed slope h0(x) is approximated by H0,
which we will assume constant in the rest of this subsection. We integrate the variational
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formulation of the Klopman Boussinesq model (2.37) by parts with respect to time and we
have

0 =

t1∫

t0

∫

Dh

δϕ∂th− ∂xδϕ

[
h∂xϕ− 2

3
h3∂xψ

]
(3.28a)

−δh∂tϕ− δh

(
1

2
(∂xϕ)2 − 2h2∂xϕ∂xψ +

4

3
h4(∂xψ)2 + 2h2ψ2 + g(h − h0)

)
(3.28b)

+∂xδψ

[
2

3
h3∂xϕ− 8

15
h5∂xψ

]
− 4

3
δψh3ψ dxdt. (3.28c)

We will now substitute the expansions for our trial and test functions to discretize our weak
formulation for each varied variable. Evaluation of the global basisfunction is done over the
reference element as described in section 3.2.

3.5 Assembly of global nodes

We assemble our system per varied variable at each elements belonging to the tesselation of
a periodic domain. We introduce convenient integrals over the elements and collect these
contributions per element to solve our system in time.

3.5.1 Assembly for the first part

We first consider part (3.28a), the variation with respect to δϕ. We have
∫

Dh

δϕ∂th− ∂xδϕ

[
h∂xϕ− 2

3
h3∂xψ

]
dx = 0 ⇔ (3.29a)

N∑

j=1

∫

Kj

δϕ∂th− ∂xδϕ

[
h∂xϕ− 2

3
h3∂xψ

]
dx = 0. (3.29b)

We substitution the expansions (3.27). For convenience we introduce the following integrals
at elements Kj of our tessalation Th,

A(j, i,m) =
|Kj |
2

∫ 1

−1
ΘiΘm dξ (3.30a)

B1(j, i,HL,HR,ΦL,ΦR) =
|Kj |
2

1∫

−1

dΘi

dx

(
HLΘ1 +HRΘ0

)(
ΦL

dΘ1

dx
+ ΦR

dΘ0

dx

)
dξ(3.30b)

C1(j, i,HL,HR,ΨL,ΨR) =
|Kj |
2

1∫

−1

dΘi

dx

(
HLΘ1+HRΘ0

)3(
ΨL

dΘ1

dx
+ΨR

dΘ0

dx

)
dξ (3.30c)

where Θi represents the expansion of our arbitrary testfunction δφ and indices L and R
represent respectively the left (xj) and right (xj+1) node of the element concerned. Note
that, for fast computation of the integrals, dΘi

dx = (−1)1−i 2
|Kj |

for linear polynomials. We

collect the integrals above by summation over all elements and add the contributions to the
left and right node. We obtain for equation (3.29b)

MA
dH

dt
−MB1 +

2

3
MC1 = 0 (3.31)

where the matrices are found by summation of all contributions from elements Kj, j =
1, .., Ne to both nodal values at the left and right boundaries, xj and xj+1, of elements Kj .
They are indicated by xj+1−i, i = 0, 1.

MAj+1−i,j+1−m = A(j, i,m) ∀ m = 0, 1 (3.32a)
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MB1j+1−i = B1(j, i,Hj ,Hj+1,Φj ,Φj+1) (3.32b)

MC1j+1−i = C1(j, i,Hj ,Hj+1,Ψj ,Ψj+1) (3.32c)

Observe that the parameter j + 1 − i in combination with element Kj represents the global
node, nameley Θi = Θ1 refers to the left and Θi = Θ0 to the right node of an element.
Note that we still have to account for boundary conditions; eg. in case of periodic boundary
conditions we concern nodal value x1 if xj+1−i = xNe+1 and we add this contribution to the
global matrix accordingly.

3.5.2 Assembly for the second part

We now consider part (3.28b), the variation with respect to δϕ. We have
∫

Dh

δh
(
∂tϕ+

1

2
(∂xϕ)2− 2h2∂xϕ∂xψ +

4

3
h4(∂xψ)2+ 2h2ψ2+ g(h−h0))

)
dx=0 ⇔ (3.33a)

N∑

j=1

∫

Kj

δh
(
∂tϕ+

1

2
(∂xϕ)2− 2h2∂xϕ∂xψ +

4

3
h4(∂xψ)2+ 2h2ψ2+ g(h−h0)

)
dx=0 (3.33b)

and adopt the convenient integrals for our tessellation Th

A(j, i,m) =
|Kj |
2

∫ 1

−1
ΘiΘn dξ (3.34a)

B2(j, i,ΦL,ΦR) =
|Kj |
2

∫ 1

−1
Θi

(dΘ1

dx
ΦL +

dΘ1

dx
ΦR

)2
dξ (3.34b)

C2(j, i,HL,HR,ΦL,ΦR,ΨL,ΨR) =

|Kj |
2

1∫

−1

Θi

(
HLΘ1 +HRΘ0

)2(
ΦL

dΘ1

dx
+ ΦR

dΘ0

dx

)(
ΨL

dΘ1

dx
+ ΨR

dΘ0

dx

)
dξ (3.34c)

D2(j, i,HL,HR,ΨL,ΨR)=
|Kj |
2

∫ 1

−1
Θi

(
HLΘ1 +HRΘ0

)4(
ΨL

dΘ1

dx
+ ΨR

dΘ0

dx

)2
dξ (3.34d)

E2(j, i,HL,HR,ΨL,ΨR) =
|Kj |
2

∫ 1

−1
Θi

(
HLΘ1 +HRΘ0

)2(
ΨLΘ1 + ΨRΘ0

)2
dξ. (3.34e)

where Θi represents the expansion of our arbitrary testfunction δh. We obtain for equation
(3.33b)

MA
dH

dt
+

1

2
MB2 − 2MC2 +

3

4
MD2 + 2ME2 + gMA (H −H0) = 0 (3.35)

where

MAj+1−i,j+1−m = A(j, i,m) ∀ m = 0, 1 (3.36a)

MB2j+1−i = B2(j, i,Φj ,Φj+1) (3.36b)

MC2j+1−i = C2(j, i,Hj ,Hj+1,Φj ,Φj+1,Ψj ,Ψj+1) (3.36c)

MD2j+1−i = D2(j, i,Hj ,Hh+1,Ψj,Ψj+1) (3.36d)

ME2j+1−i = E2(j, i,Hj ,Hj+1,Ψj ,Ψj+1) (3.36e)

3.5.3 Assembly for the third part

We now consider part (3.28c), the variation with respect to δψ. We have
∫

Dh

∂xδψ

[
2

3
h3∂xϕ− 8

15
h5∂xψ

]
− 4

3
δψh3ψ dx = 0 ⇔ (3.37)



3 Numerical modeling: continuous Galerkin 27

N∑

j=1

∫

Kj

∂xδψ

[
2

3
h3∂xϕ− 8

15
h5∂xψ

]
− 4

3
δψh3ψ dx = 0. (3.38)

and use the integrals for our tessellation Th

C3(j, i,HL,HR,ΦL,ΦR) =
|Kj |
2

1∫

−1

dΘi

dx

(
HLΘ1+HRΘ0

)3(
ΦL

dΘ1

dx
+ΦR

dΘ0

dx

)
dξ (3.39a)

D3(j, i,HL,HR,m) =
|Kj |
2

1∫

−1

dΘi

dx

(
HLΘ1+HRΘ0

)5 dΘm

dx
dξ (3.39b)

E3(j, i,HL,HR,m) =
|Kj |
2

1∫

−1

Θi

(
HLΘ1+HRΘ0

)3
Θm dξ (3.39c)

where Θi represents the expansion of our arbitrary testfunction δψ and with the parameter
m we represent the nodel value of Ψj+1−m at xj+1−m. We obtain for equation (3.38)

2

3
MC3 −

( 8

15
MD3 +

4

3
ME3

)
Ψ = 0 (3.40)

where

MC3j+1−i = C3(j, i,Hj ,Hj+1,Φj,Φj+1) (3.41a)

MD3j+1−i,j+1−m = D3(j, i,Hj ,Hj+1,m) (3.41b)

ME3j+1−i,j+1−m = E3(j, i,HL,HR,m) (3.41c)

where for periodic boundaries if j + 1 −m = Ne+ 1 we have to put j + 1 −m = 1.

3.5.4 Solving the system in time

Since we represent each trial function in terms of polynomial basisfunctions of degree dp = 1
we have to make sure that our spatial integration routine preserves accuracy. For example
integral D3; we numerically integrate h5 over an element. Observe that as a result we obtain
polynomials of order at most dp = 5.

∫ xj+1

xj

h5 dx ≈ |Kj|
2

∫ 1

−1

(
Hj(

1 − ξ

2
) +Hj+1(

1 + ξ

2
)
)5

dξ. (3.42)

Therefore an integration routine should be chosen that is at least exact for polynomials of
degree 5. We choose the three point Gauss quadrature rule, which is exact for polynomials
of degree dp = 2 ∗ 3 − 1.
Note that we have the following invertible matrices; MA, MD3 and ME3 of size [Ne ∗Ne].
We have the following vectors of size [Ne× 1]: the trial function vectos H,Φ and Ψ, and the
assembly vectors MB1,MB2,MC1,MC2,MC3,MD2,MD3,ME2 and ME3.
When solving the system in time, we first have to solve the third part to obtain Ψ. Then we
obtain our residuals for a time integration method.

Ψ =
(4
5
MD3 + 2ME3

)−1
MC3 (3.43)

dH

dt
= MA−1

(
MB1 − 2

3
MC1

)
(3.44)

dH

dt
= MA−1

(
− gMA (H −H0) −

1

2
MB2 + 2MC2 − 3

4
MD2 − 2ME2

)
(3.45)
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3.6 Time integration

Untill now the time was considered to be continuous. We now discretize our systems with
respect to time, to integrate numerically in time from one time step to another. In literature
many time integration methods are proposed. Since we consider energy conserved systems,
we would particularly like to conserve energy in our numerical scheme. Therefore we consider
the Störmer-Verlet method. The two Runge-Kutta methods are considered, since they are
high order in time (third- and fourth-order, respectively). However, they are total variation
(TV ) diminishing [14] under the CFL coefficient. For our systems this results in numerical
dissipation. The TV diminishing is expressed as follows:

TV (un+1) :=
∑

i∈Th

|un+1
i+1 − Un+1

i | ≤
∑

i∈Th

|un
i+1 − Un

i | =: TV (un+1), (3.46)

where u(x, t) = u(xi, tn) is the solution at the ith node xi and at time step tn [14]. The CFL
conditions states:

∆t ≤
max
j∈Th

∆xj

max
j∈Th

|un
j |
. (3.47)

Another result is that a solution of the systems observed only is oscillatory when the numerical
solution is representing a discontinuous jump [14], in our case representing the breaking waves.

3.6.1 Störmer-Verlet

Störmer-Verlet is a symplectic method; it is reversible in time and it conserves energy for
Hamiltonian systems such as the (non)-linear shallow water equations. [15].
For the linearized Shallow-Water equations:

Hn+ 1

2 = Hn +
∆t

2
MBΦn

Φn+1 = Φn − ∆t

2
MAH

n+ 1

2 (3.48)

Hn+1 = Hn+ 1

2 +
∆t

2
MBΦn+1.

3.6.2 Third order Runge Kutta

We collect the discretized variational formulations in the following system:

∂tU = R(U), (3.49)

with U = [H,Φ]′ the state vector. We can use the third-order Runge Kutta to discretize
the system in time. We compute the new state vector Un+1(x) at time-step tn+1 = tn + ∆t
explicitely

U (1) = Un + ∆tR(Un, tn)

U (2) =
[
3Un + U (1) + ∆tR(U (1), tn + ∆t)

]
/4 (3.50)

Un+1 =
[
Un + 2U (2) + 2∆tR(U (2), t2 + ∆t/2)

]
/3.

A rough time step estimation is given by

∆t ≤ CFLmin
k

(Kk)/c (3.51)

with CFL the Courant-Friedrichs-Lewy number; CFL ≤ 1 and c is a constant velocity, eg.
c =

√
gh0 in the shallow water case §3.3.1.
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3.6.3 Fourth-order Runge-Kutta

The classical fourth-order Runge-Kutta formula is [31]:

U (1) = ∆tR(Un, tn)

U (2) =
1

2
∆tR(Un +

1

2
U (1), tn + ∆t)

U (3) =
1

2
∆tR(Un +

1

2
U (2), tn + ∆t) (3.52)

U (4) = ∆tR(Un + U (3), tn + ∆t)

Un+1 = Un +
U (1)

6
+
U (2)

3
+
U (3)

3
+
U (4)

6

3.7 Conclusion

In this section we derived for fully nonlinear Whitham variational Boussinesq model a contin-
uous Galerkin finite element method to approximate propagating wave solutions numerically.
In the progress of this derivation we have derived a cG FEM for the linear and nonlinear
shallow water equations.
Furthermore, we have derived a cG FEM formulation for the weakly nonlinear Klopman vari-
ational Boussinesq model for a horizontal seabed.
Finally, we have presented two total variation diminishing in time integration methods, namely
the Runge-Kutta methods 3 and 4, and the Störmer-Verlet method, which is a symplectic
method.
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4 Numerical Modeling: Discontinuous Galerkin

4.1 Introduction

The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [32]
in the framework of neutron mass transport, i.e. for hyperbolic equations. Since then DG
finite element methods have been developed for a wide range of models and applications. In
our model besides hyperbolic terms also elliptic terms appear. The DG method has been
developed for purely elliptic problems by Bassi and Rebay [3]. In this report we will follow
the approach of Arnold et al. [1] to compute the elliptic terms that appear in the Klopman
model. We will use the method of Brezzi et al. which is a local, consistent and conservative
method [2]. The discontinuous Galerkin method is particularly useful when hydraulic jumps
occur.
The basic idea of the Galerkin method is to multiply the system of partial differential equa-
tions by arbitrary test functions. In Discontinuous Galerkin methods we perform a partial
integration over each element resulting in a weak formulation. When we discretize the weak
formulation the discontinuous Galerkin methods specifically uses a numerical flux at the
boundaries of the element that concerns the two neighboring elements. The discontinuity
may occur at the element boundaries. The advantage of this method that we can refine hp
locally, which means that we may refine the element size h of one element or that we may
adjust the order of our polynomial expansion p in an element [38].
In subsection 4.2 we will first introduce the discretization that we will use and we introduce
some conventional notations and properties, such as the average {{·}} and jump [[·]] at a face
S and the global and local lifting operators R and Rs.
The DG method is illustrated for the linear shallow water model9 in subsection 4.3. It is shown
how we can design the relations defining the numerical fluxes when energy is conserved, as is
the case in our variational models. These fluxes affect the stability and the accuracy of the
method. We will follow the approach of Yan and Shu (2002) [38] for KdV type equations to
derive conditions for the numerical fluxes.
In subsection 4.4 three basic properties of fluxes are formulated, namely consistency, conser-
vation and stability in time. Furthermore the Rankine-Hugoniot relation is formulated with
which we can calculate the propagation speed of the local discontinuity.
Thereafter we present two choices for the fluxes, namely an alternating flux and the simple
Lax-Friedrich flux [22].
In subsection 4.5 we illustrate the local discontinuous Galerkin method to compute the ellip-
tic terms on a Poisson equation. In subsection 4.6 we apply the local discontinuous Galerkin
method to the linearized equations that were derived from the Klopman variational model.
It is in these equations that the elliptic terms appear. It is discussed why the formulation
of the primal form as proposed by [38] was not followed and where discrepancies are with
Eskillson’s work [12, 13].

4.2 Finite element discretization

In this section first the finite element discretization is introduced that we will use in the
DG method. Second we discretize the trial functions which enables us to solve the system
numerically. Third the jump and average over a face are defined and some algebraic properties
are given. Fourth the global and local lifting operator are defined, which we will use to solve
our elliptic terms.

9The lsw is a system of hyperbolic equations when written in [h, u]
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4.2.1 Tesselation of the horizontal domain

The spatial discontinuity in the DG method requires that we discretize the horizontal domain
slightly different than in the continuous Galerkin case. Again we partition the horizontal
domain Dh with elements to approximate the solution. We introduce the partitioning Th

existing of N open elements Kj = {x|x ∈ (xj− 1

2

, xj+ 1

2

)} where xj− 1

2

and xj+ 1

2

are the so-

called nodes. The result is a tesslation

Th = {Kj

∣∣ ∪N
j=1 K̄j = D̄h and Ki ∩Kj = ∅ if i 6= j, 1 ≤ i, j ≤ N}. (4.1)

with K̄j the closure of element Kj . The discontinuity may occur at the internal faces xj− 1

2

and xj+ 1

2

of element Kj. Values of u left and right of face xj− 1

2

are therefore denoted by

respectively

u−
j− 1

2

:= lim
x↑x

j− 1
2

u(x, t) and u+
j− 1

2

:= lim
x↓x

j− 1
2

u(x, t) (4.2)

as illustrated in figure 4.2.1

K1 K2 Kj KN

x1− 1

2

x1+ 1

2

x2− 1

2

xj+ 1

2

xN− 1

2

xN+ 1

2

+++++ − − + −−−−

xj− 1

2

Figure 4.2.1: Spatial discretization of the horizontal domain Dh for the discontinuous Galerkin
finite element method.

4.2.2 Discretization

To reduce the partial differential equations of our model explicitely to ordinary differential
equations, we choose a finite number of polynomials to expand the variables in each element
Kj . We hereby obtain the so-called trial functions uh(x, t) and vh(x, t) for the solution u(x, t)
and for test function v(x, t), respectively:

uh(x, t) =

dP∑

m=0

Um(xj, t)Θm(x), wh(x, t) =

dP∑

m=0

Wm(xj , t)Θm(x), (4.3)

with polynomial basis functions θm(x) ∈ P dP (Kk) in which P dP (Kj) denotes the space of
polynomials in Kj of degree dP and uh, wh ∈ Vh, with Vh = {v

∣∣v|Kj
∈ P dP (Kj), k = 1, ..,N }.

The so-called global basis functions Θm are defined on element Kj by:

Θm,j(x) =

{
1 if m = 0
θm,j(x) − 1

|Kj |

∫
Kj
θm,j(x) dx if m > 0.

(4.4)

with compact support (equal to zero outside the element) and θm = ζm on the local reference
element ζ ∈ [−1, 1]. With a mapping x = Fj(ζ) ∈ [xj− 1

2

, xj+ 1

2

] with degree dp = 1 we map

from the reference element to the partitioning

Fj(ζ) =
1 − ζ

2
xj− 1

2

+
1 + ζ

2
xj+ 1

2

(4.5)

and vise versa from the partitioning to the reference element with its inverse F−1(x). Integrals
over an element can now be computed with a two-point Gaussian quadrature rule which is
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exact for polynomials of degree 1 [28]. An integral over an element can be computed as follows
for a smooth function g(x) ∈ Vh

x
j+1

2∫

xj− 1

2

g(x) dx =
|Kj |
2

1∫

−1

g(Fj(ζ)) dζ =
|Kj |
2

(
g(Fj(

−1√
3
)) + g(Fj(

1√
3
))
)
. (4.6)

4.2.3 Jump and average on a face

The union of the internal faces is denoted by Γi and the boundary faces are united in the set
Γb. All the boundaries are represented by Γ = Γi ∪ Γb. At an internal face S we define the
jump [[·]] and the average {{·}}

[[v]] = v−n− + v+n+ for S ∈ Γi (4.7a)

{{v}} =
1

2
(v− + v+) for S ∈ Γi. (4.7b)

with n− and n+ the outward normal with respect to the left and right element of face S. At
S ∈ Γb the jump is v+n+ or v−n− and the average equals the internal value v+ at the left
boundary or v− at the right boundary of the domain. Note that in the 1D case n− = −1 and
n+ = +1.
We state some algebraic properties that we will use in the following subsections. For v−i , w

−
i

at the left and v+
i , w

+
i at the right of face Si we have that

v−(w−n−) + v+(w+n+) = {{v}}[[w]] + [[v]]{{w}} at S ∈ Γi (4.8)

and at the left or right boundary, we have that

v±(w±n) = {{v}}[[w]] = [[v]]{{w}} at S ∈ Γb. (4.9)

with n the outward unit normal. Observe that the following relations hold for the jump
average

{{v + w}} = {{v}} + {{w}}, [[v + w]] = [[v]] + [[w]],
{{{{v}}}} = {{v}} and [[{{v}}]] = 0.

(4.10)

4.2.4 Lifting operator

To deal with elliptic terms in our systems first the global and local lifting operators are defined
[3] in this subsection. Then they are discretized and rewritten as a linear system [34]. The
global lifting operator R(p) is defined with an arbitrary test function v ∈ Th as follows:

∫

Dh

vR(p) dx :=

∫

Γ
{{v}}p ds. (4.11)

The local lifting operator at face S is Rs(p). It has compact support outside the elements
Kj , Kj+1 adjacent to the face S = xj+ 1

2

= K̄j ∩ K̄j+1 is defined as:

∫

Dh

vRs(p) dx :=

∫

S
{{v}}p ds. (4.12)

The local lifting operator Rs(p) is related to the global lifting operator R(p) by:

Rs(p) =
∑

S∈Γ

Rs(p). (4.13)
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We discretize the local lifting operator Rs(p) at face s left or right of element Kj, by expansion
in polynomials of degree dp as [34]

(Rs(p))j =

dp∑

i=0

Rs,j
i Θi(x) for x ∈ Kj (4.14)

in order to solve elliptic terms numerically. Likewise the expansions of our test-function vh(x)
and trial function ψh(x) read

vh(x) =

dp∑

l=0

Vj,lΘl(x) and ψh(x) =

dp∑

i=0

Ψj,iΘi(x) for x ∈ Kj. (4.15)

We substitute these expansions in the definition for the local lifting operator (4.12) and for a
face S of element Kj

dp∑

i=0

Rsr,j
l

(∫

Kj

ΘlΘi dx
)

=

dp∑

i=0

(1

2
Ψk,i

∫

S
Θ−

i Θl ds+

∫

S
Θ+

i Θl ds
)

for l = 0, .., dp

(4.16)

where Θ−
i and Θ+

i represent value at the left and at the right element of face S, respectively.
For convenience we define a matrix Aj ∈ R(dp+1)×(dp+1) at element Kj and the matrix P s,j ∈
R(dp+1)×2 at face S adjacent to elements Kj and Kj+1 as

Aj
li =

∫

Kj

ΘlΘi dx and P sR,j(Ψj,i,Ψj+1,i)li =
1

2
Ψk,i

∫

Sr

ΘlΘi ds. (4.17)

Now we can collect the integrals over the elements and over the faces to obtain the following
linear system [34]

AjRsR,j = P sR,j(Ψj ,Ψj+1). (4.18)

Similarly, we have on the left face of element Kj :

AjRsL,j = P sL,j(Ψj−1,Ψj) (4.19)

Note that, since the basis functions Θi are orthogonal, automatically yields Aj is invertible.
Finally the lifting operator coefficients Rs,j are found for a left or right face s = {SL, SR} by
inversion of Aj and the expansion of the trial function for the local lifting operator now reads

(Rs)j =

dp∑

i=0

Rs,j
i Θi =

dp∑

i=0

(Aj)−1P s,jΘi (4.20)

for face S left or right of element Kj.

4.3 Linear shallow water system

In this subsection we apply the discontinuous Galerkin method on the linear shallow water
equations over a flat seabed and illustrate how our numerical fluxes can be chosen such that
energy is conserved. First we start with our system of equations, which are

∂th+ h0∂xu = 0 (4.21a)

∂tu+ g∂xh = 0. (4.21b)
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We multiply with arbitrary test functions v(x), w(x) ∈ C∞(Kj) on a certain element Kj and
integrate by parts over each element Kj ∈ Th. For convenience, we write vx = dv

dx for the first
order spatial derivative with respect to its only argument. At each element we have

∫

Kj

v∂th− vxh0u dx+ vh0u
∣∣−
x

j+ 1
2

− vh0u
∣∣+
x

j− 1
2

(4.22a)

∫

Kj

w∂tu− wxg∂xh dx+ wgh
∣∣−
x

j+1
2

− wgh
∣∣+
x

j− 1
2

(4.22b)

where we have taken the internal element values at each face as in (4.2). Since the system
[h, u] can be discontinuous at a face the limit solutions of h and u may not exist at the
element boundaries ∂Kj = S ∈ Γ. Instead, we introduce the numerical fluxes ĥi = ĥ(h−i , h

+
i )

and ûi = û(u−i , u
+
i ) for all faces Si ∈ Γ. Summation over all elements Kj results in the

discontinuous Galerkin weak formulation over the whole tesselation Th.

N∑

j=1

{∫

Kj

v∂th− vxh0u dx+ v−
j+ 1

2

h0ûj+ 1

2

− v+
j− 1

2

h0ûj− 1

2

}
= 0 (4.23a)

N∑

j=1

{∫

Kj

w∂tu− wxg∂xh dx+ w−
j+ 1

2

gĥx
j+ 1

2

− w+
j− 1

2

gĥx
j− 1

2

}
= 0. (4.23b)

Now we will derive conditions for the fluxes that we introduced. Remember that we have an
energy conserving system and at a certain horizontal domain Dh we have ∂tH = 0. We manip-
ulate the system such that we end up with an alternative expression for energy conservation.
By addition of (4.23a) and (4.23b) we obtain the following bilinear form:

N∑

j=1

{
Bj(h, u; v,w)

}
=

N∑

j=1

{∫

Kj

v∂th− h0vxu dx+ h0ûj+ 1

2

v−
j+ 1

2

− h0ûj− 1

2

v+
j− 1

2

+

∫

Kj

w∂tu− g∂xwh dx+ gĥj+ 1

2

w−
j+ 1

2

− gĥj− 1

2

w+
j− 1

2

}
, (4.24)

which is equal to zero for all v,w ∈ C∞(Kj), since the solutions h and u of the bilinear form
also satisfy the system (4.23). We then take10

v(x) = gh(x, t) and w(x) = h0u(x, t) (4.25)

at a certain time t. Using −
∫
h∂xu+ u∂xh dx = −uh|−

j+ 1

2

+ uh|+
j− 1

2

we obtain the following

relation on element Kj

Bj(h, u; gh, h0u) =
d

dt

∫

Kj

1

2
h0u

2 +
1

2
gh2 dx+ Ĥj+ 1

2

− Ĥj− 1

2

+ Θ̂j− 1

2

(4.26)

with

Ĥi = −F (x−i ) + gh0ûih
−
i + gh0ĥiu

−
i (4.27)

and

Θ̂i = [[F (xi)]] − 2gh0ûi{{h}}i − 2gh0ĥi{{u}}i (4.28)

where

F (x±i ) = gh0[hu
]
x=x±

i

. (4.29)

10Yan and Shu (2002) proposed this procedure for the KdV equations where cell entropy is conserved [38].
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Say Th is a periodic domain. We may sum Bj over all elements Kj ∈ Th and it is still equal
to zero. Remember that we have energy conservation and that we have ∂tH = 0 or

∂tH = ∂t

∫

Dh

1

2
h0u

2 +
1

2
gh2 dx = 0. (4.30)

Summing Bj(h, u; gh, h0u) over the periodic domain cancels the Ĥi-terms, since they were
constructed such that alternately a contribution of one element is canceled by a contribution
of another element.

N∑

j=1

Bj =
d

dt

∫

Dh

1

2
h0u

2 +
1

2
gh2dx+

N∑

j=1

Θ̂j− 1

2

= 0 (4.31)

Then we substitute ∂tH = 0 and we observe that only Θ̂i-terms remain. Thus for all faces
holds

Θ̂i = gh0

{
[[hiui]] − 2ûi{{hi}} − 2ĥ{{ui}}

}
= 0 ⇔

gh0

{
h−u− − h+u+ − û(h− + h+) − ĥ(u− + u+)

}
= 0 at face xi. (4.32)

What is left is to choose proper fluxes for ûi and ĥi such that this equality holds (besides
consistency and conservation, see the following subsection). The non-linear shallow water
equations are formulated in discretized in appendix A.

4.4 Numerical Fluxes

Numerical fluxes are used for inter-cell communication. At a face the solution of a system can
be discontinuous. The basic idea of a numerical flux is to treat these values as a local Riemann
problem and solve it numerically. The local Riemann problem can be solved analytically, but
it can be quite expensive in terms of computational effort [4]. So we should use an approximate
Riemann solver, eg. HLL or HLLc, to simulate the propagation of the discontinuous jump.
First we will state three requirements that should be satisfied by our numerical fluxes and
then two examples are presented, namely an alternating flux and the Lax-Friedrich flux [38].
We require that a numerical flux f̂(u−, u+) is consistent, i.e.

f̂(u, u) = f(u). (4.33)

Furthermore we require that the flux is locally conservative, i.e.

f̂(u+, u−) + f̂(u−, u+) = 0. (4.34)

Finally we require that energy is conserved as illustrated in subsection 4.3, which leads to L2

stability in time

B(h, u; v,w) − ∂tH = 0 (4.35)

for an appropriate v,w ∈ H1(Dh).
In literature several numerical fluxes are proposed satisfying the three requirements stated
above. Whether to choose the right or the left value at a face depends mainly on the propa-
gation speed s of the solution of the local Riemann problem. We have s = dx/dt and it can
be found by the Rankine-Hugoniot relation [5]

0 = lim
ǫ↓0

∫ x+ǫ

x−ǫ
∂tu + ∂xf(u)dx = −s[[u]] + f({{u}}), (4.36)
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where u = [h, u]T and f(u) = [h0u, gh] in the linear shallow water case.
For a system with two equations such as (4.23) in the shallow water case, we may choose
an alternating flux. For the shallow water case it is sufficient to evaluate f(u) for the first
equation at the left of a face and for the second equation at the right of a face (or vice versa).
This choice satisfies the above requirements for linear systems.
Another simple flux is the Lax-Friedrich flux. It satisfies above requirements, but is found to
be quite dissipative [38]. It reads

ˆf(u−, u+) = {{f(u)}} − 1

2
α[[u]], α = max

u
|∂uf(u)|, (4.37)

where the maximum is taken over a relevant u, which in practice is the maximum is taken over
the elements sharing the respective face. Note that the value of the flux on a boundary face
S ∈ Γd is attained by evaluation of the internal boundary value with the respective normal
direction.

4.5 Elliptic equations

We follow the approach of Arnold et al.[1] to apply the method of Brezzi et al.[2] to the
elliptic terms that appear in the Euler-Lagrange equations of the Klopman model [19]. For
convenience we consider the Poisson equation:

f − ∂2
xψ = 0 (4.38)

to illustrate the method, with f ∈ L2(Ω). We introduce an auxiliary variable σ = ∂xψ and
we rewrite the equation to a system of first order equations:

f − ∂xσ = 0, (4.39a)

σ − ∂xψ = 0. (4.39b)

We may now formulate a weak formulation over a subset K ∈ Dh by multiplying by test
function w ∈ C∞(K). From now on σ and ψ represent the trial functions for the solutions σ
and ψ respectively. For equation (4.39b) we obtain after partial integration twice (forwards
and backwards) in space

∫

K
wσ dx =

∫

K
w∂xψ dx (4.40a)

= −
∫

K
wxψ dx+

∫

∂K
wψ̂n ds (4.40b)

=

∫

K
w∂xψ dx+

∫

∂K
w(ψ̂ − ψ)n ds, (4.40c)

with n the outward normal vector to ∂K. Note that when we integrate by parts with respect
to ψ we have to introduce the numerical flux ψ̂ since ψ can be discontinuous at the faces,
provided that the face is an internal face. For convenience we choose the consistent flux
ψ̂ = {{ψ}}. The test functions are still arbitrary. Summation over all elements Kj ∈ Th gives
the weak formulation

∫

Dh

wσ dx =

∫

Dh

w∂xψ dx+

N∑

j=1

∫

∂Kj

w(ψ̂ − ψ)n ds. (4.41)

We transform this weak form using algebraic property (4.8) into:

∫

Dh

wσ dx =

∫

Dh

w∂xψ dx−
∫

Γ
{{w}}[[ψ]] ds+

∫

Γi

[[w]]{{ψ̂ − ψ}} ds. (4.42)
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Since the numerical flux ψ̂ is consistent at the internal faces Γi we have the relation {{ψ̂−ψ}} =
0. We now rewrite σ by means of the global lifting operator (4.11) to

∫

Dh

wσ dx =

∫

Dh

w∂xψ − wR([[ψ]]) dx (4.43)

and we obtain:

σ = ∂xψ −R([[ψ]]). (4.44)

Similarly we obtain a weak formulation for the first equation (4.39a) of our system by multi-
plying with a test function v ∈ C∞(K). We introduce the numerical flux σ̂ and sum over all
elements. After application of (4.8) we have:

∫

Dh

vf + vxσ dx =

∫

Γ
{{v}}[[σ̂]] ds+

∫

Γi

[[v]]{{σ̂}} ds. (4.45)

Substitution of equation (4.44) in: (4.45) for our auxiliary variable σ results in

∫

Dh

vf + vx

(
∂xψ −R([[ψ̂ − ψ]])

)
dx =

∫

Γ
{{v}}[[σ̂]] ds+

∫

Γi

[[v]]{{σ̂}} ds (4.46)

and we obtain, after using the relation (4.13) for the local lifting operator, the primal formu-
lation [1]:

∫

Dh

vf + vx∂xψdx−
∑

S∈Γ

∫

Dh

vxRs([[ψ]]) dx =

∫

Γ
{{v}}[[σ̂]] ds+

∫

Γi

[[v]]{{σ̂}} ds. (4.47)

We choose the stable and consistent numerical flux proposed by Brezzi et al.[2] such that
[[σ̂]] = 0

σ̂ = {{∂xψ − ηeRs([[ψ]])}} (4.48)

where the global lifting operator R was approximated by the local lifting operator Rs and ηe

should be strictly larger than the number of faces per element.

4.6 Linearized Klopman model

In this subsection we will first derive a weak formulation for the linearized Klopman model.
In subsection 4.6.1 we will discuss why we need a primal formulation to solve the system.
Thereafter the primal formulation is presented, where the approach of Arnold et al.[1] is
followed. The linearized Euler-Lagrange equations of the Klopman variational model were
derived in section 2.3 and read:

∂th+ h0∂xu− 2

3
h3

0∂
2
xψ = 0, (4.49a)

∂tu+ g∂x(h− h0) = 0, (4.49b)

4

3
h3

0ψ +
2

3
h3

0∂xu− 8

15
h5

0∂
2
xψ = 0. (4.49c)

For the elliptical terms ∂2
xψ we introduce the auxiliary variable σ = ∂xψ and we follow

the approach of Arnold et al.[1] as described in the previous subsection. We multiply with
arbitrary test functions v(x), w(x), ς(x) ∈ C∞(Kj). The weak formulation at each element
Kj , after simplification, reads:

∫

Kj

v∂th− h0vxu+
2

3
h3

0vxσ dx+

∫

∂Kj

(h0vû− 2

3
h3

0vσ̂)n ds = 0, (4.50a)
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∫

Kj

w∂tu− gwx(h− h0) dx+

∫

∂Kj

gw(ĥ − h0)n ds = 0, (4.50b)

∫

Kj

2ςψ − ςxu+
4

5
h2

0ςxσ dx+

∫

∂Kj

(ςû− 4

5
h2

0ςσ̂)n ds = 0. (4.50c)

and summation over all elements of Th gives us the weak formulation of the whole system.
Note that to solve our system we would need an extra equation σ = ∂xψ. However this would
yield solving the system globally as we will discuss in next subsection. A LDG approach is
proposed by Cockburn and Shu [10], which eliminates σ locally. A more easy approach is
eliminating the auxiliary variable globally following the Arnold et al. approach as sketched in
the previous subsection on elliptic terms.

4.6.1 Primal formulation

To solve system (4.50) numerically at a certain time step tn+1 we have data available from
the previous time step tn and information on how h and u progress in time, namely according
to a first order time-derivative. We can observe that to solve the system per element at a
time step tn+1 we also need information of how ψ evolves in time at every element to obtain
ψ at tn+1. This is not expressed explicitely so we have to obtain this information from our
third equation (4.49c) with the u at the new time step tn+1. This quantity is known from the
second equation (4.49b), but ∂2

xψ and ψ are still unknown. Solving this elliptic equation can
be done with a continuous Galerkin method as Eskilsson & Sherwin [12] do for a Boussinesq-
type equation or with a local Discontinuous Galerkin method as proposed by Cockburn and
Shu [10]. The approach of Cockburn and Shu is similar to the approach of Brezzi [1], but
with a much more complex formulation for the auxiliary variable. Therefore the more simple
approach of Brezzi et al. [2] is used, which can be replaced by a purely local DG method.
The approach of Brezzi et al.is able to approximate the propagation of discontinuities in time,
where the continuous Galerkin method is not.
We will now derive the primal formulation for the linearized Klopman Variational Boussinesq
equations. As seen in section 4.5 we could substitute our auxiliary variable σ:

σ = ∂xψ −R([[ψ]]) (4.51)

and its flux σ̂

σ̂ = {{σ − ηeRs([[ψ]])}} = {{∂xψ − ηeRs([[ψ]])}} (4.52)

in the weak formulation (4.50). As a result we have a primal formulation which we can solve
at a certain timestep tn+1 with the values of h, u, ψ and ∂xψ known at time-step tn. It reads

∫

Kj

v∂th− h0vxu+
2

3
h3

0vx(∂xψ −R([[ψ]])) dx

+

∫

∂Kj

(
h0vû− 2

3
h3

0v{{∂xψ − ηeRs([[ψ]])}}
)
n ds = 0, (4.53a)

∫

Kj

w∂tu− gwx(h− h0) dx+

∫

∂Kj

gw(ĥ − h0)n ds = 0, (4.53b)

∫

Kj

2ςψ − ςxu+
4

5
h2

0ςx(∂xψ −R([[ψ]])) dx

+

∫

∂Kj

(
ςû− 4

5
h2

0ς{{∂xψ − ηeRs([[ψ]])}}
)
n ds = 0 (4.53c)

and after application of the definition of the global lifting operator (4.11) we have
∫

Kj

v∂th− h0vxu+
2

3
h3

0vx∂xψ dx+

∫

∂Kj

h0vûn− 2

3
h3

0{{vx}}[[ψ]]
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−2

3
h3

0v{{∂xψ − ηeRs([[ψ]])}}
)
n ds = 0, (4.54a)

∫

Kj

w∂tu− gwx(h+ hb) dx+

∫

∂Kj

gw(ĥ − h0)n ds = 0, (4.54b)

∫

Kj

2ςψ − ςxu+
4

5
h2

0ςx∂xψ dx+

∫

∂Kj

ςûn− 4

5
h2

0{{ςx}}[[ψ]]

−4

5
h2

0ς{{∂xψ − ηeRs([[ψ]])}}n ds = 0, (4.54c)

where we used that [[ψ̂]] = 0. Summation over all elements gives us the desired discretization.
Note that, when we assume that vertical velocity profile of the fluid, governed by the term ψ,
is equal everywhere, we re-obtain our linearized shallow water system that we considered in
subsection 4.3.

4.6.2 DG discretization on the Klopman model

To solve the primal formulation numerically we use the tesselation proposed in subsection
4.2.1. We discretize the trial- and test-functions as proposed in subsection 4.2.2 and we
expand our functions as in equation (4.3) with polynomials of degree dP . We obtain the
following expansions for the trial and test functions

hh(x, t) =
∑dp

i=0Hj,i(t)Θi(x), vh(x) =
∑dp

i=0 Vj,iΘi(x),

uh(x, t) =
∑dp

i=0 Uj,i(t)Θi(x), wh(x) =
∑dp

i=0Wj,iΘi(x),

ψh(x, t) =
∑dp

i=0 Ψj,i(t)Θi(x), ςh(x) =
∑dp

i=0 Zj,iΘi(x)

(4.55)

for x ∈ Kj . We discretize the lifting operator Rs as in section 4.2.4, equation (4.20), with
expansion coefficients (Rs)j with respect to element Kj and its faces S ∈ ∂K

(Rs)j =

dp∑

i=0

Rs,j
i Θi =

dp∑

i=0

(Aj)−1P s,jΘi. (4.56)

We substitute the expansions introduced above in equation (4.54) and we obtain

dp∑

i=1

dp∑

l=1

∫

Kj

Vj,iΘi
dHj,l

dt
Θl − h0Vj,i

dΘl

dx
Uj,lΘl +

2

3
h3

0Vj,i
dΘi

dx

dΘl

dx
Ψj,l dx

+

∫

∂Kj

h0Vj,iΘi

(
û− 2

3
h2

0({{Ψl
dΘl

dx
}} − {{ηeRs,j

i Θi}})
)
nj

+
2

3
h2

0{{Vj,i
dΘi

dx
}}[[ΨiΘi]] ds = 0, (4.57a)

dp∑

i=1

dp∑

l=1

∫

Kj

Wj,iΘi
dUj,l

dt
Θl − gWj,i

dΘi

dx
Hj,lΘl dx

+

∫

∂Kj

gWj,iΘi(ĥ− h0(xj))nj ds = 0, (4.57b)

dp∑

i=1

dp∑

l=1

∫

Kj

2Zj,iΘiΨj,lΘl − Zj,i
dΘl

dx
Uj,lΘl +

4

5
h2

0Zj,i
dΘi

dx

dΘl

dx
Ψj,l dx

+

∫

∂Kj

Zj,iΘi

(
û− 4

5
h2

0({{Ψl
dΘl

dx
}} − {{ηeRs,j

i Θi}})
)
nj

+
4

5
h2

0{{Zj,i
dΘi

dx
}}[[ΨiΘi]] ds = 0, (4.57c)
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where s as superscript in Rs,j
i refers to the faces SL and SR of ∂Kj . Note that the average

[[Ψl
dΘl

dx ]] and jump [[ΨlΘl]] are over the elements adjacent to the face. Using that the test
functions are arbitrary on every element Kj ∈ Th we obtain a linear system and we may sum
over all elements over our domain Dh. This system is written out further for polynomials of
degree dp = 1 in appendix B.

4.6.3 Total energy

The total energy of the linearized system over a horizontal domain Dh is given by

H =

∫

Dh

1

2
h0

[
u− 2

3
h2

0(∂xψ)

]2

+
2

45
h5

0(∂xψ)2 +
2

3
h3

0ψ
2 +

1

2
g(h− h0)

2 dx (4.58)

(4.59)

which can be approximated on our tesselation Th with our polynomial expansion of degree
dp = 1 by

H =
N∑

j

Kj

2

∫ 1

−1

1

2
h0

(
Ūj + ξÛj −

2

3
h2

0

( 2

|Kj |
Ψ̂j

)2
+

2

45
h5

0

( 2

|Kj |
Ψ̂j

)2

+
2

3
h3

0(Ψ̄j + ξΨ̂j)
2 +

1

2
g(H̄j + ξĤj − H̄0))

2 dξ. (4.60)

4.6.4 Choice of numerical flux for KVBM

Since we consider an energy conserving system, we do not adopt the Lax-Friedrich flux. We
observe a linear system of equations and therefore we simply choose an alternating flux:

ĥi = HL − H̄0 at face Si (4.61)

ûi = UR at face Si (4.62)

which could be interchanged by HR − H̄0, UL respectively. Note that, to solve Ψ in the third
equation of our system, we have to use the same choice for û for consistency reasons, since
u − 3

4h
2
0∂xψ combine to the depth averaged fluid velocity, as stated in the conservation of

mass equation (4.49b).

4.6.5 Time integration

To solve this system propagating in time we start with initial data at a certain time step
tn. With equation (4.57) and Un known we can compute the values of Ψn. With the values
Hn, Un and Ψn we can compute (a,b) of (4.57) and obtain Hn+1, Un+1 using for example.
RK3 or RK4, cf. §3.6. Then again with (4.57) we can compute the value of Ψn+1 at time
step tn+1.

4.7 Conclusion

In this section a discontinuous Galerkin approach was proposed to solve the (non)linear shal-
low water equations numerically. An energy conservation restriction for the numerical flux
was formulated.
The discontinuous Galerkin finite element method was then applied on the linear equations
of the Klopman variational Boussinesq model. The system describing the KVBM has an
elliptic equation in space, which is solved numerically using Brezzi’s approach [2]. Since the
∂2

xψ–term, which appears in the linear equations, appears in a similar way in the weakly
nonlinear [19] and the fully nonlinear Klopman variational Boussinesq equations [20], the lat-
ter two models can be implemented fairly easily using the proposed discontinuous Galerkin
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method. However, the choice of the flux should be considered in the nonlinear case. One
might try the more complex HLLC flux for nonlinear shallow water systems [4], where the
knowledge of the linear dispersion relation might be helpfully in the determination of the local
wave speeds.



5 Verification 43

5 Verification

5.1 Introduction

In this section the verification of our numerical models is presented. We verify our numerical
results against (semi-)analytical solutions.
Firstly we investigate our shallow water models. We consider wave propagation and energy
conservation for linear and nonlinear shallow water waves, simulated numerically with the
continuous (see sections 3.3.1 and 3.3.2) and discontinuous (section 4.3) Galerkin finite el-
ement methods. Then we verify the time integration methods that have been proposed in
section 3.6. Numerical dissipation and a numerical phase shift are illustrated for periodic
linear waves that are propagating for a very long time. Next, we investigate the breaking of
periodic nonlinear shallow water waves propagating over a horizontal seabed.
Secondly, we will verify our results obtained with the continuous Galerkin (CG) finite element
method for the nonlinear Whitham variational Boussinesq model (WVBM).
Thirdly, we will present the verification of the linear Klopman variational Boussinesq model
(KVBM) propagating in time over a horizontal seabed. We will verify the results computed
by the DG method with the analytical solution. Then we compare the results computed with
the CG FEM for the weakly nonlinear model against linear solutions for small amplitude
waves.

5.2 Shallow water equations

In this section we will verify the numerical implementation of our shallow water models
over a horizontal seabed with still water depth h0. First the linear shallow water model is
implemented to investigate the time integration methods for the continuous Galerkin finite
element methods. Then we present the verification for the nonlinear shallow water model,
numerically implemented with the continuous and discontinuous Galerkin FEM.
For shallow water we have the energy density H given by

H =

∫

D−H

1

2
h(∂xφ)2 +

1

2
g(h − h0)

2 dx, (5.1)

which results, as the basis of our variational principle, in the following Euler-Lagrange equa-
tions

∂th = −∂x[h∂xφ], ∂tφ = −g(h − h0) −
1

2
(∂xφ)2, (5.2)

or more conveniently for our DG FEM, after substitution of u ≡ ∂xφ,

∂th = −∂x[hu], ∂tu = −∂x[gh+
1

2
u2]. (5.3)

5.2.1 Linear shallow water

We linearize (5.3) and we have:

∂th = −h0∂
2
xφ, ∂tφ = −g(h− h0). (5.4)

As periodic analytical solutions we take

h(x, t) = a cos(κx− ωt) + h0, φ(x, t) =
ag

ω
cos(κx− ωt), (5.5)

where a is the wave amplitude, κ the wave number and ω =
√
gh0 is the (dispersionless) wave

speed. The initial wave profile is plotted in figure 5.2.1
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Figure 5.2.1: Initial sinusoidal wave profile; a/h0 = 0.19; k0h0 = 0.53π; deep water.

We now consider a linear wave solution, approximated numerically, which is propagating for
a long time period over a horizontal seabed. In figure 5.2.2 we see the surface elevation after
a large number of wave periods, i.e. 0, 50, 100 150, 200 and 250 times wave period T = 2π/ω.
The non-dimensional value of the total energy computed analytically is 2.1125 · 10−3 per unit
length and per unit mass (for non-dimensional values of g, h0). Observe that the RK4 has a
phase shift that is almost equal to RK3, but is far less dissipative than RK3. Observe that
Störmer-Verlet is second-order conservative in time, but has a bigger phase shift than the RK
methods.

5.2.2 Nonlinear shallow water

The nonlinear shallow water equations are given in (5.3). We consider a sinusoidal initial
wave profile, in order to investigate breaking behavior of a traveling wave described by non-
linear models [36]. The initial solutions are obtained from linear theory equation (5.5) and
the initial wave profile is plotted in figure 5.2.1.
We investigate shallow water waves with an initial wave steepness k0a = 0.53π, using the
continuous Galerkin FEM. The numerical approximation in time is plotted in figure 5.2.3.
Observe that the water level approximation becomes oscillatory (Gibbs phenomenon) when
a hydraulic jump appears. Observe that the value of the total energy (rapidly) decays when
the wave starts to break. Before that, the value of the nondimensionalized energy is similar
to the ones plotted for the linear shallow water equations; cf. figure 5.2.2.
We now investigate the same initial wave profile numerically approximated with the discon-
tinuous Galerkin FEM. For our numerical flux we use both the simple alternating flux and
the Lax-Friedrich flux (see section 4.4). Observe from the results, presented in figure 5.2.4,
that the Lax-Friedrich flux is able to cope with a discontinuous jump, while the alternating
flux is not. However, the alternating flux is conservative (except for numerical dissipation
by the RK4 time integration method) as was shown in section 4.4. The initial value of the
nondimensionalized energy is 2.1125 · 10−3 per unit lengt and per unit mass, the same as for
the linear case. Note that the numerical dissipation of energy when simulating an hydraulic
jump is not an unwanted effect since breaking waves dissipate energy in nature.
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(a) RK3, tend = 250T
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(b) RK3, tend = 500T
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(c) RK4, tend = 250T
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(d) RK4, tend = 500T
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(e) SV, tend = 250T
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(f) SV, tend = 500T

Figure 5.2.2: Runge Kutta 3, RK4 and Störmer-Verlet time integration methods for the linear
shallow water equations with periodic boundary conditions; CG FEM. Water height h(x, t)
are plotted for time t ∈ [0, tend] at time steps n 50T, n = 0, 1, .., 5, with T = 2π/(κω). Initial
condition is (κ = 2π): h(x, 0) = a cos(κx) + h0, φ(x, 0) = g

ω sin(κx), with a = 0.065 and
h0 = 0.53 (deep water), g = 1 and λ = 1. The thick dotted line is the initial condition and
the thick dashed line is at t = tend. The total energy is plotted up to tend = 500T and number
of elements is 20.
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(a) CG FEM
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(b) CG FEM

Figure 5.2.3: Nonlinear shallow water equations for a ratio kh0 = 0.53 · (2π) (deep water,
CG FEM), a = 0.065, g = 1 λ = 1 and h0 = 0.53. The dotted line is the initial condition
as equation (5.5). Number of elements is 80, CFL = 0.5. The wave height is plotted up to
tend = 1.37 (dashed line).
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(a) Alternating flux
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(b) Alternating flux
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(c) Lax-Friedrich flux
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(d) Lax-Friedrich flux

Figure 5.2.4: Nonlinear shallow water equations for a ratio kh0 = 0.53 · (2π) (deep water, DG
FEMs), a = 0.065, g = 1 λ = 1 and h0 = 0.53. The initial condition (5.5) is the dotted line.
Number of elements is 80, CFL = 0.3. The wave height is plotted up to tend = 1.54 for the
alternating flux (dashed line) and up to tend = 2.05 for the Lax-Friedrich flux (dashed line).
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5.3 Whitham’s variational Boussinesq model

In this subsection we will verify the numerical implementation of the Whitham variational
Boussinesq model. Firstly, we will scale the model to the domain as depicted in figure 5.2.1
but now for a small wave amplitude a/h0 = 0.01. We compute the total energy and wave-
propagation over a long time stretch. Secondly, we will compare with a semi-analytical
periodic solution for the full nonlinear case.
The energy H for the WVBM was given by:

H =

∫

Dh

1

2
h(∂xφ)2 − 1

6
h0(∂th)

2 +
1

2
g(h− h0)

2 dx, (5.6)

which results, from our variational principle, in the following Euler-Lagrange equations:

∂th = −∂x[h∂xφ], ∂tφ = −g(h − h0) −
1

2
(∂xφ)2 − 1

3
h0∂

2
t h. (5.7)

This is rewritten as:

∂th = −∂x[h∂xφ], ∂tF = −g(h− h0) −
1

2
(∂xφ)2, (5.8)

after introduction of the auxiliary variable F = φ+ 1
3h0∂th, in order to facilitate the numerical

integration in time.

5.3.1 Small amplitude waves nonlinear WVBM

As initial conditions we take solutions of the linearized WVBM equations, equation (2.53)

h(x, t) = a cos(κx− ωt) + h0 (5.9a)

F =
ag

ω
sin(κx− ωt) with ω2 =

gh0κ
2

1 + 1
3(κh0)2

. (5.9b)

Nonlinear water waves behave like linear waves when considering small amplitude waves over
not too long stretches of time [33]. We take a/h0 = 0.01, h0 = 1, representing deep water.
For one time period T = 2π/ω the propagating wave is plotted in figure 5.3.1. To compute
the the total energy (5.6) we approximate ∂th(x, t) by h0MB Φ + MD(H)Φ, see equation
(3.25). Observe that the total energy is less than the energy of our nonlinear shallow water
systems of section 5.2.2 due to the term −1

6h0(∂th)
2.

5.3.2 Nonlinear Whitham variational Boussinesq model

To verify our numerical model for the Whitham variational Boussinesq, we first consider
cnoidal waves11, for which analytic solutions can be found [11]. Second, we consider semi-
analytical periodic-wave solutions to the WVBM, using a standard MATLAB boundary value
problem (BVP) solver, see appendix D. Initial profiles of the analytic solution and of the BVP
are plotted in figure D.6.1. The initial solutions are obtained semi-analytically as follows, see
Dingemans [11], chapter 6.

h(x, t) = −at +Hcn2(2K(m)
x− ct

λ
;m) + h0(x) (5.10a)

λ =

√
16h3

0

3A
m

(
c√
gh0

)β

K(m) (5.10b)

11A cnoidal wave is a periodic analytical solution of the KdV equations, which behaves like a propagating
soliton; shape invariant in time
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(a) CG FEM
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(b) CG FEM

Figure 5.3.1: Nonlinear WVBM for small amplitude waves a/h0 = 0.01 computed with CG
FEM, for and initial condition (5.9a). Number of elements N is 40 and ∆t = T/50, solutions
plotted every 5∆t. The energy is computed for a = 0.65, h0 = 0.53, g = 1 and λ = 1, time
integration method RK4, under time-step restriction CFL = 0.5 up to tend = 650 for N = 20.

ac =
A

m
(1 − E(m)

K(m)
) (5.10c)

at = A− ac (5.10d)

c =

[
1 − A

2h0
+

A

mh0
(1 − 3

2

E(m)

K(m)
)

] 1

β √
gh0, (5.10e)

with ac = max
x∈λ

(h(x, t) − h0(x)) the expression for the crest elevation and at = min
x∈λ

(h(x, t) −
h0(x)) the through depth and c is the wave celerity; cn(θ;m) are Jacobi elliptic functions and
K(m) and E(m) are complete elliptic integrals of the first and second kind, where m1 = 1−m
and m is the elliptic parameter; β is a value concerning the wideness of the crest.
The initial condition for the velocity potential φ can be computed using the mass conservation
equation:

∂t(h− h0) + ∂x[h∂xφ] = 0. (5.11)

Using that ∂t = −c∂x for cnoidal waves, gives us:

−c(h− h0) + h∂xφ = constant = Q. (5.12)

which can be rewritten to

∂xφ =
Q+ c (h− h0)

h
. (5.13)

Averaging over a wavelength λ yields that equation (5.13) is equal to zero (cnoidal waves are
periodic and thus ∂xφ cancels at periodic boundaries at one wavelength) and we obtain

Q = −c
(h− h0

h

)/(1
h

)
(5.14)

where we define the wavelength average (.) = 1
λ

∫ λ
0 (.) dx.

and φ(x, t) is initially given by:

φ =

∫ x

x0

Q+ c
(
h(x′, t) − h0(x

′)
)

h(x′, t)
dx′. (5.15)
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Figure 5.3.2: Cnoidal wave in the WVBM; H = 5.0 m, h0 = 10 m, λ = 165.4 m, g =
9.81 ms−2 and m = 0.001. The ′+′ denotes the initial profile as in figure D.6.1 and the ′o′ is
after one wave period T . Number of elements N = 40, ∆t = T/50 s.

The numerical solution for one wave period T is plotted in figure 5.3.2 for parameters H =
5.0m, h0 = 10m, λ = 165.4, g = 9.81 and m = 0.001. Observe that cnoidal wave is not an
approximate solution of the Whitham variational Boussinesq model since waves are dispersed.
The BVP, see appendix D, gives us, as shown in figure 5.3.3 an exact periodic solution; the
initial condition lies on top of the solution at tend = T . Note that the total energy was not
solved completely correct, since we used an approximation for ∂2

t η.
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(b) Energy per unit length

Figure 5.3.3: Nonlinear WVBM with an initial condition solved with the standard matlab
boundary value problem solver. Initial values are: H = 5.0m, h0 = 10 m, λ = 100 m,
g = 9.81 ms−2 and we had m = 0.0334. The ′+′ denotes the initial profile of one wavelength
as figure D.6.1 and the ′o′ is after one wave period T . The energy per unit length H/λ is
plotted up to time tend = 100T and N = 80.

5.4 Klopman’s variational Boussinesq model

In this subsection we will verify the numerical implementation of the Klopman variational
Boussinesq model. Firstly, we will scale the model to the domain as depicted in figure 5.2.1
but now for a small wave amplitude a/h0 = 0.01. We observe the total energy and wave-
propagation for a long time. Secondly, we will consider large amplitude waves for the linear



50 5 Verification

KVBM computed with the DG FEM.

5.5 Small amplitude waves in the Klopman variational Boussinesq model

In this subsection we verify our results obtained for the linear KVBM, numerically computed
with the DG method as proposed in section 4.6. The accuracy of our numerical solution of
the third elliptic equation of our KVBM system has been verified separately in appendix C.
We non-dimensionalize our models by scaling for comparison reasons. We observe periodic
waves on the horizontal domain x ∈ [0, 2π]. When we consider as an initial profile a sinusoidal
wave we relate twice the height of the wave 2a to its wavelength λ as follows

R =
∆z

∆x
=

2a

λ
=

2ak0

2π
, (5.16)

where a is the amplitude of the wave with wavenumber k0 as depicted in figure 5.2.1.
For the complete linear KVBM model an analytical solution is given by

h(x, t) = a cos(κx− ωt) + h0, (5.17a)

u(x, t) = aκ cos(κx− ωt)/ω, (5.17b)

ψ(x, t) = − aωκ

ω(2 + 3
4h

2
0κ

2)
sin(κx− ωt), (5.17c)

where ω is obtained from the dispersion relation as derived in section 2.3.2 and reads

ω2 =
g

h
(κh)2

1 + 1
15 (κh)2

1 + 2
5(κh)2

. (5.18)

Note that for the continuous Galerkin method we ought to compare φ(x, t) = a sin(κx−ωt)/ω
instead of u(x, t).
After one wave period T = 2π/ω we have that, for a periodic solution on an horizontal domain
x ∈ [0, 2π], the solution is ideally the same as the initial condition. Moreover, the shape of
wave profile is time invariant (modulo T ) when propagating over the free surface, as indicated
by (5.17). The total energy of the linearized system is given by

Hb =

∫

Dh

1

2
h0

[
u− 2

3
h2

0∂xψ

]2

+
2

45
h5

0(∂xψ)2 +
2

3
h3

0ψ
2 +

1

2
g(h− h0)

2 dx (5.19)

which can be computed analytically for our linear system (5.17) and is approximated nu-
merically by (4.6.3). We now consider a periodic horizontal domain L = 2π, wavenumber
κ = 1 (such that λ = 2π) and a small amplitude wave a << h0, for example a = 0.01 with
the non-dimensional coefficients h0 = 1 and g = 1. The steepness ratio is then given by
R = 0.01

π . The total (non-dimensional) energy of our system is12 Hb = 3.142103451, which is
constant in time. The wave propagation for this linear wave, approximated by the discontin-
uous Galerkin method for the linearized KVBM (section 4.6), using a time step ∆t = T/48
with T = 2π/omega, is plotted in figure 5.5.1a. The total energy of our system at time steps
(∆t = T/48, where T = 2π/ω is our wave period) is plotted for a hundred wave periods in
figure 5.5.1b.
When we consider small amplitude water waves, in this case a = h0/100, it is observed that
the solution of the nonlinear KVBM by the continuous Galerkin method will behave like linear
water waves. Nonlinear effects are small compared to the leading linear order [33]. The wave
propagation, as approximated with the continuous Galerkin method (section 3.4), is plotted
in figure 5.5.1c. The total energy of our system at time steps ∆t = T/24, is plotted for a
hundred wave periods in figure 5.5.1d.
Note that the plot may suggest that the total energy remains completely constant in time,
where in fact energy is dissipated numerically, see table 5.5.1

12Solved analytically with maple.
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(a) Linear KVBM, DG method
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(b) Energy of KVBM, DG method
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(c) Nonlinear KVBM, CG method
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(d) Energy of nonlinear KVBM, CG method

Figure 5.5.1: Small wave amplitude a/h0 = 0.01, time integration method is RK4. The initial
condition is represented with the ’+’, given by (5.17). For DG we used a time step ∆t = T/48
and number of elements Ne = 20. For CG we used ∆t = T/24 and Ne = 20. The propagating
wave is plotted at time steps t = n

8T, n = 0, 1, .., 8. The total (non-dimensional) energy is
plotted for 100 wave periods.
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Lin. KVBM, DG FEM Nonlin. KVBM, CG FEM

Total energy at t = 0 3.141907 3.141952
Total energy at t = 100T 3.141864 3.141948
Relative difference −1.37 · 10−3% −1.34 · 10−4%

Table 5.5.1: Total energy H of the linear and nonlinear KVBM computed with respectively
DG and CG FEM.

5.6 Large amplitude waves in the Klopman variational Boussinesq model

Verification for large amplitude waves in the the Klopman Boussinesq model can only be done
for the linear model, computed with DG FEM. Results for the nonlinear model (CG FEM)
will be presented in section 6. We consider very large amplitude waves with a/h0 = 0.4. The
surface height and velocity potential are plotted in figure 5.6.1. as can be seen, the solution
remains sinusoidal, as expected for a linear problem.

5.7 Conclusion

In this section we we verified the numerical implementation of the linear and nonlinear shal-
low water, the nonlinear Whitham variational Boussinesq model and the linear and nonlinear
Klopman variational Boussinesq model.
The Runge-Kutta 3 was shown to be more numerically dissipative than the Runge-Kutta
4 time integration method. The Störmer verlet time integration method was shown to be
conservative, although it has a bigger phase shift than the Runge-Kutta methods.
The discontinuous Galerkin FEM prooved to approximate the propagation of a discontinuous
jump in the nonlinear shallow water model better than the continuous Galerkin FEM. When
a discontinuous jump occurs, the performance of the discontinuous Galerkin FEM mainly
depends on the choice of the flux. The (conservative) alternating flux shows spurious oscilla-
tions when the numerical solution follows a propagating shock. The Lax-Friedrich flux only
showed unwanted oscillations near the shock.
The cnoidal wave solution showed dispersion effects and it appears that the cnoidal wave
does not approximate a periodic solution of the WVBM. The BVP solution of appendix D is
shown to be a periodic solution of the nonlinear WVBM. Appart from numerical dissipation,
energy is nicely conserved.
The more complex KVBM was solved correctly using the continuous Galerkin FEM for the
nonlinear KVBM and using the discontinuous Galerkin FEM for the linear KVBM. Energy
was shown to be conserved with the alternating numerical flux.
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Figure 5.6.1: Large amplitude wave a/h0 = 0.01, time integration method is RK4. The initial
condition is represented with the ’+’, given by (5.17). We used a time step ∆t = T/48 in
RK4 method and number of elements N = 20. The propagating wave is plotted at time steps
t = n

8T, n = 0, 1, .., 8.
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6 Investigation into wave breaking and linear dispersion

6.1 Introduction

In section 2 the following three variational models were studied analytically: Luke’s vari-
ational principle for potential flow, Klopman’s variational Boussinesq model (KVBM) and
Whitham’s variational Boussinesq model (WVBM).In section 5 we presented the verification
of our numerical models. We find that the propagation speed of periodic waves in our numer-
ical models were approximated correctly. In this section we investigate, if in the nonlinear
WVBM and weakly nonlinear KVBM breaking waves may occur.
This study is motivated by the fact, that opposite to the nonlinear shallow water equations,
waves do not break (i.e. have discontinuous solutions developed from continuous initial so-
lutions)) in traditional Boussinesq models. Apparantly, the counteracting effect of linear
frequency dispersion is too strong for wave breaking to occur. Offcourse, we know from our
own observations at the beach, and from numerical simulations using the full potential flow
equations, that real waves may break. Therefor, we will investigate whether the nonlinear
WVBM and weakly-nonlinear KVBM allow for breaking waves to develop.
The numerical results are computed with the continuous Galerkin (CG) finite element method
for the nonlinear Whitham and Klopman variational Boussinesq models as described in sec-
tion 3.1.
Firstly, we consider the possibility of wave breaking in the nonlinear Whitham variational
Boussinesq model, for waves computed with the CG FEM and propagating over a flat hori-
zontal seabed. The initial wave profile is chosen as in section 5.2.2.
Secondly, we consider the weakly nonlinear Klopman variational Boussinesq model for various
wave amplitudes, computed with the CG FEM.
Thirdly we present traveling waves in the linear Klopman variational Boussinesq model nu-
merically computed with the DG FEM.
Conclusions are drawn in next section, section 7.

6.2 Wave breaking

6.2.1 Nonlinear Whitham variational Boussinesq model (CG)

In section 5 we have verified that the correct implementation of the nonlinear WVBM. to
study the possibility of wave breaking, We now present two test cases for waves propagating
over a horizontal seabed. We plot in figure 6.2.1 the (non-dimensionalized) waves propagating
for one wave period in deep water, h0κ = 0.53 ∗ (2π) and shallow water h0κ = 0.13 ∗ (2π).
The initial conditions are given by:

h(x, t) = a cos(κx− ωt) + h0, (6.1a)

F =
ag

ω
sin(κx− ωt) with ω2 =

gh0κ
2

1 + 1
3(κh0)2

(6.1b)

where a = 0.65, κ = 2π and g = 1. To compute the energy we approximate (∂th)
2 as we did

in the verification, section 5.3. As can be observed, even for the steepest initial wave profile,
the waves do not start to break in the Whitham variational model. As expected for the CG
FEM model, energy is almost conserved.

6.2.2 Weakly nonlinear Klopman variational Boussinesq (CG)

To investigate the behavior of the weakly nonlinear Klopman variational Boussinesq model,
we start with a sinusoidal wave profile, given by relations (5.17) and plotted in figure 5.2.1,
but now for various amplitudes at a water depth h0 = 10 m, non-dimensionalizing using
κ = 2π and g = 1.
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(a) Nonlinear WVBM, deep water
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(b) Nonlinear WVBM, deep water
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(c) Nonlinear WVBM, shallow water
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(d) Total energy

Figure 6.2.1: Nonlinear WVBM. The initial condition is represented with the dotted line and
given by (6.1a). Number of elements N = 40, time steps ∆t = T/50, RK4. The wave ratios
h0κ are for a) the deep water 0.53 ∗ (2π) and c) the shallow water 0.13 ∗ (2π). Energy is
computed up to tend = 50T . We have g = 1, λ = 1.
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(a) Nonlinear KVBM, small amplitude

0 0.1 0.2 0.3
0.1564

0.1565

0.1565

0.1566

0.1566

0.1567

0.1567

Time t

T
ot

al
 e

ne
rg

y

(b) Nonlinear KVBM, small amplitude
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(c) Nonlinear KVBM, high amplitude
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(d) Nonlinear KVBM, high amplitude
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(e) Nonlinear KVBM, extreme amplitude
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(f) Nonlinear KVBM, extreme amplitude

Figure 6.2.2: Weakly nonlinear KVBM. The initial condition is represented with the dotted
line and given by (5.17). Number of elements N = 40, time steps ∆t = T/100, RK4. Water
depth h0 = 10 and the amplitudes are for a) a = 0.1, c) a = 1.0 and e) a = 2.0 . The energy
is computed for one wave period. The dashed line is at tend = T
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At tend, plot 6.2.2c typically illustrate the behavior of the weakly nonlinear KVBM for ex-
tremely high and steep waves. Wave crests are steepening at the front and an extra wave
is appearing at the trough due to wave dispersion. This phenomenon is also visible for
Rienecker-Fenton13 initial waves as illustrated in figure 5a of [20]. For high amplitude waves
the propagating waves will start to deform strongly, but will not break14.

6.3 Linear dispersion

To illustrate the effects of dispersion, we now consider the linear KVBM. We consider an initial
sinusoidal wave profile, which could represent an initial disturbance of the free surface by, for
example, a fast motion of the seabed caused by an earth quake. We consider a flat horizontal
seabed of depth h0 = 10 m. The wave has a wavelength of λ = 100 m and amplitudes
a = 1 m. The left ”fronts” of the wave starts at x0 = 50 m. The initial disturbance does
not affect initially the surrounding fluid, so we choose a zero velocity u and initial water level
h0 = 10 m. At the initial surface elevation at the bump is given by:

h(x, 0) =
a

2
(1 − cos(κ(x − x0))) + h0, and u(x, 0) = 0. (6.2)

In figure 6.3.1 we compare the linear shallow water equations with the linear KVBM to
illustrate linear dispersion. The linear shallow case is obtained by assuming that vertical
velocity profile of the fluid, governed by the term ψ, is equal everywhere. We take ψ = 0. We
consider the linear shallow water and the KVBM at periodic boundaries.

13Rienecker-Fenton provided a relatively simple method to get a nonlinear potential description of a regular
wave in any water depth by means of a Fourier series of the stream function [26].

14c.f. the verification in section 5.6
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(a) Linear shallow water; dispersionless
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(b) Linear KVBM; dispersive

Figure 6.3.1: Linear KVBM computed with the DG method. The initial condition is repre-
sented with the dotted line and given by (6.2). Number of elements N = 250, ∆x = 300/250 m
and time-integration method is RK4 with time-step T/300. Water depth h0 = 10 and the ini-
tial amplitude is a = 1 and wave length λ = 100. The surface height and velocity of the fluid
are plotted in a) for the linear shallow water (T = 10, 10 s) and in b) for the linear KVBM
(T = 10, 72) after timesteps t = T/6 and tend = 11

2T ; the waves travelling to the left and
right meet at xend = 300 m.
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7 Conclusions

In this report three variational principles modeling free surface waves were studied, namely
Luke’s variational principle [27] for the full three dimensional potential flow, Klopman’s vari-
ational Boussinesq model (KVBM) and Whitham’s variational Boussinesq model (WVBM).
An important property of these models is that energy is conserved by construction and is
positive-definite. In this report surface tension is included to the variational principles. By
studying the linear dispersion relations, we find that surface tension can not be neglected for
short waves, λ < 10 cm since it affects the phase speed of the propagating waves.
The KVBM is found to approximate the exact dispersion relation, obtained from Luke’s vari-
ational principle, better than the WVBM. Furthermore, the Taylor expansion of the KVBM
approximates the exact dispersion relation up to the order O(κ10).
Considering variational principles provide two nice properties. First, moving boundaries have
been included in the variational principles describing free surface potential flows. The mo-
tion of moving boundaries is obtained by taking variations with respect to time dependent
fluid boundaries. Second, variational principles are a logical starting point for the continuous
Galerkin finite element weak formulation.
An important question is whether the Boussinesq models allow for the development of break-
ing (discontinuous) waves. From the numerical computations, see figures 6.2.1 and 6.2.2 is
concluded that the waves described by the nonlinear WVBM and the weakly nonlinear KVBM
do not break. In the derivation of the weakly nonlinear KVBM some nonlinear terms were
canceled due to the assumption that wave slopes are small ∂x(h + hb − h0)) << 1. The dis-
persion effects in this model might be in balance with the nonlinear terms. The possibility
of wave breaking described by this fully nonlinear model should be investigated further, see
equations (8.1) from [20] .
If the fully nonlinear waves eventually start to break, for waves propagating through the surf-
zone, the propagating waves are shown to have a relatively good dispersion with respect to
the exact dispersion relation. To be able to simulate the propagation of these waves through
the surf zone it is shown that the discontinuous Galerkin method is able to deal with the
propagating discontinuous jump. However, the choice of the numerical flux for the fully non-
linear model has not yet been proposed. Dissipation properties of the numerical flux are to
be considered, since the model itself does not dissipate energy. The numerical dissipation due
to the numerical flux is desired, as illustrated by the the Lax-Friedrich flux in the case of
nonlinear shallow water wave and a clever choice can be desirable when waves overturn. In
his report an energy conservation restriction for the numerical fluxes have been formulated
for the shallow water equations. In a similar way one may be able to construct a restriction
on the numerical flux for the fully nonlinear KVBM case.
Besides the advantage of the possibility to cope with breaking waves, the discontinuous
Galerkin method has the benefit to locally refine the grid size and the accuracy by locally
introducing higher order polynomials [38].
We conclude that the linear KVBM has successfully been implemented in a DG FEM, using
linear polynomials to expand the variables. Solving ψ in the linear KVBM from the elliptic
equation, eq. (4.49c), is done using the Brezzi approach [2], see appendix C.
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8 Recommendations

In this section we discuss some recommendations. We will start with the model assumptions
and present possible model extensions. Thereafter we discuss the numerical methods and
present some findings.

• When validating the potential flow models against small-scaled laboratory settings one
has to include surface tension effects in the variational model, as proposed in this report.
The surface tension effects affect the propagation speed of the fluid, and this effect can be
easily included in your mathematical model when validating your model with laboratory
data.

• In this report we have investigated fluid domains with a constant horizontal water depth
h0 and with periodic boundaries. Further investigation on bathymetry influences, such
as steep seabed slopes might be required when simulating waves propagating from the
deep oceans to the shores. Furthermore, for practical applications, we may include
special boundaries such as ships, sloping beaches and quays in our variational models.
Introducing these boundaries means that we have to add additional assumptions at the
boundaries for ψ: i.e. for the vertical velocity ∂zφ at z = h(x, t).

• When one considers a broader range of waves than only small-steepness water waves,
one has to adopt the fully nonlinear KVBM instead of the weakly nonlinear KVBM.
Dropping the assumption that wave slopes are small and allowing waves slopes to be
steep may affect the breaking behavior of wave described by the KVBM model heavily.
We suggest the discontinuous Galerkin FEM to simulate waves propagating in the surf-
zone, and to investigate wave breaking in the fully nonlinear KVBM.

• The continuous Galerkin FEM is derived nicely from the variation of the action func-
tional. It might be worthwhile to investigate further if this may be possible for the
discontinuous Galerkin FEM for Lagrangian systems in general. Combining the advan-
tages of these energy conserving system with a highly adaptable computational methods
as DG FEM would have many benefits.

• The fully nonlinear equations are, from [20]:

δh : ∂th+ ∂x(hup) = 0, (8.1a)

δφ : ∂tu+ ∂x

{
gh+

1

2
[up −

1

3
h∂xψ]2 − 1

45
[ψ∂xh+ h∂xψ]2

+
1

6
[1 +

1

5
(∂xh)

2]ψ2 + ∂x[h(
2

3
u− 7

15
ψ∂xh− 1

5
h∂xψ)]

}
= 0, (8.1b)

δψ : hψ
[1
3

+
7

15
(∂xh)

2 − [
2

3
hu− 1

5
h2∂xψ]∂xh

+∂x{
1

3
h2u− 1

5
h2ψ∂xh− 2

15
h3∂xψ} = 0, (8.1c)

where u ≡ ∂xphi and the depth-averaged velocity up is given by

up = u− 2

3
ψ∂xh− h∂xψ. (8.2)

When one constructs a discontinuous Galerkin FEM for the fully nonlinear KVBM, one
can still use the Brezzi approach to solve the elliptic equation, since it is linear in ψ and
one still has to solve an elliptical equation. Construction of the weak formulation per
element of the fully nonlinear equations (8.1) will give a term over element Kj, from
the last term

−∂x{∂x[
1

5
h2∂xψ]} (8.3)
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in equation (8.1b):

∫

Kj

vx∂x[
1

5
h2∂xψ] dx + a flux−term at the element boundaries, (8.4)

which can be solved using the knowledge of σ = ∂xψ from (8.1c) from and adopting the
degeneration method of Yan and Shu [38] for third order spatial derivatives.

• For the fully nonlinear KVBM, implemented using the discontinuous Galerkin method,
we have to investigate the choice of the numerical flux. In this report an alternating
flux have been chosen for the linear KVBM. In the shallow water model it is shown that
the alternating flux is not able to deal with discontinuous jumps. The Lax-Friedrich
flux is too dissipative in the shallow water case. So, for the fully nonlinear KVBM
we might want to adopt the HLL or the HLLC flux as proposed by Batten et al.[4],
where the wave speed can be approximated locally using the linear dispersion relation.
In our linear case the flux choice of the elliptic equation depends on the choice of the
numerical flux in the mass-conservation equation, i.e. the determination of ∂th, only. In
the nonlinear case the term ψ comes forth in both equations (8.1a) and (8.1b), so even
for an alternating flux the choice of the numerical flux for the third equation (8.1c) is
not yet obvious.
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A Nonlinear shallow water equations with discontinuous Galerkin

A.1 Non-linear shallow water equations

The non-linear shallow water equations over an horizontal flat seabed are the Euler-Lagrange
equations of the following action principle

L(h, φ) =

∫

Dh

φ∂thdx−H(h, φ), (A.1)

where the total energy of the system H is given by

H =

∫

Dh

1

2
h(∂xφ)2 +

1

2
gh2 dx. (A.2)

Imagine Dh = Kj is an element of our tessalation Th, then taking variations with respect to
h and φ gives us our variational weak formulation per element

0 =

∫ t1

t0

∫

|Kj|
δφ∂th− dδφ

dx
[h∂xφ] dx−

∫

|Kj|
δh
(
∂tφ+ gh+

1

2
(∂xφ)2

)
dxdt. (A.3)

Spatial partial integration and seperation of the two variational derivatives with respect to
each variable gives

∫ t1

t0

∫

|Kj |
δφ∂th+ δφ∂x[h∂xφ] dx−

∫

∂Kj

δφĥ∂xφn dsdt = 0 (A.4a)

∫ t1

t0

∫

|Kj |
δh
(
∂tφ+ gh+

1

2
(∂xφ)2

)
dxdt = 0. (A.4b)

where ĥ∂xφ denotes the numerical flux at the boundary faces. We use the arbitrariness of
δh in the set of testfunctions C∞(K) and instead we take dδh

dx ∈ C∞(K). Substitution of
u = ∂xφ and partial integration with respect to space and gives us for

∫ t1

t0

∫

|Kj |
δφ∂th+ δφ∂x[hu] dx−

∫

∂Kk

δφĥun dsdt = 0 (A.5a)

∫ t1

t0

∫

|Kj |
δh∂tu− ∂xδh[gh +

1

2
u2] dx+

∫

∂Kj

δh(gĥ +
1

2
û2)n dsdt = 0. (A.5b)

A.2 DG discretization with polynomials of degree 1

In order to compute the Shallow Water equations we expand the variables with polynomials
of degree dp = 1. We expand our trial and test functions with polynomials of degree dP = 1

hh(x, t) = H̄j(t) + Ĥj(t)Θ1(x), δh(x) = V̄j + V̂jΘ1(x)

uh(x, t) = Ūj(t) + Ûj(t)Θ1(x) δφh(x), = W̄j + ŴjΘ1(x)
(A.6a)

where for example H̄j and Ĥj are the numerical approximations of the mean and the slope
of h(x, t) at x = xj .

A.3 Algebraic system of equations

∫

Kj

(V̄j + V̂jΘ1)
d

dt
(H̄j + ĤjΘ1) − V̂j

dΘ1

dx
(H̄j + ĤjΘ1)(Ūj + ÛjΘ1) dx
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+

∫

∂Kj

(V̄j + V̂jΘ1)ĥun ds = 0 (A.7a)

∫

Kj

(W̄j + ŴjΘ1)
d

dt
(Ūj + ÛjΘ1) − Ŵj

dΘ1

dx

(
g(H̄j + ĤjΘ1) +

1

2
(Ūj + ÛjΘ1)

2
)

dx

+

∫

∂Kj

(W̄j + ŴjΘ1)(gĥ +
1

2
û2)n ds = 0 (A.7b)

A.3.1 Means

We evaluate the integrals over the elements by using the reference element ζ ∈ [−1, 1] and
mapping x = Fj(ζ) ∈ [xj− 1

2

, xj+ 1

2

] ξ ∈ [−1, 1] as in section 4.2.2. Using the arbitrariness of

the test-functions, we first take V̄j = 1, V̂j = 0, and W̄j = 1, Ŵj = 0.

d

dt
H̄j|Kj | = −ĥuj+ 1

2

+ ĥuj− 1

2

(A.8a)

d

dt
Ūj|Kj | = −[gĥ+

1

2
û2]j+ 1

2

+ [gĥ+
1

2
û2]j− 1

2

(A.8b)

A.3.2 Slopes

Vice versa V̄j = 0, V̂j = 1, and W̄j = 0, Ŵj = 1

dĤj

dt

|Kj |
3

= 2H̄jŪj +
2

3
ĤjÛj − (ĥuj+ 1

2

+ ĥuj− 1

2

) (A.9a)

dÛj

dt

|Kj |
3

= 2gH̄j + Ū2
j +

1

3
Û2

j −
(
[gĥ+

1

2
û2]j+ 1

2

+ [gĥ+
1

2
û2]j− 1

2

)
. (A.9b)
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B Klopman’s variational Boussinesq discontinuous Galerkin
discretization

In order to compute the Klopman Variational Boussinesq equations we expand the variables
with polynomials of degree dp = 1 and substitution results in a linear system.

B.1 DG discretization with polynomials of degree 1

We expand our trial and test functions with polynomials of degree dP = 1

hh(x, t) = H̄j(t) + Ĥj(t)Θ1(x) vh(x) = V̄j + V̂jΘ1(x)

uh(x, t) = Ūj(t) + Ûj(t)Θ1(x) wh(x) = W̄j + ŴjΘ1(x)

ψh(x, t) = Ψ̄j(t) + Ψ̂j(t)Θ1(x) ςh(x) = Z̄j + ẐjΘ1(x)

(B.1a)

where H̄j and Ĥj etc. are the numerical approximations of the mean and the slope of h(x, t)
at x = xj . For the lifting operator coefficients (Rs)j at face S we have (cf. section 4.2.4)

Rs,j
i =

dp∑

i=0

(As,j)−1P s,j, where Aj,li =

∫

Kj

ΘlΘi dx,⇒ Aj = |Kj |
[

1 0
0 1

3

]
(B.2)

and

P sL(Ψj−1,Ψj)i =

dp∑

i=0

j∑

k=j−1

1

2

∫

SL

ΘlΘi ds⇒ (B.3)

P sL(Ψj−1,Ψj)i = 1
2

[
−1 −ξl
−ξl −ξlξl

]
and P sR(Ψj−1,Ψj)i = 1

2

[
1 ξr
ξl ξrξl

]

P sL(Ψj,Ψj+1)i = 1
2

[
−1 −ξl
−ξr −ξlξr

]
and P sR(Ψj ,Ψj+1)i = 1

2

[
1 ξr
ξr ξrξr

]

B.2 Algebraic system of equations

∫

Kj

(V̄j + V̂jΘ1)
d

dt
(H̄j + ĤjΘ1) − h0V̂j

dΘ1

dx
(Ūj + ÛjΘ1) +

2

3
h3

0V̂j
dΘ1

dx

dΘ1

dx
Ψ̂j dx

+

∫

∂Kj

h0(V̄j + V̂jΘ1)
(
û− 2

3
h2

0({{
dΘ1

dx
Ψ̂j}} − {{ηeRs,j

i }})
)
n

+
2

3
h2

0{{V̂j
dΘ1

dx
}}[[Ψ̄ + Ψ̂Θ1]] ds = 0 (B.4a)

∫

Kj

(W̄j + ŴjΘ1)
d

dt
(Ūj + ÛjΘ1) − gŴj

dΘ1

dx
(H̄j + ĤjΘ1) dx

+

∫

∂Kj

g(W̄j + ŴjΘ1)(ĥ+ hb)n ds = 0 (B.4b)

∫

Kj

2(Z̄j + ẐjΘ1)(Ψ̄j + Ψ̂jΘ1) − Ẑj
dΘ1

dx
(Ūj + ÛjΘ1) +

4

5
h2

0Ẑj
dΘ1

dx

dΘ1

dx
Ψ̂j dx

+

∫

∂Kj

(Z̄j + ẐjΘ1)
(
û− 4

5
h2

0({{
dΘ1

dx
Ψ̂}} − {{ηeRs,j

i }})
)
n

+
4

5
h2

0{{Ẑj
dΘ1

dx
}}[[Ψ̄ + Ψ̂Θ1]]ds = 0. (B.4c)
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B.2.1 Means

We evaluate the integrals over the elements by using the reference element ζ ∈ [−1, 1] and
mapping x = Fj(ζ) ∈ [xj− 1

2

, xj+ 1

2

] ξ ∈ [−1, 1] as in section 4.2.2. Using the arbitrariness of

the test-functions, we first take V̄j = 1, V̂j = 0, W̄j = 1, Ŵj = 0 and Z̄j = 1, Ẑj = 0.

d

dt
H̄j|Kj | = −h0(ûj+ 1

2

− ûj− 1

2

) +
2

3
h3

0|Kj |(Ψ̂j−1 − Ψ̂j+1)

+
2

3
h3

0

Ψ̂j

|Kj |
+

1

3
h3

0η
e 1

2
A−1

j

[
P sR(Ψj−1,Ψj)0 + P sLΨj,Ψj+1)0

]
(B.5a)

d

dt
Ūj|Kj | = −g(ĥj+ 1

2

− ĥj− 1

2

− g(hb,j+ 1

2

− hb,j+ 1

2

) ds = 0 (B.5b)

2Ψ̄j |Kj | +
4

5
h2

0

Ψ̂j

|Kj |
− 4

5
h2

0η
e 1

2
A−1

j

[
P sR(Ψj−1,Ψj)0 + P sLΨj ,Ψj+1)0

]

= (ûj+ 1

2

− ûj− 1

2

) (B.5c)

B.2.2 Slopes

Vice versa V̄j = 0, V̂j = 1, W̄j = 0, Ŵj = 1 and Z̄j = 0, Ẑ1 = 0.

dĤj

dt

|Kj |
3

= 2h0Ūj − h0(ûj+ 1

2

+ ûj− 1

2

) − 2

3
h3

0

4

|Kj |
Ψ̂j

+
1

3
h3

0η
e 1

2
A−1

j

[
P sR(Ψj−1,Ψj)1 + P sL(Ψj,Ψj+1)1

]
, (B.6a)

dÛj

dt

|Kj |
3

= 2gH̄j − g([ĥ + hb]j+ 1

2

+ [ĥ+ hb]j− 1

2

), (B.6b)

2Ψ̂j
|Kj |
3

− 4

5
h2

0

4

|Kj |
Ψ̂j −

4

5
h2

0η
e 1

2
A−1

j

[
P sR(Ψj−1,Ψj)1 + P sLΨj,Ψj+1)1

]

= −2Ūj + (ĥj+ 1

2

+ ĥj− 1

2

). (B.6c)

Note that the two equations, (B.5c) combined with (B.6c), can be solved globally by

MΨ = BU ⇒ Ψ = (I2N +M)−1BU (B.7)

where M represents the collection of the lifting operators over the faces and the contribution
of ∂xψ and I2N the ”DG-eye” matrix with terms 1/|Kj | on I2j−1,2j−1 and 3/|Kj | I2j,2j, which

multiply with ψ̄ (B.5c) and ψ̂ (B.6c) respectively.
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C Brezzi’s approach

C.1 Fixed boundary conditions

We test the elliptic system by taking a dirichlet boundary at the left and a Neumann boundary
at the right.

ψ − ψxx = f(x). (C.1)

ψ(0) = 0, ψx(1) = 0 (C.2)

We consider the exact solution ψ = −1
2 + 1

2 cos(πx) on x ∈ [0, 1] and for our right-hand-side
we have

f(x) = −1

2
+

1

2
(1 + π2) cos(πx). (C.3)

We obtained the following order of convergence

Ne L2error Order

8 5.4347e − 03 0
16 1.4007e − 03 1.9561
32 3.5447e − 04 1.9824
64 8.9086e − 05 1.9924
128 2.2326e − 05 1.9965
256 5.5879e − 06 1.9983
512 1.3978e − 06 1.9992

(C.4)

for lifting parameters ηe +Ns = 3.

C.2 Periodic boundary conditions

To compute the third equation of the linearized Klopman Euler-Lagrange equations, we have
to solve some kind of elliptic system as

ψ − c∂xxψ = f(x). (C.5)

To test the Brezzi method, we take c = 1 and consider the exact periodic solution ψ =
cos(2πx), x ∈ [0, 1] and right-hand-side

f(x) = (1 + (2π)2) cos(2πx). (C.6)

We solve the system with the Brezzi method and with a finite difference method. We obtain
the following order of accuracy:

Brezzi Finite difference
Ne L2 error Order L2 error Order

8 3.8095e − 02 0 1.7489e − 02 0
16 9.6920e − 03 1.9747 4.1447e − 03 2.1906
32 2.4338e − 03 1.9935 1.0222e − 03 2.0197
64 6.0914e − 04 1.9984 2.5467e − 04 2.0049
128 1.5233e − 04 1.9996 6.3613e − 05 2.0018
256 3.8085e − 05 1.9999 1.5900e − 05 2.0003
512 9.5213e − 06 2.0000 3.9747e − 06 2.0001

(C.7)

for lifting parameters ηe +Ns = 3.

C.3 Conclusion

The Brezzi method is applicable for periodic systems and has second-order convergence for
polynomials of degree 1.
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D Periodic wave solutions for WVBM model

Remark. The author of this document is Gert Klopman of the group AAMP, University of
Twente (date: March 31, 2006). The document has been adapted to fit into this report.

D.1 Model equations

We use the following variational principle for water waves with surface elevation η(x, t) and
velocity potential ϕ(x, t):

L (η, ∂tη, ∂xϕ) =

∫ ∫
L(η, ∂tη, ∂xϕ;x, t) dx dt, (D.1)

with the Lagrangian density L(η, ∂tη, ∂xϕ;x, t) [37]:

L(η, ∂tη, ∂xϕ;x, t) = −η ∂tϕ − 1

2
(h0 + η) (∂xϕ)2 +

1

6
h0 (∂tη)

2 − 1

2
g η2, (D.2)

where g is the gravitational acceleration and h0(x) is the still water depth: both quantities g
and h0(x) are positive. Then from δL = 0 we have the following Euler-Lagrange equations
for variations with respect to ϕ and η, respectively:

∂tη + ∂x [ (h0 + η) ∂xϕ ] = 0, (D.3a)

∂tϕ +
1

2
(∂xϕ)2 + g η +

1

3
h0 ∂

2
t η = 0. (D.3b)

D.2 Periodic solutions

We are looking for periodic solutions, with wave length λ and moving with a constant (yet
unknown) phase speed c. The surface elevation itself will be periodic, i.e. η(x − ct), but the
potential ϕ(x, t) may contain a constant drift in space and time:

ϕ(x, t) = U x + γ t + φ(x− ct), (D.4)

with U ≡ ∂xϕ the mean potential-gradient and γ ≡ ∂tϕ the Bernoulli constant. Both η(x−ct)
and φ(x− ct) are chosen to have a zero mean value, η = 0 and φ = 0 respectively:

η ≡ 1

λ

∫ λ

0
η(x− ct) dx = 0 and (D.5a)

φ ≡ 1

λ

∫ λ

0
φ(x− ct) dx = 0. (D.5b)

The flow equations (D.3) become, for the periodic wave case:

−c η′ +

[
(h0 + η) (U + φ′)

]
= 0, (D.6a)

γ − c φ′ +
1

2
(U + φ′)2 + g η +

1

3
h0 c

2 η′′ = 0, (D.6b)

with an apostrophe denoting differentiation with respect to x. For the remainder, we consider
all quantities at t = 0, so we can write them as only a function of x.

D.3 Integrations

The mass conservation equation (D.6a) can be easily integrated once, giving:

−c η + (h0 + η) (U + φ′) = Q, (D.7)
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with the mean mass flux Q an integration constant. From this, we have for the oscillatory
part of the velocity-potential gradient φ′ :

φ′ =
c η + Q

h0 + η
− U. (D.8)

This can be used to eliminate φ′ from the momentum equation (D.6b):

γ + cU − c
c η + Q

h0 + η
+

1

2

(
c η + Q

h0 + η

)2

+ g η +
1

3
h0 c

2 η′′ = 0. (D.9)

After multiplication with η′ we can also integrate this:

(γ + cU) η − 1

2

(c η + Q)2

h0 + η
+

1

2
g η2 +

1

6
h0 c

2 (η′)2 = β, (D.10)

with β another integration constant. This equation looks a bit similar to, but is not the same
as the Lagrangian density (D.2). We can write it as:

f(η)

h0 + η
+

1

6
h0 c

2 (η′)2 = 0, (D.11)

with f(η) a cubic polynomial:

f(η) = α3 η
3 + α2 η

2 + α1 η + α0, (D.12)

where

α0 = −1

2
Q2 − β h0, (D.13a)

α1 = (γ + cU)h0 − cQ − β, (D.13b)

α2 = γ + cU − 1

2
c2 +

1

2
g h0 and (D.13c)

α3 =
1

2
g. (D.13d)

The consequences of f(η) being a cubic polynomial will be examined in more detail later on.

D.4 Model closure

To close the system of equations, we average equations (D.8), (D.9) and (D.10):

c
η

h0 + η
+ Q

1

h0 + η
− U = 0, (D.14a)

γ +
1

2
U2 +

1

2
(φ′)2 = 0 and (D.14b)

−1

2

(c η + Q)2

h0 + η
+

1

2
g η2 +

1

6
h0 c

2 (η′)2 − β = 0. (D.14c)

Note that from eq. (D.14b), and from eq. (D.10) for the x-locations where η is zero, we have:

γ ≤ 0 and (D.15a)

β +
1

2

Q2

h0
≥ 0. (D.15b)

From eq. (D.11) we see, that for each η in the periodic wave there are two possible values,
a positive and a negative one, for the wave slope η′. So we restrict our search for periodic
waves to symmetric waves around the wave crest, which is taken to be at x = mλ, m ∈ N.
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Then the waves are also symmetric around the wave troughs x = 1

2
λ + mλ, m ∈ N. The

surface elevation η is an even function of x around the crest and trough x-locations. And the
potential φ can be taken to be an odd function around crest and trough x-locations, fixing
the level of φ at zero at the crests and troughs.
If we take eq. (D.9) as a basis to solve for periodic waves, we have a second-order ordinary
differential equation to be solved, with the boundary conditions:

η′ = 0 at x = 0 and (D.16a)

η′ = 0 at x = 1

2
λ. (D.16b)

Further, if we assume the wave length λ, mean water depth h0 and gravitational acceleration
g are given, we have the following unknowns parameters: the wave speed c, the mean depth-
averaged velocity U , the mean discharge Q and the Bernoulli constant γ. So we need four
additional conditions to close the system of equations. First, we have that the mean surface
elevation η equals zero, eq. (D.5a). Second, we either specify the mean depth-averaged velocity
U or the mean discharge Q, and third we use eq. (D.14a), to relate them to each other and
the phase speed c. And fourth, we specify the wave height H:

H = max {η} − min {η} = η(0) − η( 1

2
λ). (D.17)

If we use eq. (D.10) as our flow equation, also β is an unknown, which can be fixed by using
eq. (D.14c) as an additional constraint.
Observe that the mean mass-transport velocity is Q/h0, which is in general unequal to the
mean value of the depth-averaged velocity U . Also U is not equal to the mean Eulerian velocity
under the trough level. So while specifying the discharge Q corresponds to Stokes’ second
definition of wave phase speed, specifying U does not correspond to Stokes’ first definition of
phase speed.

D.5 Further investigation into the periodic wave solutions

Dingemans (section 6.4 [11]) gives a detailed description of how to obtain periodic solutions
to (variants of) the Korteweg–de Vries equation, as well as approximate periodic solutions to
Boussinesq-type equations.
Starting from eq. (D.12), since f(η) is a real-valued cubic polynomial, it can have either three
real-valued roots, or one real-valued root and the other two being a complex-conjugate pair.
Since we have at both the wave crest and trough that the wave slope η′ is zero, and we assume
that they are at two distinct levels η, which must be roots of f(η), we conclude that f(η)
must have three real-valued roots. So from eq. (D.11) we have that there are, for given c, Q,
U , β and γ, three levels η1, η2 and η3 where η′ becomes zero. Without loss of generality, we
take η1 ≥ η2 ≥ η3, so:

f(η) =
1

2
g (η − η1) (η − η2) (η − η3). (D.18)

Since η = 0, at least one root must be above zero and one below. Further, we see from
eq. (D.11), that the part of f(η) for our present interest is the negative part between two
zeros, since otherwise (η′)2 cannot be positive. Because f(η) is positive above η = η1, we
conclude that:

η1 > 0, η2 < 0 and η3 < 0. (D.19)

Note that for η = 0 we have from eq (D.15b) that f(0) < 0. The periodic wave solutions
are in the range η2 ≤ η ≤ η1, with η(0) = η1 and η( 1

2
λ) = η2 being the crest and

trough elevation, respectively. Further η′ is the negative root of eq. (D.10) in the interval
x ∈ [ 0, 1

2
λ ].
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Next, it is advantageous to write η(x) as Dingemans (section 6.4 [11]):

η = η1 − (η1 − η2) sin2 θ(x), (D.20)

with θ(x) a yet unknown function of x, varying from θ(0) = 0 at the wave crest to θ( 1

2
λ) = 1

2
π

at the wave trough. Then we have:

η − η1 = − (η1 − η2) sin2 θ, (D.21a)

η − η2 = (η1 − η2)
(
1 − sin2 θ

)
, (D.21b)

η − η3 = (η1 − η3) − (η1 − η2) sin2 θ and (D.21c)

(η′)2 = 4 (η1 − η2)
2
(
sin2 θ

) (
1 − sin2 θ

) (
θ′
)2
. (D.21d)

So, eq (D.11) becomes:

4

3

h0 c
2

g

(
θ′
)2

=
(η1 − η3) − (η1 − η2) sin2 θ

(h0 + η1) − (η1 − η2) sin2 θ
. (D.22)

From this equation we can solve x as a function of θ in the interval θ ∈ [0, 1

2
π]:

√
3

4

g

h0 c2
x =

∫ θ

0

√
(h0 + η1) − (η1 − η2) sin2 s

(η1 − η3) − (η1 − η2) sin2 s
ds =

=

√
ma

mb

∫ θ

0

√
1 − mb sin2 s

1 − ma sin2 s
ds, (D.23)

where the plus sign branch of θ′ is taken, since θ is increasing from 0 to 1

2
π for x from 0 to

1

2
λ. The coefficients ma and mb are given by:

ma =
η1 − η2

η1 − η3
and (D.24a)

mb =
η1 − η2

h0 + η1
. (D.24b)

Both ma and mb satisfy

0 < ma < 1 and 0 < mb < 1, (D.25)

since the wave height H = η1 − η2 is always less than the water depth h0 for physically mean-
ingful solutions. The integral in eq. (D.23) may be expressible in terms of elliptic integrals,
but no sensible analytical solution has been found yet.

D.6 Numerical solution

For the numerical solution of the periodic wave problem we use eq. (D.9) and solve this using
the matlab routine bvp4c. In order to be able to do so, we have to write the problem as a
system of first-order differential equations:

y′ = p(y ), (D.26)

with

y =




η

η′

Z

φ




(D.27)
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and

p(y ) =




η′

− 3

h0 c2

(
γ + cU − c

c η + Q

h0 + η
+

1

2

(
c η + Q

h0 + η

)2

+ g η

)

η

c η + Q

h0 + η
− U




, (D.28)

with

Z ≡
∫ x

0
η(x̃) dx̃. (D.29)

The last two equations are added to be able to ensure that η = 0 and φ′ = 0. The boundary
conditions are:

η′(0) = 0, (D.30a)

η′( 1

2
λ) = 0, (D.30b)

Z(0) = 0 and (D.30c)

φ(0) = 0. (D.30d)

For given values of the mean water depth h0, gravitational acceleration g, mean depth-
averaged velocity U and wave height H ≡ η(0) − η( 1

2
λ), we have as additional unknowns: the

phase speed c, mean discharge Q, Bernoulli constant γ. So we have to add three additional
constraints, which are:

Z( 1

2
λ) = 0, (D.31a)

φ( 1

2
λ) = 0 and (D.31b)

η(0) − η( 1

2
λ) − H = 0, (D.31c)

the first ensuring that η = Z( 1

2
λ)/( 1

2
λ) = 0, the second that φ is an odd periodic function

(φ′ = 0) and the last condition demanding the requested wave height H. As an initial
condition, we specify the cnoidal wave solution to the BBM-equation (Dingemans, eq. (6.86)
[11]). Some results are shown in figure D.6.1. The input parameters for this case are: mean
water depth h0 = 10 m, wave height H = 6 m, wave length λ = 100 m, mean depth-averaged
velocity U = 0 m/s and gravitational acceleration g = 9.81 m/s2. The computed parameters
are: phase speed c = 9.83296 m/s, mean discharge Q = 3.71993 m2/s and Bernoulli constant
γ = −1.62375 m2/s2. As can be seen from figure D.6.1, there are small, but noticeable
differences between the approximate cnoidal wave solution and the ‘exact’ numerical solution.
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Figure D.6.1: Numerical solution of the periodic wave problem. The parameters are: h0 = 10 m,
H = 6 m, λ = 100 m, U = 0 m/s and g = 9.81 m/s2. Left is the surface elevation η(x) and
right the oscillatory part of the velocity potential φ(x). The drawn red line is the numerical solution
obtained with the matlab routine bvp4c. The dashed blue line is the cnoidal wave solution of the
BBM-equation (Dingemans, eq. (6.86) [11]).


