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Chapter 1

Introduction

1.1 The Kelvin Water Dropper

On 19 June 1867, sir W. Thomson (later known as lord Kelvin) presented the paper “On a
Self-acting Apparatus for multiplying and maintaining Electric Charges, with applications to
illustrate the Voltaic Theory.”
Years later his ’apparatus’ still seems to intrigue physicists, judging on the wealth of information
that can be found about the described setup and the physical ’working principle’ it relies on.

(a) Original Kelvin water drop-
per with Leyden jars (see [14])

(b) Typical Kelvin experi-
mental setup.

(c) A schematization of the Kelvin water
dropper (see [15])

Figure 1.1: The Kelvin water dropper

At the same time however, the apparatus is not as popular as it might seem ([11]). Although
one can easily find several short inspiring articles on the device, as well as detailed internet links
and demonstration videos, the device does not seem to be well known to the vast public. This
is a bit of a pity, as the device suits itself perfectly to be used as a standard physics experiment
in secondary schools. A point that may be clear from e.g. [6], [20] and [11].
It is therefore nice to see that the curiosity in the device still seeps through in the present, as
may be evident from the final question (Question No 17) in the International Young Physicists’
Tournament (IYPT) of 2010 in Vienna, Austria. The question at hand was as follows:
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“Construct Kelvin’s dropper. Measure the highest voltage it can produce. In-
vestigate its dependence on relevant parameters.”

Interesting to note is that over the years Kelvin’s original apparatus has endured a slight
make-over. This may be observed from the comparison between Figure 1.1a and Figure 1.1b.
In Figure 1.1a Kelvin’s original setup is depicted, where Figure 1.1b shows an example of a
more modern typical setup.
However, the differences between the ’modern’ and original Kelvin water dropper are only
minor. The physical ’working principle’ of the setup is thereby exactly the same. Where Kelvin
relied on Leyden jars to store electric charges, nowadays these early capacitors are known to
be redundant when the targets are well insulated. Another difference between most modern
experimental setups and Kelvin’s original setup can be found in the receiving targets. In most
modern setups the water from the dripping streams is contained by the targets, whereas in
Kelvin’s original apparatus the receiving cans contained a funnel through which water could sip
through.

1.1.1 The physics behind Kelvin’s water dropper

The ’working principle’ of Kelvin’s setup can be explained by the clever interconnection between
the targets and the induction rings. How the sudden voltage build-up between the targets occurs,
is illustrated by the 3 steps of Figure 1.2.

(a) random initial imbalance (b) opposite charge induction (c) positive feedback loop

Figure 1.2: Simple illustration of the charge separation process in Kelvin’s water dropper

At first glance Kelvin’s setup may seem to be nothing more than two dripping streams of
water, where each stream of water is collected by downstream targets. However for some reason
the setup allows for accumulation of charges. The key to explaining how this can happen can
be found in the water itself.
Even though water has no overall electric charge, it is full of movable electric charges; H+ and
OH− ions. These ions are transported by the droplets, and theoretically each target will thereby
collect an equal amount of positive and negative charges. However at some point in time a slight
imbalance in the charge distribution may occur. In practice, this imbalance will likely be the
cause of random natural fluctuations ([4]). Each target is hereby equally likely to obtain either
a slight positive charge or a slight negative charge. However, if one presents a charged object

4



near one of the induction rings, one can easily force a target to start off with a given charge. A
positive object will thereby induce a negative charge and visa versa.

Let us assume that at some moment the left target is slightly positively charged. As the left
target is directly connected to the right induction ring, this right induction ring will then also
be slightly positively charged (see Figure 1.2a). Since opposite charges attract, this positively
charged right induction ring will then attract negative charges in the right dripper. In turn
this causes the right target to become negatively charged (see Figure 1.2b). However, the right
target is also connected to the left induction ring, analogously causing more positive charges to
be induced in the left dripper. This completes a positive feedback loop, creating a self amplifying
process (see Figure 1.2c).
It may speak for itself that if we had assumed the left target to start off with a slight negative
charge, the exact same principle would still apply. The only difference would now be that the
right target obtains a positive potential, where the left target obtains a negative potential. In
other words: according to some initial charge imbalance, the sign for each of the targets is
determined.

1.1.2 The physics behind the induction process

Although Figure 1.2 can be used to explain the ’working principle’ of Kelvin’s water dropper,
it may not be so clear how the charge induction can take place near the induction rings. As
already briefly mentioned this has to do with the existing ions in the water and is figuratively
illustrated in Figure 1.3.

(a) The electrical field originat-
ing from the induction ring at-
tracts opposite charges as the
droplet form

(b) The charge induction proces ex-
plained from the ions.

(c) Extremely simplified repre-
sentation of charge induction in
the droplets.

Figure 1.3: An schematization of the charge induction process in the (forming) droplets

As one may know, water is build up of OH− ions and H+ ions. Similar to magnets, charged
objects posses two characteristic properties: opposite charges attract each other, while alike
charges repel each other. These properties are also fundamental to explain the charge induction
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process at each of the jet tips in Kelvin’s setup.
Let us for the moment only consider the right induction ring and assume that this induction
ring is positively charged (similar to the case in Figure 1.2). Due to the electrical field of this
induction ring, OH− ions will be attracted to the boundary of the water stream (see Figure
1.3a). This is the direct result of the attractive force between opposite charges.
However, at the same time opposite charges repel, causing the positive H+ ions to be ’pushed’
further into the water stream. Both these processes ensure that when the droplets break free
from the waterjet, an overall negative charge is captured in the droplets (see Figure 1.3b). In
summary the charge induction process may thereby be explained from the extremely simplified
Figure 1.3c.

As described, after the droplet formation the water stream will be slightly positive at the
jet tip. In the case that a single reservoir is used to provide the water stream for both the left
and right jet, this net positive charge at one jet tip will be counterbalanced by the net negative
charge at the other jet tip, since in an idealized perfect symmetrical system these charges will
be the same. Furthermore, any charges that would remain due to some imbalance between left
and right subsystem, are allowed to escape as the reservoir is grounded.

In the case that two separate reservoirs are used in the setup, one may ground each reservoir
separately. A two reservoir approach was for instance also used in [18] (see also Figure 2.1b). In
the same paper ([18]) it was shown that one can ’harvest’ the downstream currents in Kelvin’s
setup, by connecting the targets to ground through large resistors. In the same way however, it
may also be possible to ’harvest’ some of the upstream currents. To verify whether this can also
lead to a larger amount of electrical output power would however require further experimental
research. The downside of placing resistors between the reservoir and ground would be that this
will also effect the amount of charge that can be induced. Consider for instance the induction
case shown by Figure 1.3. When the repelled positive charges are not free to ’escape’, also
more positive charges will end up encapsulated in the droplets (see 1.3b), reducing the total
charge that is induced. Furthermore for a single jet system it was already shown in [17] that
the systems efficiency is already close to a theoretically calculated maximum when each of the
reservoirs is ’simply’ grounded.

1.1.3 Relation to electrical networks

In Kelvin’s original paper [14], lord Kelvin already remarked that his apparatus shows an inter-
esting analogy to a self-sustaining electromagnetic system. Using this analogy, Kelvin already
proved that if losses are not significant: “ultimately the charges augment in proportion to eρt

if ρ be the positive root.” A result that would later be rediscovered using analogies between
Kelvin’s setup and electrical circuits. Furthermore the exponential buildup of charge will also
be discussed in section 2.2.2 of this thesis.

The analogy between Kelvin’s apparatus and an electrical network can be explained from
the fact that most physical elements of Kelvin’s setup have a more or less equivalent electrical
component as a counterpart. In this way Kelvin’s setup allows itself to be ’translated’ in an
electrical circuit.

At first there are the droplets that ’carry’ charges from the jet tip to the target. This may
be compared to the flow of electrons in electrical wires. Furthermore, charges are induced due
to the oppositely charged induction rings. In an electrical network, the creation of charges can
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be compared to a current source. Furthermore the induction of charge may be modelled using
a field effect transistor (FET) element in the system ([18]). Also it can be observed that the
targets gradually ’charge’ as droplets are collected, which is somewhat similar to a capacitor
and its RC time.
For successful operation of the device, it is important that the receiving targets are sufficiently
able to preserve their charge. In order to achieve this they need to be insulated from the ground,
but also from each other. The extend by which the targets are insulated from the ground is
generally modelled using a (large) resistor. The mutual insulation of the targets may also be
described this way. However, as the insulated targets will also store opposite charges, the com-
parison to a parallel-plate capacitor can also be made.

The above described analogy between Kelvin’s water dropper and an electrical network has
also made it to more recent literature (e.g. see [15], [19], [1], [18] and [9]).
It is however interesting to see that throughout the literature there seem to be several ’equiv-
alent’ electrical networks that can be used to describe the governing physics in Kelvin’s water
dropper device. ’Equivalent’ electrical networks that can clearly be seen to differ from one
another, as is illustrated in Figure 1.4.

(a) ’Equivalent’ electrical cir-
cuit as studied in [15]

(b) ’Equivalent’ electrical circuit as stud-
ied in [1]

(c) ’Equivalent’ circuit (with
voltage divider) as studied in
[18]

Figure 1.4: Several ’equivalent’ circuit representations of the Kelvin water dropper

At first, for some of the circuits shown in Figure 1.4 there are some small eccentric points
to note.
In Figure 1.4a one can see from the depicted ’+’ and ’-’ signs that in both the right and left
’subsystem’ the positive terminal is depicted upstream, while the negative terminal is depicted
downstream. During normal operation of the device, opposite charges are induced in the left
and right subsystem, and therefore at one side the terminals need to be flipped.

Another observation we make is that in Figure 1.4c it seems that the presence of the voltage
dividers has not been accounted for in the current induction equations (as shown at the current
sources). In this setup, the two separate resistors RL and Rg are placed in such a way that only

a fraction m =
Rg

RL+Rg
of the accumulating voltages U1 and U2 are used for the current induction

at the induction rings. Because of this we expect that an additional constant m needs to be
added at the current induction equations, i.e. we would get −niCind,imUj , with (i, j) = (1, 2)
or (2, 1).
Furthermore, Figure 1.4c also depicts current losses that occur when droplets deflect to the
induction rings. These are indicated by I13 and I23. However, when overcharged droplets are
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deflected they will deflect to ’their own’ induction ring, as is also shown in a similar electrical
circuit in the Phd thesis [16] of the same main author (see also Figure 2.1c). It therefore seems
that in Figure 1.4c the lines for I13 and I23 are falsely connected to the opposite induction ring.

Putting these peculiar points aside, one may note that from the 3 circuits shown in Figure 1.4,
the electrical circuit representation shown by Figure 1.4b is the most elaborate. Nevertheless,
as mentioned in [19], it is important to note that the ’essential ingredients’ of self-excitation
can be treated by a simpler idealized model with no losses where we have that:

CLoad = 0

R(1↔2) =∞
RGround =∞. (1.1)

Under the idealized conditions of (1.1) it may indeed be verified that all ’equivalent’ electri-
cal circuits in Figure 1.4 are indeed equivalent.

As a side note, in [19] the circuit representation shown in Figure 1.4b was also used to extend
Kelvin’s idea to an N dropper setup, as is depicted in Figure 1.5.

Figure 1.5: Extension of Kelvin’s water dropper to N cans. Each of the N identical cans and
streams are cross connected to adjacent cans. The Nth can is coupled to the first stream,
completing the loop.

Furthermore, in [19] it is described that the potential of any node in the circuit of Figure
1.5 is related to the potentials of the preceding and succeeding nodes according to the equation:

Vi =
R

RCs+ 1

(
−nCDVi−1 +

Vi−1 − Vi
RL

(RLCLs+ 1)− Vi − Vi+1

RL
(RLCLs+ 1)

)
, (1.2)

where ’s’ represents the domain variable of the Laplace transform.
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Note that (1.2) is a combination of a linear difference equation and a linear differential
equation. This is due to the fact that Vi is described in terms of Vi−1, Vi and Vi+1, but the
equation also contains the Laplace differentiator ’s’. Solving equation (1.2) it can be shown
that for N = 2 we can generate Direct Current (DC), for N = 3 we can generate three-phase
Alternating Current (AC) and for N = 4 we can generate two-phase AC or DC.

Peculiarly we notice that in [19] the equation describing the largest natural frequency of the
Kelvin water dropper setup, is slightly different from the one found in [1] and [9]. In [19] they
find:

λmax =
nCD − 4

RL
− 1

R

C + 4CL
, (1.3)

while in [1] and [9] the same eigenvalue solution (in similar notation) is:

λmax =
nCD − 2

RL
− 1

R

C + 2CL
. (1.4)

Closer inspection on this slight difference in constants between (1.3) and (1.4) seems to
indicate that author of [19] failed to recognize that he could not use N = 2 in his solution of
(1.2). The reason for this lies in the fact that (1.2) is a three term linear difference equation.
Consider for instance that nevertheless we do use N = 2 and plug in i = 2 into equation (1.2).
For the previous and next node we then must have that i− 1 = i+ 1 = 1. Thereby we obtain:

V2 =
R

RCs+ 1

(
−nCDV1 + 2

V1 − V2
RL

(RLCLs+ 1)

)
. (1.5)

From (1.5) we see that the ’V1 − V2 term’ is now weighed twice, where in truth this should
only be weighed once. One may verify that this constant ’2’ indeed explains the difference in
(1.3) and (1.4). The nature of the mistake lies in the fact that equation (1.2) requires Vi−1, Vi
and Vi+1 to be unique, where for N = 2 this can not be the case.

1.1.4 Theory of energy conversion

In the preceding sections the basic physics behind Kelvin’s apparatus are explained. What
is most intriguing about Kelvin’s water dropper device is that it can seemingly spontaneous
generate a large potential difference between two targets. Using the device one is even able to
’harvest’ currents by allowing some charges to escape to the ground through a large resistor.
Note that from equation (1.4) we can see that in an idealized setting, exponential voltage build-
up occurs as long as current losses do not have the upper hand. The analogon of this equation
for a setup using a voltage divider (see Figure 1.4c) will be treated in section 2.2.

Interestingly we can thus conclude that there can be a small current flow to the ground
originating from the target, where the target has a large potential difference relative to the
ground. This actually implies that electrical power can be generated by the device according
to the equation:

Pelectrical(t) = V (t) · I(t),

where V (t) represents the voltage at time t and I(t) represents the current at time t.
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This may come to a bit of a surprise, as one may wonder where this power comes from.
There is not such a thing as a free lunch in physics right? Furthermore equation (1.4) would
lead us to believe that we have exponential voltage build-up in the system. Apart from the
finite capacity of the reservoirs this would imply that we have invented a perpetuum mobile.

Unfortunately the ’holy’ physics law still stands, which is caused by the fact that charges
are gradually lost when the target voltages and induced currents grow. As the droplets induce
a greater charge, the repelling forces between the droplets also increases. This in turn causes
droplets to ’bend’ from their straight path to the targets. Ultimately fewer droplets then make it
to the targets causing the current losses to increase. If the device works really well, droplets may
even bend upwards in an anti-gravity alike fashion. This can be explained from the attractive
force between the induction ring and the droplets, from the repulsive force between the droplets
and the targets, and also from the repulsive force between mutual droplets.
Apart from the increase of losses due to larger induced charges, it can be observed from the
single jet system in [17] that also the target voltages influence the current losses. This is most
likely the result of the repelling force between the charged droplets and receiving targets.

Figure 1.6: Simple illustration of current losses near the induction rings.

Besides the fact that the output power is haltered by current losses, the resulting output
power itself is the result of an internal energy conversion process taking place in the Kelvin
water dropper. This energy conversion process is illustrated in Figure 1.7 for the ’ballistic
pressure-driven’ setup used in [18].

Although no energy is fed to the system after it is started, it is important to realize that a
mass (in this case the water) at height possesses gravitational potential energy according to the
equation:

Epotential = Mgh,

where M represents the mass of the object, g ≈ 9.81 represents the gravitational constant and
h represents the vertical height of the object above the ground. In the same way the pressurized
reservoirs used in [18] possess an amount of mechanical potential energy.

When the droplets travel from the induction ring to the targets they pass through the
electrical field that accumulates between the induction rings and the targets. In Kelvin’s water
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Figure 1.7: Illustration of energy conversion at each jet

dropper, the action of gravity opposes the electrical force (
∑ ~F = m~g − q ~E), whereas in the

ballistic system inertia opposes the electrical force (
∑ ~F = m~a− q ~E, ([17]). Thereby electrical

energy is being created due to the work that gravity does in pulling the charged droplet away
from the grounded dripper, and away against the electrical field (http://amasci.com/emotor/
kelvin.html).
Interestingly the opposite phenomenon; the acceleration of charges in an electrical field, is
already used in many practical applications ([17]).
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1.2 Research goals

Our aim for this thesis is twofold. At first we will analyze the (ballistic) Kelvin water dropper
from a mathematical point of view. Thereby we use the mathematical theory of systems and
control, and apply this on the equivalent network representation of Figure 1.4c. In particular
we will focus on the stabilizing role of current losses, equilibrium points and stability, and for
the last part we investigate whether we may distinguish inputs in the system, as the original
Kelvin dropper is from itself an autonomous system.

Provided that we can identify specific system inputs will imply that we have a certain
amount of control over the system. This brings us to our next aim of our thesis; how could
we put this control to good use? Or even stronger, is there an optimal way in controlling the
Kelvin system?
To answer this second question we first need to define what we consider to be an optimal control,
i.e. we need to specify our optimization goal. Building on the observation that we are dealing
with an energy conversion device, as we discussed in the previous subsection 1.1.4, we aim to
maximize the energy conversion in the (ballistic) Kelvin setup. From this perspective this thesis
can be interpreted as a follow-up to [18], which is based on the Phd work of [16].
Specifically, we aim to optimally convert the mechanical input power of the system into electric
output power. In this way, similar to the project aim described in [16], we seek to maximize
the systems (energy conversion) efficiency:

Eff(t) =
Pout(t)

Pin(t)
.

For the pressure-driven ballistic Kelvin system from [18] the above equation can be continued
to:

Eff(t) =
Pelectric(t)

Ppressure(t)

=
V (t) · I(t)

(∆p)(t) ·Q(t)
, (1.6)

where the voltage function V (t) is given in Volts (V), the current function I(t) is given in Am-
pere (A), the pressure difference function (∆p)(t) is given in Pascals (Pa, SI units: Nm−2) and
the volumetric flow rate function is given in cubic meters per second (m3s−1).

For the regular Kelvin setup, i.e. when the droplets are only ’powered’ by gravity, equation
(1.6) is be slightly different. The input power Pin(t) is then given by the dripping water stream,
which is constant by the assumption of drops falling with a constant frequency n.
In fact, also in the pressure driven system from [18] the input power remains fairly constant
over time, due to the constant applied pressure and flow rate.
At a constant input power, it is easy to see from (1.6) that a maximal efficiency is achieved
when the electrical input power is maximized. Thereby we will focus on the following equivalent
maximization problem:

max

∫ T

0
Pelectric(t) dt, (1.7)

where the time window is defined as t ∈ [0, T ].
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In the (ballistic) Kelvin setup, the maximum time T may be given from a rather natural
constraint; the (pressurized) containers can only contain a finite amount of aqueous solution.
Provided some constant pressure and flow rate, the reservoirs will eventually become empty, by
which the system comes to a halt.

1.3 Outline of thesis

Having introduced the main system of interest in this thesis; the Kelvin water dropper setup,
in the rest of this thesis we will pursue to analyze and optimally control this system. Thereby,
in chapter 2 we first have a brief look at some of the work from [16]. The reason for this lies
in the fact that this work, in particular the part on the Self-excited ballistic energy harvesting
device, also discussed in the paper [18], is the motivating pillar behind this thesis. Of partic-
ular importance here is the induction model from [18], which is based on an equivalent circuit
representation for the setup, see also Figure 1.4c. This induction model will be treated in more
detail in section 2.2 and 2.2.2. After this we will show how the imperfect diodes used in [18] can
provide some valuable insights in the design of a controller later on in this thesis. At last, in
section 2.4 we will show that the induction model can indeed be used to explain the measure-
ments from [16], thereby demonstrating that this model may serve as a solid basis for further
study.

In chapter 3 we will start to extend this induction model by incorporating current loss into
the system equations. Thereby we will first look for the differential equations describing the
new manifest behaviour. This is done by introducing additional latent variables, which are then
elemination using elemination procedure from [13], but we will also directly eliminate the latent
variables by hand.
It will turn out that the extended model introduces additional equilibrium points, which are
studied by means of linearization in subsection 3.1.2. Furthermore, under symmetry assump-
tions, the differential equations describing the new manifest behaviour are also solved in sub-
section 3.1.4.
Next, in section 3.2 we investigate whether more equilibrium points can be found than the ones
studied in subsection 3.1.2. Also here we pursue this goal in two ways, in subsection 3.2.1 we try
to find these directly from the differential equations, whereas in subsection 3.2.2 we investigate
the behaviour of the implicit solution curves.
At last, in section 3.3 we investigate input-output approaches for the system. Inspired the
external voltage sources used in [17], in subsection 3.3.1 we first consider the induction ring
voltages as an input. Then, in subsection 3.3.2 we investigate variable resistors as input, which
is inspired on the different resistors used in [18] for the pursuit of proper charge induction.

Based on the case that the resistors serve as an input for the system, optimal control for
the system is discussed in chapter 4. In this chapter we begin with a minimalistic version of
our aimed optimal control problem, starting with the regular Pontryagin minimum principle
and a single input. This result is then also used as a basis for optimal control with two inputs.
At last, in section 4.2, we discuss our most elaborate optimal control problem, where we also
incorporate state variable inequality constraints. These constraints are included to make sure
that current losses remain small, which on its turn, when small, make the systems differential
equations linear.

Finally, in chapter 5 we will discuss our conclusions and recommendations. Which is followed
by some appendices that were included as additional material for some of the previous chapters.
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Chapter 2

Pressure-driven ballistic Kelvin’s
water dropper

As mentioned in our research goals (section 1.2), to some extent this thesis can be seen as a
follow up on [18], which is based on the Phd work of [16]. Therefore, in the following sections we
will first briefly go over some of the essential concepts of this earlier work. In the next section
we thereby start by discussing an older, more general research interest: creating power from
microjets.

2.1 Power from microjets

A central goal of current energy research is to efficiently produce electricity from renewable
sources ([5]). This goal may clearly be pursued in several ways. A relative new method that is
explored for this purpose is the use of liquid water microjets for direct conversion of electrokinetic
energy to electrical power. This approach has recently been followed in [5] and [17]. In [17] an
efficiency of 48% was obtained when using an external voltage source to control the induction
ring voltage (see Figure 2.1a).

However, for an electrical energy conversion device, an external voltage source is cumbersome
to implement. Instead, a self-excited energy conversion system will be much more convenient
for applications, as it is in many other self-excited energy devices that have been studied ([18]).
Thereby a pressure driven version of the Kelvin dropper may be used, which setup is shown in
Figure 2.1b. However, one of the disadvantages of (a pressure driven) Kelvin’s water dropper
is that it uses a positive feedback system that is inherently unstable since the droplet charge
keeps increasing until the droplets are deflected ([18]). To overcome this issue the induction
ring voltages need to be properly controlled, which is one of the main goals of this masters thesis.

In Figure 2.1 a schematic comparison is made between the single jet energy conversion de-
vice from [17], and the self-excited energy conversion device from [18], which is inspired on
Kelvin’s water dropper device. It is important to note that the pressure driven Kelvin system is
formed from two intertwined single jet systems. The external voltage source from the single jet
system is thereby replaced by a voltage divider in the downstream circuit. In this intertwined
connection, the voltage used for the charge induction is now autonomously regulated by the
system. By the voltage divider in this setup, a fraction m =

Rg
RL+Rg

of the target voltages will
be ’submitted’ to the induction rings.
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(a) Schematic of the single jet
system as studied in [17].

(b) Schematic of the pressure driven ballistic Kelvin dropper as studied
in [18].

(c) The equivalent electrical networks for the single and dual jet systems shown above. ([16])

Figure 2.1: Comparison between single jetting system as studied in [17] and the pressure driven
ballistic Kelvin dropper as studied in [18].

A comparison between the electrical network representation of both the single and dual
jet system is shown in Figure 2.1c. The green rectangle represents a current source, which
resembles the charges that are induced when droplets separate at the jet tip. When comparing
these two electrical networks one may again notice that in essence the ballistic Kelvin dropper
setup contains two single jet subsystems. This observation is especially useful, as it partly allows
for the incorporation of results from [17], in the design of an optimal controller for the ballistic
Kelvin setup.
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2.2 Induction model

In this section the induction model from [18] is studied. This model describes the physics of
the Kelvin water dropper on the basis of an equivalent electrical network. As described in
subsection 1.1.3 from the Introduction, several electrical networks can be used to analyze the
behaviour of Kelvin’s water dropper, and the one that is used in [18] is depicted by Figure 1.4c
and the right of Figure 2.1c. A special property of this setup is that two resistors are used at
each target, which we shall refer to as a load resistor RL and a gate resistor Rg. Using such a
voltage divider in the setup makes it possible to use only a fraction of the target voltage for the
induction process at the induction/gate rings.
To simplify calculations, taking the electrical network representation from Figure 1.4c as a
starting point, we will initially neglect current losses (I13 and I23), the constants are chosen
to be symmetrical (i.e. n1 = n2, Cind,1 = Cind,2, etc.), and furthermore a perfect capacitance
between the two targets is assumed (i.e. C12 = 0).
Later on, in chapter 3, we will drop the assumption of zero current losses, and analyze the
influence these losses have on the system. For now, these simplicity assumptions turn our focus
to the following electrical network:

Figure 2.2: An equivalent circuit to model the induction mechanism in Kelvin’s water dropper.
For convenience, latent variables Iij , with i, j ∈ {1, 2} are introduced, each depicted in the
positive direction. The voltages of the left and right target are denoted by U1 and U2. Here U1

is described by the voltage from node A to the ground, whereas U2 is described by the voltage
from node B to the ground. This may be compared to the schematic model representation
shown by Figure 2.1b. The constant m in the current source equation represents the fractional
voltage division in the system, and is given by m =

Rg
RL+Rg

.

The current from the two current sources of the system (I11 and I21) is induced from the
system itself, similar to the charge induction process in the Kelvin water dropper. The amount
of current that is hereby induced is proportional to the voltage of the opposite induction rings,
i.e. the voltages over the two resistors Rg. Due to the voltage dividers in the system, the
voltage on the induction rings can be described by mUi, where m is a constant that defines the
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fractional voltage division in the system. It is easy to verify that we have that

m =
Rg

RL +Rg
,

as this result follows directly from, U1 = I12(RL +Rg) and URg = I12Rg. Here we take the left
subsystem as an example, but clearly a similar result can be obtained when we consider the
right subsystem.

At last the proportionality constant for the current induction is given by the charge per
droplet (Cind) and frequency by which the droplets fall (n). Combining the above, we find that
the amount of current that is induced can be described by

Ii1 = ∓nCindmUi, i = 1, 2. (2.1)

There is only a small catch; in the Kelvin system the targets will become oppositely charged
due to the opposite charge induction, e.g. see Figure 1.2. In this self-excited induction process
each of the targets is equally likely to start with either a positive or a negative charge. We will
assume throughout that the left target will become positively charged (U1 ≥ 0) and that the
right target will become negatively charged (U2 ≤ 0). This convention is also adopted in Figure
2.2, as is also exemplified by indicating the ’+’ and ’-’ terminal of each component. Doing so
may also clarify that all indicated currents Iij , with i, j ∈ {1, 2} are all depicted in the positive
direction. In particular this shows that the voltage from node A to the earth, i.e. target voltage
U1, is indeed depicted positive, whereas target voltage U2 is indeed depicted to be negative.
This explains why we need an extra minus sign for I11 in (2.1).
The reason that we have an opposite direction of the current flow in the left subsystem (clock-
wise) and right subsystem (counter-clockwise) may become extra apparent when we compare
Figure 2.2 to the schematic system from Figure 2.1b. Here the accumulation of positive charges
in the left target, leads to a positive current flow from this target to the earth. On the other
hand the accumulation of negative charges in the right target, leads to the flow of ’negative’
current from this target to the ground, i.e. a positive current flow from ground to target.

2.2.1 Systems differential equation and the corresponding solution

From the Kirchhof current laws (KCL) we know that the inflow of current at a node must equal
the outflow. If we apply this rule at the nodes A and B from Figure 2.2, it can be concluded that
the induced current by the gates must equal the sum of the current flow through the resistors
and the current through the capacitor. Thereby we find that:

−mnCindU2 =
1

RL +Rg
U1 + CL

dU1

dt

−mnCindU1 =
1

RL +Rg
U2 + CL

dU2

dt
,

which can be rewritten to:[
U̇1

U̇2

]
=

[
− 1
CL(RL+Rg)

−mnCind
CL

−mnCind
CL

− 1
CL(RL+Rg)

][
U1

U2

]
ẋ = Ax. (2.2)

From equation (2.2) we see that voltage build-up in the Kelvin water dropper can be de-
scribed by an linear differential equation, for which solutions are given by x = eAt x0.
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To solve the system we first need to find the matrix exponential eAt, which is derived in Ap-
pendix section A.4.1. For convenience in writing we introduce the notation

a =
1

CL(RL +Rg)

b =
mnCind
CL

. (2.3)

From there on we find that the solution to the systems differential equation is given by:

x(t) = eAtx0[
U1(t)
U2(t)

]
=

1

2

[
e(−a−b)t + e(−a+b)t e(−a−b)t − e(−a+b)t
e(−a−b)t − e(−a+b)t e(−a−b)t + e(−a+b)t

] [
x0,1
x0,2

]
=

1

2

[
[x0,1 + x0,2] e

(−a−b)t + [x0,1 − x0,2] e(−a+b)t
[x0,1 + x0,2] e

(−a−b)t + [x0,2 − x0,1] e(−a+b)t

]
=

[
c1e

(−a−b)t + c2e
(−a+b)t

c1e
(−a−b)t − c2e(−a+b)t

]
. (2.4)

where c1 := 1
2 (x0,1 + x0,2) and c2 := 1

2 (x0,1 − x0,2).

It may be verified that, when x0,2 = −x0,1, then equation (2.4) is identical to equation (3)
and (4) of the paper [18].

2.2.2 System behaviour

When looking back at equation (2.4), we can see that the eigenvalues of system matrix A, which
are given by λ1,2 = −a ± b, directly describe the behaviour of the system. In particular one
can find that the eigenvalue λ2 is a stable eigenvalue, while stability of the larger eigenvalue λ1
depends on the underlying constants. If we have that λ1 < 0, both eigenvalues are negative,
so that we have a stable system. In this case solutions will tend to the equilibrium solution
(U1, U2) = (0, 0). If on the other hand we have that λ1 > 0 the system will be unstable, and
the target voltages will grow exponentially. From (2.3) one can find that this is the case when

λ1 > 0 ⇐⇒

Rg >
1

nCind
. (2.5)

Another way of looking at inequality (2.5) is to say that charge accumulation can only occur
when the ’outflow’ of charge is less then the ’inflow’ of charge. In the electrical circuit of Figure
2.2, this is equivalent to stating that I11 > I12. One can easily check that this condition indeed
leads us to the same conclusion as we found in (2.5).

From equation (2.5) we observe that when the gate resistor Rg is sufficiently large, the system
will be unstable. Furthermore, this is also reflected by (2.4), as one can see that solutions ’blow
up’ when λ1 > 0. Since λ1 is the largest eigenvalue, the limiting behaviour is thereby described
by the corresponding eigenvector

v1 =

[
1
−1

]
,
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so that we have that U1(t) ≈ −U2(t) as t→∞.

In conclusion we thus find that the Kelvin system will either result in a stable, non-charging
system, or an unstable, over-charging system. Which of these cases will occur is directly given
by the value of Rg, as is shown in (2.5). We thus see that if we use ohmic, constant resistors in
the system, the induction current will undergo either positive feedback (leading to overcharging)
or negative feedback (leading to non-charging).
In the traditional Kelvin setup, i.e. without a voltage divider and with well insulated targets, we
have that RL = 0 and Rg ≈ ∞, which by (2.5) will indeed result in an unstable, over-charging
system.

Although we have shown that theoretically, when λ1 > 0 the voltages U1 and U2 will tend
to infinity, this is physically impossible. This is where the, so far neglected, current losses play
a role. As the voltages build up in the system, significantly more current losses will occur,
eventually stabilizing the system.

When the target voltages U1 and U2 build-up in the Kelvin system, droplets will induce
more and more charge. As explained in subsection 1.1.4 from the Introduction, this will re-
sult in charge losses, as droplets will be deflected to the environment and the induction rings.
Clearly these losses will reduce the systems efficiency (see (1.6)), as the electrical output power
is reduced.
In particular droplets landing on the induction rings have a double negative effect on the ef-
ficiency of the system. At first these deflected droplets, do not transfer their charge to the
lower targets, which is also the case for the droplets that are lost to the environment. However,
droplets landing on the induction rings also negatively interfere with the charges from the op-
posite target, since opposite charges are brought into contact with each other. These double
losses are illustrated in Figure 2.3.

Figure 2.3: Schematic picture of the current losses in the downstream circuit, taking the left
jet as an example. This may be compared to Figure 1.6

Please note that the current I23 in Figure 2.3 is due to the deflected droplets to the gate
ring at the opposite, right jet (similarly to I13 at the displayed, left jet).
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2.3 Using inverted Diodes

In this section we will first have a closer look at the working of the inverted diodes from [18].
In the Electronic Supplementary Information (ESI) of [18], the ’I-V curve’ of this component is
given, as is also shown in the figure below.

Figure 2.4: Characteristics of the inverted diode used in [18]. The green curve is described by
the equation Udiode = 533

(
1− e−0.55I

)
, with Udiode in Volts and I in nA.

From Figure 2.4, it can be seen that the (imperfect) inverted diodes can be used to create
a more or less constant voltage over a range of (induced) small currents. For the ballistic
Kelvin setup this seems to be a very useful characteristic, as a constant voltage will prevent
’overcharging’ the droplets in the system.
With this in mind, the (imperfect) inverted diodes were used as voltage dividers in [18] and the
measurements that were obtained with this setup are shown in Figure 2.5.

Figure 2.5: Measurements from the (imperfect) inverted diode voltage divider setup. Left: the
measured (buildup of) induced current as a function of time. Right: Scheme of the electrical
circuit and values of the (steady state) measured currents.

We can see in Figure 2.5 that, compared to a resistor voltage divider, significantly higher
downstream currents could be obtained while using the (imperfect) inverted diode as a voltage
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divider, as opposed to the use of a resistor voltage divider (e.g. see also Figure 2.7).
From Figure 2.5, we can see that on average (in absolute value) 21.75 nA is induced. The
somewhat large difference in up- and downstream currents of the left and right jetting system
is expected to be caused by differences in the characteristics of the 4 used (imperfect) diodes.
It is hereby important to remember that, by the ’definition’ of a diode, they are not designed
to allow current to pass in the wrong direction.
Using the I-V curve shown in the right of Figure 2.4, we find that the voltage on the rings
was on average (in absolute value) equal to 531.8 V. From these two values we calculate the
experimental induction constant: nCind = 21.75

531.8 = 0.0409 nA/V.

We know from section 2.2.2 that theoretically, when Rg >
1

nCind
we have a charging system

and when Rg <
1

nCind
the setup will be non-charging. On the basis of the (steady state) ’U-I

curve’ from Figure 2.4, we have therefore also plotted the corresponding ’R-I curve’ for this
diode, as is shown in Figure 2.6.

Resistance-Current curves
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Critical charging resistance

Figure 2.6: Resistant-Current curves for a constant voltage and the used (imperfect) inverted
diodes.

In Figure 2.6, the critical charging resistance was determined from the measurements with
the experimental setup and equals: Rg = 1

nCind
= 24.45 GΩ. Further inspection of Figure 2.6

reveals that this figure can help to describe the systems behaviour.

At the start of the system, no current is yet induced. Then, after some initial imbalance,
the current will be (greatly) induced, as the resistance of the diodes is now (a lot) higher than
the critical value of the gate resistance. However, as more current is induced, the value for
the gate resistance is reduced, and when about 15 nA is induced, the resistance is just above
the critical value. Because of this, the rate at which the induction current increases will be
reduced. In the end, the induction current will increase slowly to the point where it equals the
critical resistance, and at this value the induction current will stabilize. This is also exactly the
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behaviour of the induction current that we found in the left of Figure 2.5.
For the R-I curve of the diodes we can calculate that this intersection is given at 21.8 nA, which
also happens to equal the average (in absolute value) of the induced current of the diode voltage
divider experiments.

However, this induction current is still too high, as from the right of Figure 2.5 we can
clearly see that current losses are still present. For a better efficiency, we would like to steer the
system to a lower equilibrium for the induction current. In this way droplets will not become
’overcharged’, reducing the amount of current loss. Which induction current is optimal at the
equilibrium, will depend on the nature of the current losses. A large amount of current losses
will clearly result in a low efficiency, but if we do not want any current losses to occur we may
be too restricted in the extent to which the system can be charged. In [17] we find that typically
about 20% of the droplet charge is lost at maximal efficiency.

As discussed, a R-I curve as shown in Figure 2.6 for the diodes, can help to explain the
charging behaviour of the Kelvin water dropper. For instance, from section 2.2.2 and [18] we
can draw the conclusion that for a symmetric system, the use of constant resistors will either re-
sult in a non-charging system, or an overcharging system, directly depending on the value of Rg.

The problem we face is that we need a charging system in order to harvest downstream
currents, but at the same time we do not want the system to overcharge, as this will induce
current losses which drastically reduce the efficiency of the energy conversion. However, from
the R-I curve of the diodes (see Figure 2.6), we may just infer a way to achieve this.
When we allow for variable resistors instead of constant resistors, we may for instance control
the induction ring voltages by some continuous function for the resistors (i.e. Rg = g(I))
described by:

g(I) =

{
g1(I) where g1(I) > 1

nCind
if I < I∗

g2(I) where g2(I) ≤ 1
nCind

if I ≥ I∗,
(2.6)

where I∗, represents the optimal equilibrium solution for the induction currents.

In layman’s terms we propose to charge the system until some optimal equilibrium solution
is reached. The pursuit of an optimal way in doing so will be treated in chapter 4.

However, from the systems differential (2.2), where m =
Rg

RL+Rg
is the voltage divider con-

stant, we may already perform some preliminary analysis. When we substitute this constant
m back to its resistor expression and look at a completely symmetrical system, i.e. when
U1(t) = −U2(t), we have that the system is determined by

U̇1 =
1

CL

nCindRg − 1

RL +Rg
U1, U1(0) ≥ 0. (2.7)

Note that from (2.4) we see that the assumption U1(t) = −U2(t) is only correct when U1(0) =

−U2(0). However, since λ1 = 1
CL

nCindRg−1
RL+Rg

is the largest eigenvalue of the system, other initial
conditions will eventually also converge to this symmetrical system description. This can for
instance be verified from the discussion in section 2.2.2 or also directly from (2.4).
From equation (2.7) we can see that the derivative U̇1 increases when Rg increases and/or when
RL decreases. Because of this we expect that the fastest way to charge the system is to use a
large gate resistor Rg and a small load resistor RL. To prevent overcharging the opposite of
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this observation may be explored, i.e. one may reduce the gate resistor Rg and/or increase the
load resistor RL.

2.4 Explaining the measurements

In [18] and [16] several measurements have been recorded using the ballistic version of Kelvins
water dropper. From these measurements we may be able to validate some of the established
theory from the previous section. Let us for instance return to the results from the voltage
divider setup studied in [18]. From the paper we can obtain the following measurements of the
setup:

Figure 2.7: Measurements from the dual 1 TΩ voltage divider setup. Left: the measured
(buildup of) induced current as a function of time. Right: Scheme of the electrical circuit and
values of the (steady state) measured currents.

Comparing the diode voltage divider setup (see Figure 2.5) to the above resistor voltage
divider setup, we may note that the same load resistors are used, but for the gate resistors we
have a difference between a constant and a non-linear resistor. From the measurements we can
furthermore note that for the resistor voltage divider an equilibrium solution is reached a lot
faster. From the moment the pressure is turned on, it takes approximately 20 seconds to reach
an equilibrium. For the diode setup on the other hand, it takes approximately 90-95 seconds to
reach 15 out of the final 19 nA, and from here on the system charges only gradually.
This strong difference in charge time may now be explained from the different values of the
gate resistors. In the resistor voltage divider setup, the gate resistor has a constant value of 1
TΩ, allowing for a quick increase in induced current, but unfortunately at the same time causes
the system to overcharge. From Figure 2.6 we can see that in the diode voltage divider setup,
the gate resistor initially has a resistance of approximately 290 GΩ, which explains the relative
quick increase of induction currents for the first 90-95 seconds. However, the resistance can
be seen to decrease quite fast when more current is induced, which also explains the gradual
charging in the end.

Let us at last have a look at two additional experiments where (constant) resistors were
used as a voltage divider:

When we look at the left of Figure 2.8, we can see that this setup resulted in a a non-charging
system. This can be explained from the low value for the gate resistance, i.e. assuming an
induction constant nCind of 0.04-0.05 nA/V, we can calculate from (2.5) that the critical gate
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Figure 2.8: Steady state measurements from two additional resistor voltage divider experiments.
Left: RL = 1 TΩ, Rg = 8 GΩ. Right: Effectively we have RL = 0 Ω, Rg = 1.008 TΩ.

resistance equals 20-25 GΩ. As this gate resistance is clearly below this value, the system will
be non-charging. Looking at the right of Figure 2.8, similar to the case of Figure 2.7, we can
see that a very large value of approximately 1 TΩ is used for the gate resistor. Herby note that
the load resistor and gate resistor are connected in series, effectively resulting in just one nett
gate resistor of 1.008 TΩ (i.e. without a load resistor).
As this gate resistor is again (much) larger than the critical gate resistance, we will indeed have
an overcharging system. This can also be observed from the large steady state induction currents
(of ± 60 nA). What is somewhat strange however, is that the induction currents are this large.
Considering the downstream currents of ± 0.7 nA, we can calculate that the induction constant
nCind in this setup equals: nCind = 60

0.7·10−9·1.008·1012 = 60
705.6 = 0.085 nA/V. This value is about

twice as high as we found in the dual 1 TΩ resistor voltage divider setup (Figure 2.7) or the
diode voltage divider setup (Figure 2.5). We expect that this can be explained from a rather
sensitive charge induction process (see also Figure 1.3). For instance, from measurements with
a similar single jet system in [17], also shown in Figure 3.7, it seems that an induction constant
of over 0.1 nA/V should also be achievable.
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Chapter 3

Analyzing the Kelvin water dropper

In the setup of the ballistic Kelvin water dropper, at high target voltages droplets are deflected
from the target to the induction rings. Furthermore droplets are also lost to the environment.
These losses will become severe when the droplets and/or the targets are highly charged. In
this chapter we will investigate how these losses can be incorporated in the induction model
from the previous chapter, and investigate how these will influence the systems characteristics.

3.1 Extended system with current losses

In this section current losses I13 and I23 will be incorporated in the system, which were omitted
in section 2.2. In order to do so systematically, some latent variables are introduced, as indicated
in Figure 3.1.

Figure 3.1: The electrical circuit of Figure 2.2, with the addition of latent variables.

For the electrical circuit shown in Figure 3.1, a list of equations can be formulated. These
equations are listed in table 3.1.

25



Left jet Right jet

Kirchhof current laws Kirchhof current laws
I11 = I14 + I15 I21 = I24 + I25
I14 = I13 + I16 I24 = I23 + I26
I16 = I12 + I23 I26 = I13 + I22

I11 + I22 + I25 = I12 + I15 + I21
Kirchhof voltage laws Kirchhof voltage laws
U1 = UCL1

U2 = −UCL2

= UCurrSource1 = −UCurrSource2
= URL1

+ URg1 = URL2
+ URg2

Component laws Component laws

I15 = CL1
dU1
dt I25 = −CL2

dU2
dt

(= ICL1
) (= ICL2

)

I11 = −n1Cind1URg2 I21 = n2Cind2URg1
URL1

= I16RL1 URL2
= −I26RL2

URg1 = I12Rg1 URg2 = −I22Rg2
Current losses Current losses

I13 = α1U1
β1 I23 = α2(−U2)

β2

Table 3.1: List of equations corresponding to Figure 3.1

Note that all indicated currents are shown in the positive direction. Furthermore, the volt-
ages U1 and U2 are defined to be the voltage drops from the targets to the ground. In the circuit
of Figure 3.1, these are the voltages measured from the potential level at node A or B to the
ground. As, for the right jet, the ’direction’ of this potential drop is opposite to the current
flow, one may note that the voltage U2 is defined to be negative, whereas voltage U1 is defined
to be positive.

The reason for the negative voltage U2 lies in the fact that, for the right jet, negative charges
are being transported by the water. By definition however, (positive) current flow is opposite
to the flow of negative charges. This might also lead to a seemingly counter-intuitive cur-
rent flow at the junction of I23, I24 and I26, as well as the junction between I13, I22 and I26.
It is thus important, especially at these two nodes, to realize that for the right jet the flow of
water (and for this right jet thus also the flow of negative charges) is opposite to the current flow.

Finally the nodes connecting the loss currents I13 and I23 to the gates may need some
additional explanation. These loss currents represent deflected droplets contacting the gates (so
the dashed line may actually be visualised better when drawn directly to the gates). However,
in the ballistic Kelvin dropper, current flowing through the gates is not in contact with the
droplets that carry induced charges. Therefore the loss currents I13 and I23 can only flow to the
(opposite) voltage dividers. This will however have a secondary effect on the induced currents
I11 and I21, as loss currents can be seen to reduce the current flow through resistors Rg1 and
Rg2 , thereby reducing the voltage over these resistors. Finally a reduced voltage URg1 and URg2
will lead to smaller induced charges/current at the gates (Since the gates are modelled similar
to a field effect transistor ([18])).
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3.1.1 Deriving the manifest behaviour

In this subsection we will derive the differential equations that describe the manifest behaviour
of the extended system. With the term manifest behaviour we mean that we are interested
in the behaviour of the target voltages U1 and U2. To do so we need to eliminate the latent
variables that were introduced in Figure 3.1. A structured way of doing so is shown in Appendix
section A.1.

Unlike we did in section 2.2 on the induction model, for now we will not assume that all
constants are symmetrical. In this way the resistor voltage divider of the left subsystem can be
different than the one in the right system, and therefore we define

mi =
Rgi

RLi +Rgi
, i ∈ {1, 2}

to denote the voltage divider constant in the left and right system. When doing so, following
the steps in Appendix section A.1 we find that the extended system can be described by the
following differential equation:

CL1

dU1

dt
= − 1

RL1 +Rg1
U1 − (n1Cind1RL2m2 + 1)α1U1

β1 − n1Cind1m2U2 −m1α2(−U2)
β2

CL2

dU2

dt
= −n2Cind2m1U1 +m2α1U1

β1 − 1

RL2 +Rg2
U2 + (n2Cind2RL1m1 + 1)α2(−U2)

β2 .

(3.1)

It is interesting to see that these differential equations describing the extended system have a
strong similarity with those from the induction model (see (2.2)). From the comparison between
equation (2.2) and (3.1), one can find that all terms at the right of (2.2) are still present in (3.1).
The extra terms can be seen to be related to the loss currents, and represent the stabilizing
effect that the loss currents I13 and I23 have on the system.

3.1.2 Extended system behaviour

The system behaviour can be analysed on the basis of equation (3.1). Let us assume that the
system is symmetrical, so that all similar constants are equal (e.g. RL1 = RL2 , Rg1 = Rg2 ,
m1 = m2, n1 = n2, etc). Let us furthermore introduce the following constants:

A =
1

CLi(RLi +Rgi)

B =

(
niCindiRLjmj + 1

)
αi

CLi

C =
niCindimj

CLi

D =
miαj
CLi

(3.2)

In equation (3.2), i and j are used to explicitly indicate the left or right jet, i.e. i 6= j, i ∈
{1, 2}, j ∈ {1, 2}. Using these constants and the assumption of symmetry between the two jets,
we can rewrite equation (3.1) to:

dU1

dt
= −AU1 −BU1

β − CU2 −D(−U2)
β

dU2

dt
= −CU1 +DU1

β −AU2 +B(−U2)
β (3.3)
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When we take a closer look at (3.3) we find that the assumption of symmetrical constants
also results in a somewhat symmetrical differential equation. In particular, it is easy to see that
the following lemma holds:

Lemma 3.1.1. (U1,−U1) satisfies equation (3.3) if and only if U1 satisfies:

dU1

dt
= (C −A)U1 − (B +D)U1

β (3.4)

For the rest of this section we will continue with the symmetrical differential equation de-
scription that is described by Lemma 3.1.1. Thereby we will turn our attention to the differential
equation of (3.4), and use the fact that its solution U1 also provides a solution pair (U1,−U1)
to equation (3.3).

In case of the induction model with symmetrical constants, we have already seen that a
symmetrical system description of U1 = −U2 is reasonable. For this simplified model we have
seen that U1(t) ≈ −U2(t) as t → ∞, and, in particular, in case U1(0) = −U2(0) we have that
U1(t) = −U2(t) for all time. From (2.2) we find that the symmetrical differential equation for
the induction model is given by

dU1

dt
= (C −A)U1. (3.5)

A final result we shall recapitulate from the induction model is that in order to have a
charging system it is necessary to have that C −A > 0, or equivalently, one would require that
Rg >

1
nCind

. This assumption will also be continued in the rest of this thesis:

Assumption 1 (Charging assumption). If without further notice, throughout this thesis we
shall assume that C −A > 0.

Not only in the induction model the above assumption will ensure a charging system, one
can also see from equation (3.4) that in case C −A < 0 the system would be non-charging. To
see this, it is important to remember that as an arbitrary modelling assumption we have set
U1 ≥ 0. If we then would have that C − A < 0, then it follows that the derivative in (3.4) is
always negative. Clearly a non-charging system would not be very interesting to analyze, which
is one of the main reasons to stick with assumption 1.
Furthermore, in case C − A < 0 we find that the sole equilibrium point of (3.4) is given by
U1
∗ = 0. One may however expect that in the extended model the additional current losses

will provide the system with an additional (stable) equilibrium point; if the ’growth’ equals the
’loss’ the target voltages would come to a halt. This will be the topic of the next subsection

3.1.3 Equilibrium points

In this section we will analyze the equilibrium points from (3.4), which by lemma 3.1.1 also
provide equilibrium points to (3.3). Upon combining the modelling assumption U1 ≥ 0 with
the charging assumption 1, we find that (3.4) contains a ’growth term’, i.e. ’(C −A)U1’, and
a ’loss term’, i.e. ’(B +D)U1

β’. Apart from the trivial equilibrium point U1
∗ = 0, by equating

the ’growth’ and ’loss term’ we find that another (real) equilibrium point of (3.4) is given by

U1
∗ =

(
C −A
B +D

) 1
β−1

. (3.6)

One may note that for odd β the equation (C −A)U1 = (B +D)U1
β would also have a neg-

ative solution, since we then get a quadratic expression in solving for U1. However, this is in
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contradiction with our modelling assumption that U1 ≥ 0.

Next, it directly follows from lemma 3.1.1 that (U1
∗,−U1

∗) is also an equilibrium solution
to (3.3). In section 3.2 we will furthermore analyze whether these are also the only equilibrium
solutions to (3.3).

The nature of the equilibrium points can be studied by means of linearisation. The Jacobian
of (3.4) can be calculated to equal:

f ′(U1) = (C −A)− (B +D)βU1
β−1. (3.7)

By a simple substitution we can now see that, in the equilibrium point of (3.6), the above
Jacobian is equal to:

f ′(U1
∗) = (C −A)(1− β). (3.8)

As we have that β > 1 and C −A > 0, the eigenvalue of (3.8) is smaller than zero. Thereby
we find that U1

∗ from (3.6) is an asymptotically stable equilibrium of (3.4).
In an analogous fashion, from (3.7) one can find that the trivial equilibrium point U1

∗ = 0 is
an unstable equilibrium point of (3.4). At last, note that in the case that the assumption 1
does not hold, the equilibrium point from (3.6) is undefined (for real numbers). In this case
the equilibrium point U1

∗ = 0 is stable, which makes sense because under these conditions the
system is non-charging.

2-dimensional equilibrium points

For completeness a similar analysis of the equilibrium points can be performed on the full
system from (3.3). From lemma 3.1.1 it follows that if U1

∗ is an equilibrium point of (3.4), then
(U1
∗,−U1

∗) is an equilibrium point of (3.3). Thereby we will show that our previous conclusions
on the stability of the equilibrium points from (3.4) also hold in the 2-dimensional case of (3.3).
The equilibrium points of interest are given by (U1

∗,−U1
∗) = (0, 0) and

(U1
∗,−U1

∗) =

((
C −A
B +D

) 1
β−1

,−
(
C −A
B +D

) 1
β−1

)
.

For the Jacobian of the full system we now find:

f ′(U1, U2) =

[
−A−BβU1

β−1 −C +Dβ(−U2)
β−1

−C +DβU1
β−1 −A−Bβ(−U2)

β−1

]
.

In the non-zero equilibrium point this Jacobian is equal to:

f ′(U1
∗,−U1

∗) =

[
−A−Bβ C−AB+D −C +Dβ C−AB+D

−C +Dβ C−AB+D −A−Bβ C−AB+D

]
, (3.9)

where the eigenvalues of (3.9) can be found to equal

λ1,2 = −A−Bβ C −A
B +D

±
(
−C +Dβ

C −A
B +D

)
. (3.10)
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Here λ2 can be simplified to (C − A)(1− β), and as β > 1 we thus see that this eigenvalue
is stable.
The expression for λ1 is slightly more elaborate, as we obtain:

λ1 = −C −A+ β
C −A
B +D

(D −B) .

Also this eigenvalue is stable, which can be shown from the underlying constants ofA,B,C,D
from the definition of (3.2). As we have that mi ∈ [0, 1], it follows directly from (3.2) that
D − B ≤ 0. But this also directly implies that λ1 < 0. As both eigenvalues are negative, we
have that indeed the non-zero equilibrium point is also stable in the 2-dimensional case.

Similarly we may also investigate the stability of the origin for the full system. We find that
the Jacobian in the origin is equal to:

f ′(0, 0) =

[
−A −C
−C −A

]
, (3.11)

which has eigenvalues that are given by

λ1,2 = −A± C. (3.12)

It can easily be verified from (3.12) that λ1 < 0 if and only if C −A < 0, while λ2 is always
negative. Because of this we thus again see that in the regular case where C −A > 0 the origin
is unstable, whereas in the non-charging case the origin is stable.

In summary we thus find that indeed our previous conclusion about the stability of the
equilibrium points in (3.4) also holds for the full system given by (3.3).

3.1.4 Solving the extended systems differential equation

In this subsection equation (3.4) is solved analytically. This may be done by integration by
parts, as is shown in Appendix section A.2. There is however also an easier way, as will be
shown in this section.

We start with a bit of a ’trick’, and multiply the second line of (3.4) with (1 − β)U1
−β to

obtain:

(1− β)U1
−β dU1

dt
= (1− β)(C −A)U1

1−β − (1− β)(B +D) ⇐⇒

df

dt
= (1− β)Ãf − (1− β)B̃ (3.13)

where f := U1
1−β, Ã := (C −A) and B̃ := (B +D).

Using this substitution ’trick’ we see that the non-linear differential equation of (3.4) can be
reduced to an ordinary differential equation. To be complete, we can see that the solution f of

(3.13) also gives us a solution to (3.4), since U1 = (f)
1

1−β .

It is easy to see that the complete solution of (3.13) is given by:

f(t) = ce(1−β)Ãt +
B̃

Ã
. (3.14)
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Given (3.14) we know that the solution of (3.4) is described by:

U1(t) =

(
ce(1−β)Ãt +

B̃

Ã

) 1
1−β

. (3.15)

The constant c may be solved from a given initial condition U1(0):

c = U1(0)1−β − B̃

Ã
. (3.16)

Comparison of (3.15) to the measurements from [18]

Having found a solution to (3.4), next we will check how the equation compares to the mea-
surements from [18]. In this paper measurements are discussed of a ballistic Kelvin dropper
with a dual 1 TΩ voltage divider. Furthermore, in this paper we also find that the values
nCind = 0.05 · 10−9 and CL = 12 · 10−12 may be used to model the system. At last, the
constants α and β are chosen to obtain a similar target voltage equilibrium as we find in the
measurements.
Using these constants we use definition (3.2) to form the combined constants A,B,C,D and
from there we can form the final merged constants Ã and B̃. At last, when we plug in the
obtained constants in (3.15) and (3.16), we obtain the following figure.

Simulation of the ballistic Kelvin dropper with current losses
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Figure 3.2: Matlab simulation of (3.15). Values for the resistors are chosen according to the
resistor voltage divider discussed in [18], see also Figure 2.7. Constants nCind and CL were
chosen to match the chosen values in [18], and are given by nCind = 0.05 · 10−9 and CL =
12 · 10−12. At last, the constants α and β that define the amount of current loss are chosen by
α = 7 · 10−35 and β = 6.5.
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The right of Figure 3.2 may be compared to the induction current measurements as shown
in the left of Figure 2.7. This is because the amount of induction current is directly related to
the target voltage, see for instance also (A.3) and (A.4) from the Appendix.
When we compare these measurements with the above plot, we remark that a similar behaviour
can be observed, i.e. in both cases we find a quick exponential increase which abruptly comes
to a halt.
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3.2 Other equilibrium solutions?

In subsection 3.1.2 the system behaviour has been analysed at the equilibrium points. Due
to the symmetry of the systems it had been assumed that U1(t) = −U2(t). Furthermore, by
modelling assumptions, it was assumed that U1 > 0 and U2 < 0. In this section we will look at
possible other equilibrium points in the U1, U2 plane outside the U1 = −U2 subspace.
In order to find other equilibrium points, we will have a closer look at the extended systems
differential equation (3.3). Again we shall use with symmetrical constants A,B,C,D. Further-
more, in this section we will again make use of the charging assumption 1. At last we will
use that B −D ≥ 0 which follows directly from (3.2) and the fact that for the voltage divider
constant we have that mi ∈ [0, 1]. The basic assumptions on the constants in this section are
thus given by

Assumption 2 (Standard assumptions on the constants). If without further notice, throughout
this thesis we shall assume that:

C −A ≥ 0

B −D ≥ 0.

3.2.1 Equation approach

At first we will see whether it is possible to find more equilibrium points by directly solving
them from (3.3). For simplicity we write −U2 = Ũ2. The equation describing the equilibrium
points is now given by:

0 = −AU1 −BUβ1 + CŨ2 −DŨ2
β

(3.17)

0 = −CU1 +DUβ1 +AŨ2 +BŨ2
β
. (3.18)

By subtracting C
A times (3.17) from (3.18) we obtain:

0 = DU1
β +

C

A
BU1

β +AŨ2 −
C2

A
Ũ2 +BŨ2

β
+
C

A
DŨ2

β
⇐⇒(

D +
C

A
B

)
U1

β =

(
C2

A
−A

)
Ũ2 −

(
B +

C

A
D

)
Ũ2

β
⇐⇒

U1
β =

C2

A −A
D + C

AB
Ũ2 −

B + C
AD

D + C
AB

Ũ2
β

⇐⇒ (3.19)

U1 =

(
C2

A −A
D + C

AB
Ũ2 −

B + C
AD

D + C
AB

Ũ2
β

) 1
β

. (3.20)

Next, equation (3.20) can be plugged into equation (3.17) to obtain an expression from

which Ũ2 may be solved:

0 = −A

(
C2

A −A
D + C

AB
Ũ2 −

B + C
AD

D + C
AB

Ũ2
β

) 1
β

−B

(
C2

A −A
D + C

AB
Ũ2 −

B + C
AD

D + C
AB

Ũ2
β

)
+ CŨ2 −DŨ2

β
.

(3.21)

Since equation (3.21) is an implicit equation in the second coordinate (Ũ2), by equation
(3.20) it gives an explicit solution to the first coordinate point U1.
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From equation (3.19) we again see that we need the condition C −A ≥ 0 from the assumption

2. If this is not the case, there is no real solution where U1 and Ũ2 are both strictly positive,
e.g. we would have a positive number on the left side and a negative number on the right side.

As an example, in accordance with the assumption 2 we take A = 1, B = 3, C = 2, D = 1,
β = 3. For this example equation (3.21) becomes:

−
(

3

7
Ũ2 −

5

7
Ũ2

3
) 1

3

+
5

7
Ũ2 +

8

7
Ũ2

3
. (3.22)

One may now verify that this equation has 3 real solutions; Ũ2 = −1
2 , Ũ2 = 0 and Ũ2 = 1

2 .
Next, from (3.20) one can check that each of these solutions result in equilibrium points on the

U1 = Ũ2 subspace, i.e. the real solutions of (3.21) and (3.20) are given by (U1, Ũ2) = (−1
2 ,−

1
2),

(0, 0) and (12 ,
1
2). That also negative solutions arise is not surprising, as this can be explained

by a different initial polarity as opposed to what is assumed. At last, using matlab one may
verify that (3.22) also has complex solutions Ũ2 = −0.5303± 0.7706i.

In conclusion we can see that although it is possible to find equilibrium solutions to (3.17)
and (3.18), the method does not present a clear overview of whether the equilibrium points are

spread only on the U1 = Ũ2 subspace or not. By doing several simulations it however seems

that there can only be 1 real and strictly positive solution (U1
∗, Ũ2

∗
) to equation (3.17) and

(3.18). In the next subsection we will investigate if this can be shown by using implicit plots.

3.2.2 Implicit plot approach

In this section implicit plots will be used to study the real equilibrium points of equation (3.17)
and (3.18). Clearly values for the coefficients A, B, C and D (see equation (3.2)) would need
to be chosen to make an implicit plot. In all of the plots in this section, in accordance with the
assumption 2, we use the standard example

Assumption 3 (standard example). The standard constants that will be used in the plots of
this section are given by A = 1, B = 2, C = 2 and D = 1.

Furthermore, we will also use β > 1 as current losses will increase at large operating voltages.
Let us assume that β ∈ N and start with the case that β is even (the case β is odd will be
treated later in this section). It is important to realize that, since we have that β > 1, the

terms ’BU1
β’ and ’DŨ2

β
’ will dominate the implicit solutions of equation (3.17) and (3.18) in

the case that |U1| > 1 and/or |Ũ2| > 1. To study this effect, in Figure 3.3 an implicit plot has
been made for the relative high value of β = 20.

In Figure 3.3, we can see that the implicit plot has a strong resemblance to a quadrilat-
eral, where the vertices for this example are located near the coordinates (−0.9763, 1.029),
(0.9321, 0.9675), (−0.8261,−0.3932) and (0.8349, 0.4462). This specific shape can be explained
on the basis of the limiting behaviour of (3.17), where β →∞ along the even integers, at four

points in the (U1, Ũ2) plane. These points of interest are (U1, Ũ2) = (−1, 1), (1, 1),
(
−1,−A

C

)
and

(
1, AC

)
. At these points it seems that the ’limit implicit solution’ of (3.17) is given by the

quadrilateral with the described vertices. In the coming pages we aim to prove this observation.

The limit points of the quadrilateral implicit solution

As previously discussed, when looking at Figure 3.3, one may recognize a more or less quadri-
lateral shape in the implicit curve of (3.17). From this observation the hypothesis is formed
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Implicit plot with β = 20
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Figure 3.3: Left: a plot of solely equation (3.17). Right: a combined plot of equation (3.17)
and (3.18).

that, when β → ∞ along the even integers, the implicit solution curve of (3.17) will converge

to a quadrilateral with vertices given by (U1, Ũ2) = (−1, 1), (1, 1),
(
−1,−A

C

)
and

(
1, AC

)
. In this

subsection we will aim to prove that this hypothesis is correct. We start by proving that the
vertices listed above indeed correspond to the ’limiting solution’.

Let us start by looking at the point (−1, 1). As we want to prove that this point is a limiting
solution of (3.17), we will consider a tiny shift to this point given by (−1 + ε1, 1 + ε2), where
εi ∈ R is considered small (and possibly also negative). Using this shift, we will need to prove
that:

A(−1 + ε1) +B(−1 + ε1)
β = C(1 + ε2)−D(1 + ε2)

β (3.23)

holds for arbitrarily small (ε1, ε2), provided that β →∞ along the even integers.
It may be clear that in the strict limit point (where (ε1, ε2) = (0, 0)), in general equation (3.23)
is not correct (for any even value of β), since we would then need that:

−A+B = C −D. (3.24)

By pure coincidence however, for the main example studied (A = 1, B = 2, C = 2 and
D = 1) it happens to be that equation (3.24) is met, as can also be verified from Figure 3.3 at

(U1, Ũ2) = (−1, 1). However, because the implicit solution curve for β = 20 is still a bit off to
the limiting quadrilateral we expect to get at (even) β =∞, the observed ’kink’ near (−1, 1) is
not yet located in the strict limiting point, but is located at approximately (−0.9763, 1.029).

Returning to (3.23), we are thus interested in its local behaviour near (ε1, ε2) = (0, 0) when
β →∞ along the even integers. For this purpose let us consider ε1 = −α1

β and ε2 = α2
β (where
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α1, α2 ∈ R, and both may be positive or negative). Using this notation, we can write:

A (−1 + ε1) +B (−1 + ε1)
β = C (1 + ε2)−D (1 + ε2)

β

−A
(

1 +
α1

β

)
+B

(
1 +

α1

β

)β
= C

(
1 +

α2

β

)
−D

(
1 +

α2

β

)β
. (3.25)

Upon inspection of (3.25), given the well known limit limn→∞
(
1 + x

n

)n
= ex, one may

already recognize the direction we would like to follow. If we take the limit β → ∞ on both
sides of (3.25) we obtain:

−A+Beα1 = C −Deα2

Beα1 +Deα2 = A+ C. (3.26)

Hereby note that if we choose α1 < ln
(
A+C
B

)
in (3.26), we get that A+C −Beα1 > 0. This

in turn then allows for a real solution to (3.26) that is given by α2 = ln
(
A+C−Beα1

D

)
.

It may furthermore be verified that for given constants A . . .D, both α1 and α2 may be positive
or negative. Therefore it follows that (depending on the constants A . . .D) we may approach

(3.23) for any combination of directions (i.e. (U1 ↑ −1, Ũ2 ↑ 1), (U1 ↑ −1, Ũ2 ↓ 1), (U1 ↓ −1,

Ũ2 ↑ 1) and (U1 ↓ −1, Ũ2 ↓ 1)).

Unfortunately this does not yet conclude the (sub)proof, as from (3.26) we have only shown
that equality holds at the limit β = ∞. It still remains to be shown that ’the equation (3.25)’
is also converging to this ’limit point’, i.e. it remains to be shown that we indeed also have
an equality in (3.23) for β � 2 (in most cases now necessarily accompanied with values of
(ε1, ε2) 6= (0, 0)).
To further illustrate the issue, as a side-note we may for instance consider the equation ε2 = − 1

β
with ε ∈ R. This equation reaches equality in β = ∞ when ε = 0, but will never hold for
β ∈ R+.

Proof. Let us prove that in (3.26) we indeed have equality for small values of (|ε1|, |ε2|) when
β � 2 (and β 6=∞). Like in (3.25), we will define εi := αi

β , i ∈ {1, 2}.

Assume that 0 < α1 < ln
(
A+C
B

)
and define α2 = ln

(
A+C−Beα1

D

)
. We have already shown

that in this way, we reach equality in (3.23) for the ’limit solution’ (i.e. when β = ∞, see
also (3.26) and the notes below it). This was shown to be the result of the convergence of(

1 + αi
β

)β
→ eαi and αi

β → 0 when β →∞ (where we have i ∈ {1, 2}).
However, due to the assumption α1 > 0 and these ’neat’ convergences, we also know that we
have that:
∃βN > 2 such that for β ≥ βN we have that:

−A
(

1 +
α1

2β

)
+B

(
1 +

α1

2β

)β
< C

(
1 +

α2

β

)
−D

(
1 +

α2

β

)β
. (3.27)

Likewise we have that ∃βM > 2 such that for β ≥ βM we have that:

−A
(

1 +
2α1

β

)
+B

(
1 +

2α1

β

)β
> C

(
1 +

α2

β

)
−D

(
1 +

α2

β

)β
. (3.28)

Note that the reason for the inequality in equations (3.27) and (3.28) lies in the fact that

for α1 > 0 we have that e
α1
2 < eα1 and e2α1 > eα1 .
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Now consider a fixed constant β̂ ≥ max(βN , βM ), such that for β = β̂ both inequalities (3.27)
and (3.28) are met. Let us now define the following function and constant:

f(α) := −A
(

1 +
α

β̂

)
+B

(
1 +

α

β̂

)β̂
,

c := C

(
1 +

α2

β̂

)
−D

(
1 +

α2

β̂

)β̂
.

Using this notation we can see from (3.27) and (3.28) that we have that:

f
(α1

2

)
< c, (3.29)

as well as

f(2α1) > c. (3.30)

However, it then follows by continuity of f(α) that ∃α∗ ∈
[
α1
2 , 2α1

]
such that:

f (α∗) = c, (3.31)

which proves our statement under the made assumption that 0 < α1 < ln
(
A+C
B

)
.

Furthermore, it may hopefully be clear that the proof is completely analogous under the as-
sumption that α1 < 0. For this case only some inequality signs would need to be ’flipped’ (in

(3.27), (3.28), (3.29) and (3.30)), as then we have that e
α1
2 > eα1 and e2α1 < eα1 .

At last, also the proof under the assumption that α1 = 0 can be done using a very similar
approach. In this case, we would need to prove that the equation:

C

(
1 +

α2

β

)
−D

(
1 +

α2

β

)β
= B −A, (3.32)

holds for some combination of α2 and (even) β other than α2 = 0, β =∞.

Without loss of generality, let us first assume that there is a ’limit solution’ to (3.32), i.e.
let us assume that (3.32) is correct when (even) β = ∞. One may verify that in this case we
have that Deα2 = A + C − B, which in turn implies that we must have that A + C − B > 0
(since α2 ∈ R). The ’limit solution’ is thus given for α2 = ln

(
A+C−B

D

)
.

Next, assume that 0 < α2 = ln
(
A+C−B

D

)
. Due to the ’neat’ convergences

(
1 + α2

β

)β
→ eα2

and α2
β → 0 when β →∞ we then have that:

∃βK > 2 such that for β > βK :

C

(
1 +

α2

2β

)
−D

(
1 +

α2

2β

)β
< B −A. (3.33)

Likewise we then have that ∃βL > 2 such that for β > βL:

C

(
1 +

2α2

β

)
−D

(
1 +

2α2

β

)β
> B −A. (3.34)
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Again, the reason for the inequality in (3.33) and (3.34) can be found in the fact that for

α2 > 0 we have that e
α2
2 < eα2 and e2α2 > eα2 .

Now consider a fixed constant β̃ ≥ max(βK , βL), such that for β = β̃ both inequalities (3.33)
and (3.34) are met. Let us now define the following function:

g(α) = C

(
1 +

α

β̃

)
−D

(
1 +

α

β̃

)β̃
.

In this way, it may be clear from (3.33) and (3.34), that we now have that:

g
(α2

2

)
< B −A, (3.35)

as well as

g(2α2) > B −A. (3.36)

But then, due to the continuity of g(α) we may conclude that ∃α� ∈
[
α2
2 , 2α2

]
such that:

g (α�) = B −A, (3.37)

which proves our statement under the made assumption that 0 < α2 = ln
(
A+C−B

D

)
.

Again, it may hopefully be clear that the proof is completely analogous under the assumption
that ln

(
A+C−B

D

)
= α2 < 0. For this case only some inequality signs would have to be ’flipped’

(in (3.33), (3.34), (3.35) and (3.36)), as then we have that e
α2
2 > eα2 and e2α2 < eα2 .

At last it needs to be noted that we do not need to consider the case (α1, α2) = (0, 0).
This would correspond to the case of the ’strict limit point’ (i.e. when (ε1, ε2) = (0, 0), see also
(3.24)). Please recall that we are not (just) interested in the strict limit point, but more so in
whether the limiting behaviour of (3.23) for β →∞ along the even integers is neatly defined in
the neighbourhood of (ε1, ε2) = (0, 0).
As we have now dealt with all possible cases for α1, α2 ∈ R it can be concluded that indeed this
limiting behaviour is neatly defined.

Let us also illustrate that the described sequence indeed converges to a solution of (3.23)
when even β →∞. For the main example from 2, we find that α1 < ln

(
3
2

)
≈ 0.4. Let us take

α1 = 0.1. From this it follows that we must have α2 = ln
(
3− 2e0.1

)
≈ −0.236. Using Matlab

to calculate the left and right of (3.25) for some increasing values of even β results in:

Value of β left of (3.25) right of (3.25)

2 1.155 0.9861
10 1.1992 1.1653
100 1.2092 1.2058
1000 1.2102 1.2099

Table 3.2: Illustration of the convergence of (3.25) for the described sequence of points.
The values for the constants are given by A = 1, B = 2, C = 2, D = 1, α1 = 0.1,
α2 = ln

(
3− 2e0.1

)
≈ −0.236

We will still need to show that also the other vertices of the ’limit implicit solution curve’
of (3.17) (given by the quadrilateral), are part of the solution of (3.17) when β →∞ along the
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even integers.
Although we will also do this in this subsection, we will be a bit more brief in our proof, as
many aspects of the proofs will be very similar to the elaborate proof given for the vertex
(U1, Ũ2) = (−1, 1).

Let us continue our extensive proof for the vertex (1, 1). For this point we get:

A(1 + ε1) +B(1 + ε1)
β = C(1 + ε2)−D(1 + ε2)

β (3.38)

A

(
1 +

α1

β

)
+B

(
1 +

α1

β

)β
= C

(
1 +

α2

β

)
−D

(
1 +

α2

β

)β
Beα1 +Deα2 = C −A in the limit β =∞ (3.39)

From (3.39) it can now be seen that if we take α1 < ln
(
C−A
B

)
, we can find a real solution

to (3.26) that is given by α2 = ln
(
C−A−Beα1

D

)
. Again we have that any combination of α1, α2

being positive/negative is possible (depending on constants A . . .D), so also for this point we
can approach (3.38) in any combination of directions.

For the studied example we get α1 < ln
(
1
2

)
≈ −0.7. Choosing α1 = −1 we find α2 =

ln
(
1− 2e−1

)
≈ −1.331. Similar to table 3.2, using Matlab we can illustrate the convergence in

this example for these fixed values of αi:

Value of β left of (3.38) right of (3.38)

2 1 0.5572
10 1.5974 1.4941
100 1.7221 1.7115
1000 1.7344 1.7333
10000 1.7356 1.7355

Table 3.3: Illustration of the convergence of (3.39) for the described sequence of points.
The values for the constants are given by A = 1, B = 2, C = 2, D = 1, α1 = −1,
α2 = ln

(
1− 2e−1

)
≈ −1.331

For the limit points
(
−1,−A

C

)
and

(
1, AC

)
a similar approach as above can be pursued,

however in both cases, in the limit β =∞, this will result in the expression:

Beα1 = 0 (3.40)

Clearly equation (3.40) is only met when α1 = −∞. However, ε1 was chosen to equal α1
β .

This thus means we would now get ε1 = −∞
∞ , which is an undefined limit.

We can however also illustrate the limiting behaviour of these points in a different way. Consider
the point

(
−1,−A

C

)
, we can write:

A(−1 + ε1) +B(−1 + ε1)
β = C

(
−A
C

+ ε2

)
−D

(
−A
C

+ ε2

)β
(3.41)

At first note that in equation (3.41), for the limit β → ∞ we can only have that ε1 ≥
0 ∧ ε2 ≥ 0. For example, if ε1 < 0 and β →∞, the left of (3.41) goes to infinity, which cannot
be balanced by the right side (this tends to ’−A + ε2C’). Moreover, when ε1 > 0, ε2 < 0 and
β →∞, in the limit we get the equality ’ε1A = ε2C’, which cannot hold for opposite signs of εi
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(since A > 0 and C > 0). It is thus only possible to approach (3.41) when
(
U1 ↓ −1, Ũ2 ↓ −A

C

)
.

Let us choose ε1 = ε2 = ε > 0. We can then rewrite (3.41) to the form:

B(1− ε)β +D

(
A

C
− ε
)β

= ε(C −A) (3.42)

Close inspection of (3.42) shows that for 0 < ε < 1 + A
C and increasing β, the left of (3.42)

is decreasing, while the right of (3.42) simply equals a (small) positive constant. Decreasing
ε implies that a larger value of β is required to achieve equality in (3.42). Hereby taking a
simultaneous limit ε → 0, β → ∞ (along the even integers) can now produce an equality in
(3.42).
In order to prove this, note that equation (3.42) consists of three terms, where for the specified
ε the second term vanishes when β → ∞, which follows from the fact that C > A by the
assumption of 2. Inspired by this observation, let us equate the first and third term, which
results in a solution:

β =
ln
(
ε · C−AB

)
ln(1− ε)

. (3.43)

Without loss of generality, let us assume 0 < ε < min
(

1, B
C−A

)
, causing β in (3.43) to be

defined and positive. It may be clear that β as a function of ε given by (3.43), is a continuous

function when ε ∈
(

0,min
(

1, B
C−A

))
. Furthermore, this function has an asymptote at ε = 0,

as we have that limε↓0
ln(ε·C−A

B )
ln(1−ε) =∞.

Next, consider a sequence of points along the curve given by (3.43), for even values of β.
For example, for the values of our standard example 3 this would imply a sequence of points
{(β, ε) : (2, 0.5), (4, 0.3522), (6, 0.2796), . . .}. Since the second term in (3.42) vanishes for large
β, this sequence can be seen to (quickly) converge to a solution of (3.42), as is also illustrated
in the table below.

Value of β left of (3.42) right of (3.42)

2 0.5 0.5
4 0.3527 0.3522
6 0.2797 0.2796
8 0.2349 0.2349
10 0.2041 0.2041

Table 3.4: Illustration of the convergence of (3.42) for the described sequence of points
{(β, ε) : (2, 0.5), (4, 0.3522), (6, 0.2796), . . .}. The values for the constants are given by A = 1,
B = 2, C = 2, D = 1.

At last we may have a look at the point
(
1, AC

)
. For this point we may write:

A(1 + ε1) +B(1 + ε1)
β = C

(
A

C
+ ε2

)
−D

(
A

C
+ ε2

)β
(3.44)

At first note that in equation (3.44), for the limit β →∞ we need that ε1 ≤ 0, while ε2 may
be either positive or negative. For example, if ε1 > 0 the left of (3.44) will tend to infinity when
β →∞, which cannot be balanced by the right of (3.44). Furthermore it may easily be verified
that when ε1 < 0, there is no restriction on the sign of ε2 (At least for ε2 sufficiently small). We
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can thus approach (3.44) when
(
U1 ↑ 1, Ũ2 ↓ A

C

)
or
(
U1 ↑ 1, Ũ2 ↑ A

C

)
.

Let us choose ε1 = −ε, ε2 = ε, ε > 0. We can then rewrite (3.44) to the form:

B(1− ε)β +D

(
A

C
+ ε

)β
= ε(A+ C) (3.45)

Inspection of (3.45) again shows that for small ε, i.e. 0 < ε < C−A
C , and increasing β, the

left expression is decreasing, while the right expression simply equals a small positive constant.
A proof of a simultaneous limit for ε ↓ 0 and β →∞ can be constructed completely analogous
to the case we had in (3.42), as also here the second term vanishes for β → ∞. Equating the
first and third term of (3.45) gives us:

β =
ln
(
ε · A+CB

)
ln(1− ε)

(3.46)

Let us now assume 0 < ε < min
(

1, B
A+C

)
, causing β in (3.46) to be defined and positive.

Note that we again have an asymptote at ε = 0, as we have that limε↓0
ln(ε·A+C

B )
ln(1−ε) =∞.

With that in mind, consider a sequence of points along the curve given by (3.46), for even
values of β. For constants A . . .D as in the main example, this would imply a sequence of
points {(β, ε) : (2, 0.3139), (4, 0.2320), (6, 0.1893), . . .}. As the second term vanishes for β →∞,
this sequence of points will converge to a solution of (3.45), as is illustrated in the table below.

Value of β left of (3.45) right of (3.45)

2 1.6039 0.9416
6 0.6751 0.5679
10 0.4404 0.4284
20 0.2806 0.2806

Table 3.5: Illustration of the convergence of (3.45) for the described sequence of points
{(β, ε) : (2, 0.3139), (4, 0.2320), (6, 0.1893), . . .}. The values for the constants are given by A = 1,
B = 2, C = 2, D = 1.

Note that in equation (3.45), by assuming ε1 = −ε, ε2 = ε, ε > 0, implicitly the choice was

made to approximate the limit while
(
U1 ↑ 1, Ũ2 ↓ A

C

)
. However, it was argued that the limit

can also be approximated when
(
U1 ↑ 1, Ũ2 ↑ A

C

)
.

It may be verified that this can be done by, for instance, choosing ε1 = −ε and ε2 = − A
2C ε,

where ε > 0. In this way only the (small) positive constant on the right of (3.45) would be
altered to ’A2 ε’. The proof from there on will be completely analogous as already illustrated for
(3.42) and (3.45).

Combining the results in this subsection, we have made it credible that the vertices (U1, Ũ2) =
(−1, 1), (1, 1),

(
−1,−A

C

)
and

(
1, AC

)
are a limiting solution of equation (3.17) when β → ∞

along the even integers. Hereby feeding the hypothesis that the limiting implicit solution
of (3.17) for even β → ∞ can be visualised by a quadrilateral with vertices (U1, Ũ2) =
(−1, 1), (1, 1),

(
−1,−A

C

)
and

(
1, AC

)
.
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The limit lines of the quadrilateral implicit solution

In the previous subsection it is shown that the points (U1, Ũ2) = (−1, 1), (1, 1),
(
−1,−A

C

)
and(

1, AC
)

are a solution to (3.17) when β →∞ along the even integers. To show that the limiting
solution is a quadrilateral with these points as its vertices, we still need to show that also the

line segments
{(
U1, Ũ2

)
: U1 = −1, Ũ2 ∈

(
−A
C , 1

)}
,
{(
U1, Ũ2

)
: U1 = 1, Ũ2 ∈

(
A
C , 1

)}
,{(

U1, Ũ2

)
: Ũ2 = 1, U1 ∈ (−1, 1)

}
and

{(
U1, Ũ2

)
: Ũ2 = A

CU1, U1 ∈ (−1, 1)
}

are solutions of

(3.17) when β →∞ along the even integers.
That this is the case can be shown rather easily. Consider for instance the first line segment
listed above: U1 ≈ −1 with Ũ2 ∈

(
−A
C , 1

)
. If we write U1 = −1 + ε (where we will not restrict

the sign of ε) we can rewrite equation (3.17) to:

A(−1 + ε) +B(−1 + ε)β = CŨ2 −DŨ2
β

=⇒

B(1− ε)β = A(1− ε) + CŨ2 −DŨ2
β
. (3.47)

Similar to the method used for (3.26) and (3.39), we may now write ε = −α
β and obtain:

B

(
1 +

α

β

)β
= A

(
1 +

α

β

)
+ CŨ2 −DŨ2

β
=⇒

Beα = A+ CŨ2 (in the limit β =∞). (3.48)

From equation (3.48) one can find a solution for α = ln
(
A+CŨ2

B

)
. Hereby note that this is

well defined, since from Ũ2 ∈
(
−A
C , 1

)
it follows that A+CŨ2

B > 0. Furthermore it can be seen

that, for any given value of Ũ2, α may be both positive and negative (depending on constants

A . . .D). This implies that, at any given value of Ũ2 ∈
(
−A
C , 1

)
, the limit of U1 → −1 may be

performed from both the left and right side (again clearly depending on constants A . . .D).

Exactly the same approach may be followed to show that also the line segments{(
U1, Ũ2

)
: U1 = 1, Ũ2 ∈

(
A
C , 1

)}
,
{(
U1, Ũ2

)
: Ũ2 = 1, U1 ∈ (−1, 1)

}
are part of the ’limit so-

lution curve’ when β →∞ along the even integers.
In this way we obtain the limit solution for U1 ≈ 1 with Ũ2 ∈

(
A
C , 1

)
:

Beα = CŨ2 −A, (3.49)

with a solution for α given by α = ln
(
CŨ2−A

B

)
.

Also from the limit solution (3.49) and its solution for α, we can see that, given any Ũ2, α is
well defined and may both be positive and negative (for this line segment only depending on
constant A). Thereby again the limit U1 → 1 may be performed from both the left and right

side for any given Ũ2 ∈
(
A
C , 1

)
.

Again exploring the same approach, for the case U1 ∈ (−1, 1), Ũ2 ≈ 1 we can obtain the
limit solution:

Deα = C −AU1. (3.50)

From (3.50) we may draw the same conclusions as we already did for (3.48) and (3.49).
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At last, for the case U1 ∈ (−1, 1) and Ũ2 ∈
(
−A
C ,

A
C

)
, it follows immediately after taking the

limit β →∞ (along the even integers) that:

AU1 = CŨ2, (3.51)

from which we immediately find the proposed line segment as a limit solution curve.

It has now been shown that all line segments of the proposed limiting quadrilateral are
indeed solutions of equation (3.17) when β → ∞ along the even integers. When combined

with the fact that the points (U1, Ũ2) = (−1, 1), (1, 1),
(
−1,−A

C

)
and

(
1, AC

)
are also a limiting

solutions of (3.17) when β → ∞ along the even integers (as proven in subsection 3.2.2), we
have thus made it plausible that the indeed the limiting implicit solution curve of (3.17) can be

visualised by a quadrilateral with vertices (U1, Ũ2) = (−1, 1), (1, 1),
(
−1,−A

C

)
and

(
1, AC

)
.

Smaller values of even β

With the limiting behaviour studied, the question remains how the implicit solution of (3.17)
and (3.18) behaves for smaller, even values of β. The smallest even value to consider is β = 2.
For this value we can prove that the implicit solution curve is given by an elliptical shape.
Consider for instance equation (3.17):

AU1 +BU1
2 = CŨ2 −DŨ2

2(√
BU1 +

A

2
√
B

)2

− A2

4B
= −

(√
DŨ2 +

C

2
√
D

)2

+
C2

4D(√
BU1 +

A

2
√
B

)2

+

(√
DŨ2 +

C

2
√
D

)2

=
A2

4B
+
C2

4D
(3.52)

Clearly an analogous result can be obtained for (3.18). By arguments of continuity we can
thus conclude that the implicit solution curves of (3.17) and (3.18) converge from the elliptical
shape for β = 2 to the limiting quadrilateral for even β →∞. In Figure 3.4, this is illustrated
for the example studied.

From Figure 3.4, one may also note that for every plotted even β one will only have 2 in-
tersection points between the plot of the implicit solution of (3.17) and (3.18).

This can be seen to be the case for each implicit solution curve with even β. Clearly (U1, Ũ2) =
(0, 0) is always a solution of equation (3.17) and (3.18). Furthermore, as β > 1, the implicit

solution curves near (0, 0) are ’dominated’ by the lines Ũ2 = A
CU1 (in (3.17)) and Ũ2 = C

AU1 (in
(3.18)). Because of this, the implicit solution curve for (3.17) and (3.18) must move away from

each other when (U1, Ũ2) ∈ ([0, ε), [0, ε)). However, as discussed earlier, the implicit solution
curves for even β are all part of a closed loop shape, and due to this loop it can be graphically
verified that the implicit solution curves for (3.17) and (3.18) must reach one additional inter-
section.
In the case of the limit quadrilateral that has been extensively discussed in the previous sections
the extra intersection may be clear, and will occur at the point (U1, Ũ2) = (1, 1). Furthermore,
in the case of β = 2 we obtain an elliptic shape and the extra intersection can be found at
(U1, Ũ2) = (13 ,

1
3). At last, we also see that when β is further increased, the extra intersection

still occurs on the subspace U1 = Ũ2 and occurs closer to the limit point (U1, Ũ2)(1, 1).

Therefore, for positive β we can conclude that there will only be two real equilibrium points.
As we already showed in subsection 3.1.2, two equilibrium solutions can be found using the
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Implicit plot for several even β
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Figure 3.4: A plot of the implicit solutions of (3.17) and (3.18) for β = 2, β = 4 and β = 20.

assumption U1(t) = −U2(t). Therefore we have must have that the intersections of the implicit

plots are given at the points: (U1
∗, U2

∗) = (0, 0) and (U1
∗, U2

∗) =

((
C−A
B+D

) 1
β−1

,−
(
C−A
B+D

) 1
β−1

)
.

Behaviour for odd β

When we assume β to be odd instead of even, the implicit solutions will become a bit different.

Again, since we have that β > 1, the terms ’BU1
β’ and ’DŨ2

β
’ will dominate the implicit

solutions of equation (3.17) and (3.18) in the case that |U1| > 1 and/or |Ũ2| > 1. Different

however is that for odd β also an unbounded solution (B
1
βU1)

β = −(D
1
β Ũ2)

β can be seen to

exist when |U1| > 1 and |Ũ2| > 1.
For instance, considering the same example as before, we get the following implicit solutions for
β = 3 and β = 21:

From Figure 3.5, one can again see similar limiting and initial behaviour as we had for the
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Implicit plot for odd β
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Figure 3.5: A combined implicit plot of equation (3.17) and (3.18). Left: β = 3, Right: β = 21.
To indicate the distinction between (3.17) and (3.18) in the two figures, in the left figure the

solution curve from (3.17) can be traced ’entering’ the figure at (U1, Ũ2) ≈ (−1, 2) and ’leaving’

the figure at (U1, Ũ2) ≈ (1,−2).

case where β was even. The behaviour around (0, 0) is only different due to the odd power
(similar to the difference between the functions y = x2 and y = x3 around x = 0). We can for
instance still observe the same limiting points of the quadrilateral, with the addition of an extra
limiting point (−1,−1) and (1,−1) which are caused by the odd power. That these limiting
points are indeed the case may be verified in an analogous fashion as pursued in subsection
3.2.2.
For example, for the points (−1,−1), (−1, 1), (1,−1) and (1, 1) one can take ε1 = ±α1

β , ε2 = ±α2
β

(compare this to (3.26) and (3.39)). Moreover for the points
(
−1,−A

C

)
and

(
1, AC

)
one can use

the same approach as used to solve equations (3.42) and (3.45).

To recapitulate this last point, when writing out equation (3.17), it becomes apparent that
the term which includes constant ’D’ vanishes for β → ∞ and may therefore be temporally
omitted. With a proper choice for ε1 and ε2 as a function of ε > 0, it is possible to solve the
reduced equation, leading to solutions similar to (3.43) and (3.46).
((ε1, ε2) = (ε,−ε) or (ε1, ε2) = (ε, A2C ε) with ε > 0 will do for the point

(
−1,−A

C

)
. Likewise

(ε1, ε2) = (−ε, ε) or (ε1, ε2) = (−ε, A2C ε) with ε > 0 will do for the point
(
1, AC

)
).

For both solutions of β one may then verify that limε↓0 β(ε) =∞. As β can become arbitrarily
large, choosing values of ε and β along this curve will then justify the omittance of the vanishing
term.

At last, for the case that β →∞ along the odd integers, one can show that the line segments{(
U1, Ũ2

)
: Ũ2 = −U1, U1 < −1, Ũ2 > 1

}
,
{(
U1, Ũ2

)
: Ũ2 = 1, U1 ∈ (−1, 1)

}
,{(

U1, Ũ2

)
: U1 = 1, Ũ2 ∈

(
A
C , 1

)}
,
{(
U1, Ũ2

)
: Ũ2 = A

CU1, U1 ∈ (−1, 1)
}

,{(
U1, Ũ2

)
: U1 = −1, Ũ2 ∈

(
−1,−A

C

)}
,
{(
U1, Ũ2

)
: Ũ2 = −1, U1 ∈ (−1, 1)

}
and at last

45



{(
U1, Ũ2

)
: Ũ2 = −U1, U1 > 1, Ũ2 < 1

}
are limiting solutions to equation (3.17). A point that

can also be seen to be highly plausible from the right sub-figure in Figure 3.5. For an outline
of a way to prove that these lines are indeed limit implicit solution curves of (3.17), one may
consult subsection 3.2.2.

Comparing the odd β case to the even β case, it is important to note that the implicit
solution curves now do not have the same closed loop shape in the figures, which is caused by
the fact that when |U1| > 1 and |Ũ2| > 1, the limiting implicit solutions will tend to the lines

Ũ2 = −
(
B
D

) 1
β U1 and Ũ2 = −

(
D
B

) 1
β U1. Note hereby that for β → ∞ along the odd integers,

both these unbounded ’implicit line solutions’ tend to Ũ2 = −U1.

In the example shown by Figure 3.5 it may be observed that this difference of solutions

tending to Ũ2 = −
(
B
D

) 1
β U1 and Ũ2 = −

(
D
B

) 1
β U1 did not initiate extra intersections of the

implicit solution curves. This is especially interesting in the right of Figure 3.5, as the implicit
solution curves get really close to each other near the points (−1, 1) and (1,−1) (which is not
strange as these are limiting solutions for β →∞), and are then seen to diverge from each other

when the solution curves tend to the lines Ũ2 = −
(
B
D

) 1
β U1 and Ũ2 = −

(
D
B

) 1
β U1.

That this was not a coincidence for β = 3 and β = 21 can be shown to be the result of
the constraint B −D ≥ 0. This can be illustrated nicely by interchanging the value of B and
D in the example, as is done in Figure 3.6. By doing so, the limiting solution lines will be
the same, but they now correspond to the opposite equation (so where in the example the line

Ũ2 = −
(
B
D

) 1
β U1 was a limiting solution of equation (3.17), for swapped B and D it is a limiting

solution to equation (3.18)).

The additional intersections between the implicit solution curves that are observed in Figure
3.6 are the result of the transition of the region |U1| < 1 and |Ũ2| < 1, to the the region |U1| > 1

and/or |Ũ2| > 1. Because β > 1, in the first region the linear terms dominate the behaviour
for equations (3.17) and (3.18), while for the second region the non-linear terms dominate the
behaviour. When B −D < 0 this transition can be seen to introduce two extra intersections.
When B − D = 0 one may verify that only in the limit |U1| → ∞ and |Ũ2| → ∞ there is an
additional equality between both implicit solution curves.

Under the assumptions from 2 with β > 1 we can tell from the from the implicit plots of
that for odd β there are 3 equilibrium points, all on the (U1, Ũ2) plane. That we now find three
equilibrium points instead of two can be explained from the fact that each target starts of with
either a positive or a negative charge. In the modelling phase we simply assumed that the left
target becomes positive, so that we have U1 ≥ 0. Clearly this choice can also be reversed, which
would lead to the symmetrical equilibrium point in the third quadrant.
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Swapping B and D
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Figure 3.6: A combined implicit plot of equation (3.17) and (3.18) where β = 3. The solution
curve for the initially chosen coefficients compared to swapped coefficients B and D.
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3.3 Input-Output approach

In this section we investigate whether the Kelvin’s water dropper system can be interpreted as
an input-output system. Inspired on the external voltage source that is used in the single jet
system of [17], we will at first analyze Kelvin’s water dropper where consider the induction ring
voltage as an input.

3.3.1 Induction ring voltage as input

In this section we shall consider the extended Kelvin system with current losses, however we will
now consider the induction ring voltages URgi , i = 1, 2 as an input instead of an autonomous
system. Thereby will again use the modelling laws from table 3.1 to derive the differential
equation that describes the systems behaviour. Similar to section 3.1.1 we thereby need to
eliminate the latent variables, but different from that section we now do not need to write the
latent variables solely in terms of the ’state’ Ui, but also in terms of the considered ’input’ URgi .
From the modelling laws from table 3.1 we can now obtain:

I16 =
URL1

RL1

I26 = −
URL2

RL2

I16 =
U1 − URg1

RL1

I26 = −
U2 − URg2

RL2

(3.53)

I11 = −n1Cind1URg2 I21 = n2Cind2URg1 (3.54)

I15 = I11 − I14 I25 = I21 − I24
I15 = I11 − I13 − I16 I25 = I21 − I23 − I26. (3.55)

Combining the equations (3.53), (3.54) and (3.55) with the capacitor law (see table 3.1)
and by defining new, more elaborate current loss assumptions I13 := f1

(
U1, URg2

)
, I23 :=

f2
(
U2, URg1

)
we can obtain:

CL1

dU1

dt
= − U1

RL1

− n1Cind1URg2 +
URg1
RL1

− f1
(
U1, URg2

)
(3.56)

CL2

dU2

dt
= − U2

RL2

− n2Cind2URg1 +
URg2
RL2

+ f2
(
U2, URg1

)
(3.57)

Please note that, by assumption, the left jetting system induced positive current, while the
right jetting system induces negative current. A consequence of this is that the voltage drop
from target to earth is positive for the left system, where for the right system this is negative.
(See also the ’+’ and ’-’ signs in Figure 2.1b).
Because of this model assumption we have that U1, URL1

and URg1 are all positive (by assump-
tion), where U2, URL2

and URg2 are all negative. With this in mind it can again be verified
from equations (3.56) and (3.57), that for a symmetrical system (i.e. U1=−U2, URL1

= −URL2
,

URg1 = −URg2 , RL1 = −RL2 and CL1 = CL2) the above two differential equation again re-
veal a symmetrical relationship in the differential equation, i.e. it then directly follows that
dU1
dt = −dU2

dt .

We can see that equations (3.56) and (3.57) form a non-linear system equation. To deter-
mine controllability of the system it is therefore not just possible to use the full rank condition
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on the regular, controllability matrix. This issue might be overcome by using non-linear control
theory, which involves the use of Lie brackets ([8]).

A simple alternative approach is to neglect the current loss terms. As current losses are
assumed to increase with the voltage of the induction rings and targets, this may be justified
when these voltages remain small. An advantage of neglecting the current losses, is that we can
then rewrite equation (3.56) and (3.57) to:[

U̇1

U̇2

]
=

[
− 1
CL1

RL1
0

0 − 1
CL2

RL2

][
U1

U2

]
+

 1
CL1

RL1
−n1Cind1

CL1

−n2Cind2
CL2

1
CL2

RL2

[ URg1
URg2

]
. (3.58)

In equation (3.58) we can recognize a linear input/state space model of the form ẋ = Ax+Bu.
Using this notation, controllability can be verified from the condition rank([B | AB]) = 2. If we
again consider a symmetric system, where we furthermore introduce the notation a = 1

RLiCLi
,

b =
niCindi
CLi

, it is easy to check that the system in not controllable in the case that a = b, while

otherwise being controllable.

Although we find that the system is not always controllable, we do have that the matrix A
is Hurwitz, which in term also guarantees BIBO stability of this input/state space model ([3]).
Furthermore for a linear input/state space model it is known that each solution is of the form:

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ) dτ. (3.59)

As we have that matrix A is a diagonal matrix, its matrix exponential is straightforward to
compute. For the given case, it is therefore relatively easy to expand equation (3.59) and we
obtain:[
U1(t)
U2(t)

]
=

[
e−at 0

0 e−at

] [
U1(0)
U2(0)

]
+

∫ t

0

([
e−a(t−τ) 0

0 e−a(t−τ)

] [
a −b
−b a

] [
URg1 (τ)

URg2 (τ)

])
dτ

= e−at
[
U1(0)
U2(0)

]
+

∫ t

0

(
e−a(t−τ)

[
aURg1 (τ)− bURg2 (τ)

−bURg1 (τ) + aURg2 (τ)

])
dτ (3.60)

When one would consider a symmetrical input (i.e. URg1 = −URg2 ), equation (3.60) can be
simplified further, and can be written as:[

U1(t)
U2(t)

]
= e−at

[
U1(0)
U2(0)

]
+ (a+ b)e−at

∫ t

0

([
eaτURg1 (τ)

−eaτURg1 (τ)

])
dτ (3.61)

Let us for the moment assume that the input is chosen symmetrical, and set to a constant
voltage. Doing so, we can explicitly calculate the integral in (3.61), and obtain:[

U1(t)
U2(t)

]
= e−at

[
U1(0)
U2(0)

]
+
a+ b

a
URg1 (1− e−at)

[
1
−1

]
(3.62)

In the above example we can see that when t→∞, an equilibrium point is reached, which
is equal to U1 = a+b

a URg1 , U2 = −a+b
a URg1 . This is also in accordance with the equilibrium that

can be found from state space equation:

Ax+Bu = 0 ⇐⇒[
−aU1

−aU2

]
=

[
−(a+ b)URg1
(a+ b)URg1

]
.
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Furthermore, when we consider a completely symmetric system U2(t) = −U1(t) as also
studied in previous sections, we can restrict our view to:

U̇1 = −aU1 + (a+ b)URg1 . (3.63)

In (3.63), the ẋ = Ax + Bu structure is still evident. For this (one dimensional) setup
the controllability condition becomes rank([B]) = rank([a + b]) = 1, which again does imply
controllability.

Output power in terms of induction ring voltage

To determine the optimal (constant) voltage on the induction rings one will seek to maximize
the output power of the system. Under the assumption that current losses may be omitted (i.e.
Ii3 = 0, i = 1, 2), one can see from Figure 3.1 that we then have I12 = I14 = I16.
We next investigate the output power in the equilibrium solution U1 = a+b

a URg1 in the case of
a symmetrical system (i.e. when U1 = −U2, URg1 = −URg2 ). Using the equations (3.53)-(3.55)
we find that in the equilibrium solution the output power is equal to:

Pout = I16U1 + I26 · −U2 ⇐⇒
= 2(1 +RLnCind)nCindURg1

2 (3.64)

From equation (3.64) we observe that the output power increases quadratically with the
voltage over the induction rings. Therefore for maximal energy conversion it seems as if one
would need a high voltage over the induction rings as an input. However, in the beginning of
this chapter it was assumed that current losses could only be omitted when the voltage over the
induction rings remains small. When current losses do occur, they will have a double negative
effect on the energy conversion efficiency. Therefore it is likely that optimal energy conversion is
reached when the voltage over the induction rings is as high as possible, while being just below
the point that current losses become significant.
Furthermore, we also see that the output power from (3.64) seems to be dependent on the
connected load resistance RL.

Next, we will investigate the equilibrium output power equations in the case that current
losses are not omitted. From the differential equations of (3.56) and (3.57) we find that the
target voltages reach an equilibrium that is given by:

Û1 = URg1 −RL1

(
n1Cind1URg2 + f1

(
Û1, URg2

))
(3.65)

Û2 = URg2 −RL2

(
n2Cind2URg1 − f2

(
Û2, URg1

))
. (3.66)

Again we note that in the symmetric case we have that Û1 = −Û2.
From (3.65) and (3.66), we can calculate the analogon of (3.64), where current losses are in-
cluded. Upon combining the relations from (3.53)-(3.55) with the above two equilibrium solu-
tions, we find that in the equilibrium solution, the output power for a symmetrical setup with
current losses is given by

Pout =I16URL1
+ I12URg1 + I26 · −URL2

+ I22 · −URg2

=2
(
nCindURg1 − f

(
Û1, URg1

))2
RL + 2

(
nCindURg1 − 2f

(
Û1, URg1

))
URg1 (3.67)

Again it seems beneficial to use a large load resistor RL in the setup, as in the above equa-
tion there is a linear term in RL.
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To explain that this is not necessarily the case, one needs to keep in mind that the equilibrium
solution for U1 is altered when a resistor RL is connected (see also (3.65)). From equation
(3.65), for fixed values values of the induction ring voltages, we expect that initially the target
voltage will increase when larger values of RL are used. This can also be explained from a phys-
ical point of view. In Figure 2.1b, we can see that larger values of RL, imply that the targets
become better insulated, allowing them to reach higher saturated target voltages. However,
this increase of target voltage will eventually be put to a stop, due to the current losses that are
assumed to increase super-linearly with these target voltages. This saturation of target voltages
for larger load resistors can also be observed in the experiments of the single jet system (see
also Figure 2c in [17]).

Furthermore, when the target voltages can become larger, it will take longer to reach the
equilibrium state (as more droplets will need to be collected to reach the increased target
voltage). Therefore, even if the connection of load resistors causes the output power to be
larger in the steady state, whether these (extra) resistors are truly beneficial in the system is
still dependent on the available time window in which the downstream currents can be harvested.
I.e. one needs to keep in mind that the pressurized reservoirs only contain a limited amount of
(salty) aqueous solution.
Because of the additional time needed to reach the equilibrium solution of the system, combined
with the additional current losses that likely occur for large values of the load resistors, the
question remains whether the ’additional’ resistors RL in the system are truly beneficial.

Summary of the output power equations

Summarizing our results, in any case we have that the output power of the ballistic Kelvin’s
setup equals:

Pout =

{
I12URg1 + I22 · −URg2 if RL = 0

I16URL1
+ I12URg1 + I26 · −URL2

+ I22 · −URg2 if RL 6= 0.
(3.68)

In the equilibrium solution of a symmetrical setup we have:

Pout =


2
(
nCindURg1 − 2f

(
URg1

))
URg1 if RL = 0

2
(
nCindURg1 − f

(
Û1, URg1

))2
RL +

2
(
nCindURg1 − 2f

(
Û1, URg1

))
URg1 if RL 6= 0.

(3.69)

Note that when RL = 0 we have that U1 = URg1 , while when RL 6= 0 we reach an equi-

librium solution for the target voltage Û1 that is implicitly described as a function of URg1 by
equation (3.65).

When current losses are omitted, equation (3.69) may be greatly simplified, and equals:

Pout =

{
2nCindURg1

2 if RL = 0

2(1 +RLnCind)nCindURg1
2 if RL 6= 0.

(3.70)
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3.3.2 Resistors as input

Let us return to the main result obtained in section 2.2.2. Here we concluded that in the absence
of current losses the systems behaviour can be described by the following differential equation:

U̇ = ĀU[
U̇1

U̇2

]
=

[
−A −C
−C −A

] [
U1

U2

]
=

[
− 1
CL(RL+Rg)

− nCindRg
CL(RL+Rg)

− nCindRg
CL(RL+Rg)

− 1
CL(RL+Rg)

] [
U1

U2

]
, (3.71)

where U1 and U2 are the target voltages. One may note that the constants ’a’ and ’b’ from
section 2.2 have been replaced by ’A’ and ’C’. This was done to match the definition of (3.2).

As deduced in section 2.2, the solutions to (3.71) are given by:[
U1(t)
U2(t)

]
=

[
c1e

λ1t + c2e
λ2t

c1e
λ1t − c2eλ2t

]
, (3.72)

where c1 and c2 are constants depending on the initial conditions x0. Moreover λ1 and λ2 are
the eigenvalues of the system matrix Ā. They are given by:

λ1,2 = ∓C −A =
∓nCindRg − 1

CL(RL +Rg)
. (3.73)

One thing to note is that in (3.72) the term ’c1e
λ1t’ vanishes as t→∞, since we have that

λ1 < 0. Furthermore, since we also have that λ2 > λ1, for large t the solutions will behave like[
U1(t)
U2(t)

]
=

[
c2e

λ2t

−c2eλ2t
]
. (3.74)

Note that this is exactly the solution that is found when perfectly symmetrical initial conditions
are assumed (see (2.4)).

By inspection of the eigenvalues we can also make an important observation on the systems
behaviour. Depending on the magnitude of Rg, we end up with either an unstable system in
which droplets are overcharged, or a stable system in which no charges are accumulated. That
is, we can find for λ2: 

λ2 < 0 if Rg <
1

nCind

λ2 = 0 if Rg = 1
nCind

λ2 > 0 if Rg >
1

nCind

(3.75)

Now clearly the differential equation in (3.71) is not completely accurate, as the stabilizing
effect of droplet loss has not been incorporated in the model. However, from a physical point
of view these losses will cause the systems efficiency to deteriorate. That this is indeed the case
can for instance be observed from the results of the single jet system of [17], as is shown in
Figure 3.7.

Note that in the left of Figure 3.7 I1 indicates the upstream current and I2 indicates the
downstream current. The difference between these two currents is therefore equal to the total
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Figure 3.7: Left: induced currents using an external voltage source, Right: Efficiency as a
function of the applied voltage. Applied pressure 1.38 bar, average flow rate 6.55 µls−1, pore
30 µm, 10 mM KCl solution, target distance 2.5 cm (experiment 1) and 2.0 cm (experiment 2).

current loss. That is, the amount of droplets that are reflected to the induction rings (I3) and
also the droplets that are lost to the environment (Iloss, see also Figure 2.3).
From the comparison between the left and the right of Figure 3.7 we can see that maximal
efficiency takes place at/just before the point that current losses become significant. This also
matches an earlier statement of [17] that typically about 20% of the droplet charge is lost at
maximal efficiency.

As our goal is to maximize the systems efficiency it may thereby be justified to study the
system (3.71) with solution (3.72). To ensure that current losses are negligible, so that studying
the systems differential equation of (3.71) is justified, we pose restrictions on the target voltages,
i.e. |Ui| ≤ Umaxtarget , and on the induction ring voltage, i.e. |URgi | ≤ Umaxring . This because
we expect that these voltages, especially the latter induction voltage, have a profound effect on
the current losses.

Inspired by the observation that the systems charging behaviour is directly related to the
gate resistance (see (3.75)), we consider variable resistors as a control input. In this way we
may for instance steer the system to an optimal controlled equilibrium point.
From the solution of the system (3.72) and its eigenvalues (3.73), we may conclude that the
fastest way to charge the system is to initially choose the gate resistance Rg as high as possible,
while simultaneously taking RL to be as small as possible. Next we likely want to stop the charg-
ing process when an optimal controlled equilibrium solution is reached by choosing Rg = 1

nCind
.

From the output power equation of (3.70) it seems however that for an optimal equilibrium
point we would like to have RL to be as high as possible. We would thus initially want to have
that Rg � 1∧RL = 0, while in a controlled equilibrium we would like Rg = 1

nCind
∧RL � 1. To

achieve this one might picture a setup that uses a somewhat classical, variable ’coiled resistor’,
as the controlling component in an experimental setup. In this way, if the resistance is gradually
reduced as the system charges, it seems as if a good trade off between a high charging resistance
and a high insulation may be achieved.
A last nice observation is that the intuitive control action described above does not imply the
use of a wild ’bang-bang controller’, since the restriction |URgi | ≤ Umaxring implies a bound on
Rg as the system charges (see also Figure 3.8).
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Upon inspection of the measurements shown in Figure 3.7, let us assume that the induction
constant of our system is given by nCind = 0.12 nA/V. With this assumption we would have
a critical resistance of approximately 8.33 GΩ. Furthermore, let us assume that Rmaxgate =
200 GΩ (for illustrative purposes) and that Umaxring = 170 V (as we also found in Figure 3.7).
An intuitive optimal controller for Rg will then have the following R-I curve.

Intuitive optimal controller

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

nA

G
Ω

Rgmax
Constant 170 Volt
Critical charging resistance
Equilibrium resistance

Figure 3.8: Resistance-Current curve for our intuitive optimal Rg controller.

In Figure 3.8 we can see that initially the restriction Rmaxgate is dominant, which is taken over
by the restriction Umaxring when the induced current grows.

Of course we would also like to investigate how this intuitive optimal controller relates to
optimal control theory. Thereby we consider the following cost function:

min
RL,Rg

∫ T

0
−Pelectric(t) dt, (3.76)

where the minus is used to turn our maximization problem into a minimization problem, in
order to match the notation of optimization theorems in [12].

Using the notation of the electrical circuit from Figure 3.1, we find that the electrical output
power Pelectric(t) is equal to:

Pelectric(t) = URL1
(t)I16(t) + URg1 (t)I12(t) + URL2

(t)I26(t) + URg2 (t)I22(t)

= I16
2(t)RL1 + I12

2(t)Rg1 + I26
2(t)RL2 + I22

2(t)Rg2

= 2
[
I16

2(t)RL + I12
2(t)Rg

]
(3.77)

= 2 (RL +Rg) I12
2(t). (3.78)

Note that in the above equation the equality of (3.77) is due to symmetry, as it may be ver-
ified that in a perfect symmetrical setup we have I12 = I22, I16 = I26, etc. On the other hand,
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equation (3.78) only holds in the absence of current losses, since we then have that I16 = I12.

It may also be verified that without current losses we have that:

I12(t) =
1

RL +Rg
U1(t),

so that equation (3.78) can be continued to:

Pelectric(t) = 2 (RL +Rg)

[
1

RL +Rg
U1(t)

]2
= 2

1

RL +Rg
U1

2(t). (3.79)

The comparison between output power equations (3.79) and (3.70) shows that both equa-
tions contain a quadratic voltage term. The difference being that in the above equation the
quadratic relation is given in the target voltage instead of the gate voltage. In particular, (3.79)
seems to hint to the need of good target isolation, allowing U1 to remain large.

There are however some restrictions so that current losses cannot occur. These restrictions
are given by:

Rg
RL +Rg

U1(t) ≤ Umaxring

U1(t) ≤ Umaxtarget .

Furthermore, the resistors are assumed to be of finite capacity. Combining the above infor-
mation brings us to the following optimization goal:

max
RL,Rg

∫ T

0

1

RL(t) +Rg(t)
U1

2(t) dt (3.80)

subject to:
Rg(t)

RL(t) +Rg(t)
U1(t) ≤ Umaxring (3.81)

U1(t) ≤ Umaxtarget (3.82)

Rg(t) ∈ [0, Rmaxgate ]

RL(t) ∈ [0, Rmaxload ]

dU1

dt
=

nCindRg − 1

CL(RL +Rg)
U1(t)

U1(0) = x0.

The above optimal control problem is not straightforward to solve directly. However, if we
neglect running constraints, i.e. when we neglect (3.81) and (3.82), we can use Pontryagin’s
minimization (/maximization) theorem to obtain necessary conditions concerning the solution
of the above optimal control problem. This approach is pursued in the following section.
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Chapter 4

Optimally controlling the Kelvin
water dropper

4.1 Minimization by Pontryagin

Let us first recall the standard optimal control problem. This is the problem of minimizing a
cost

J(x0, u(·)) = S(x(T )) +

∫ T

0
L(x(t), u(t)) dt.

over all inputs u : [0, T ]→ U, subject to

ẋ(t) = f(x(t), u(t)), x(0) = x0.

Our original optimization problem (3.80) is unfortunately not of the same form, since in this
problem we also have mixed state-control constraints. Therefore we first choose to consider a
weaker optimization problem, where these constraints are omitted. Moreover we will first take
a fixed value for RL, so that we only need to consider the input u(t) = Rg(t).

Our optimal control problem is then reduced to:

min

∫ T

0
− 1

RL + u(t)
x2(t) dt

subject to: u(t) ∈ [0,M ]

dx

dt
=
nCind u(t)− 1

CL(RL + u(t))
x(t)

x(0) = x0 > 0. (4.1)

which is of the same form as the standard optimal control problem, where:

S(x(T )) = 0

L(x(t), u(t)) = − 1

RL + u(t)
x2(t)

f(x(t), u(t)) =
nCind u(t)− 1

CL(RL + u(t))
x(t)

U = [0,M ].

The following theorem provides a necessary condition for solutions of the optimal control prob-
lem.
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Theorem 4.1.1 (Pontryagin’s Minimum Principle ([12])). Suppose u∗ : [0, T ]→ U is a solution
of the optimal control problem, and x∗ the resulting optimal state trajectory. Then there exists
a function p∗ : [0, T ]→ Rn such that:

ẋ∗(t) =
∂H (x∗(t), p∗(t), u∗(t))

∂p
, x∗(0) = x0, (4.2)

ṗ∗(t) = −∂H (x∗(t), p∗(t), u∗(t))

∂x
, p∗(T ) =

∂S (x∗(t))

∂x
(4.3)

and at the solution x∗(t), p∗(t) the input u∗(t) at each moment in time minimizes the Hamil-
tonian:

H (x∗(t), p∗(t), u∗(t)) = min
v∈U

H (x∗(t), p∗(t), v) (4.4)

for every t ∈ [0, T ], where the Hamiltonian H(x, p, u) is defined as

H(x, p, u) := pTf(x, u) + L(x, u). (4.5)

�

We can now find that the Hamiltonian for the optimal control problem of (4.1) is given by:

H(x, p, u) = p
nCind u− 1

CL(RL + u)
x− 1

RL + u
x2.

In pursuit for a solution of (4.4) we first investigate when 0 = ∂H(x∗,p∗,u)
∂u :

0 =
∂H(x∗, p∗, u)

∂u

= p∗x∗
nCind(CL(RL + u))− (nCind u− 1)CL

CL
2(RL + u)2

+ x∗
2 1

(RL + u)2

=
(nCindRL + 1)p∗x∗ + CLx∗

2

CL(RL + u)2
(4.6)

From equation (4.6) we see that ∂H(x∗(·),p∗(·),u)
∂u as a function of u is never zero. Therefore

the minimum will always occur at the boundary. That is:

u∗(t) =

{
0 if H (x∗(t), p∗(t), 0) < H (x∗(t), p∗(t),M)

M otherwise.
(4.7)

It may be noted that the first equation in Pontryagin’s Minimum Principle, equation (4.2),
simply states that the optimal state must be a solution to the prescribed differential equation

ẋ∗(t) =
∂H (x∗(t), p∗(t), u∗(t))

∂p
, x∗(0) = x0 =⇒

ẋ∗(t) = f(x∗(t), u∗(t)), x∗(0) = x0 =⇒

ẋ∗(t) =
nCind u∗(t)− 1

CL(RL + u∗(t))
x∗(t), x∗(0) = x0 . (4.8)
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Equation (4.8) can be observed to be a separable differential equation, which can be solved
by integration on both sides. That is:

dx∗
dt

=
nCind u∗(t)− 1

CL(RL + u∗(t))
x∗

1

x∗
dx∗ =

nCind u∗(t)− 1

CL(RL + u∗(t))
dt∫ x∗

x0

1

s
ds =

∫ t

0

nCind u∗(τ)− 1

CL(RL + u∗(τ))
dτ

ln

(
|x∗|
|x0|

)
=

∫ t

0

nCind u∗(τ)− 1

CL(RL + u∗(τ))
dτ

x∗(t) = x0e
∫ t
0

nCind u∗(τ)−1

CL(RL+u∗(τ))
dτ
. (4.9)

where in final step of the derivation the absolute value sign can be dropped since x0 and
x∗ both have the same sign. Since by assumption x0 > 0, we can conclude from (4.9) that
x∗(t) > 0 ∀t ∈ [0, T ].

Let us now return to the condition H (x∗(t), p∗(t), 0) < H (x∗(t), p∗(t),M) in (4.7). We can
deduce that this is equivalent to:

H (x∗(t), p∗(t), 0) < H (x∗(t), p∗(t),M) ⇐⇒

p∗(t) ·
−1

CLRL
· x∗(t)−

1

RL
x∗

2(t) < p∗(t)
nCindM − 1

CL(RL +M)
x∗(t)−

1

RL +M
x∗

2(t) ⇐⇒

x∗(t)

(
CL

RL +M
− CL
RL

)
< p∗(t)

(
nCindM − 1

RL +M
+

1

RL

)
⇐⇒

p∗(t) +
CL

1 + nCindRL
x∗(t) > 0. (4.10)

The last equation from Pontryagin to explore is (4.3). This equation leads to:

ṗ∗(t) = −∂H (x∗(t), p∗(t), u∗(t))

∂x
, p∗(T ) =

∂S (x∗(t))

∂x
=⇒

ṗ∗(t) = −nCind u∗(t)− 1

CL(RL + u∗(t))
p∗(t) +

2

RL + u∗(t)
x∗(t) p∗(T ) = 0. (4.11)

Combining all of the above, a solution to Pontryagin’s differential equations boils down to
finding a solution to:

[
ẋ∗
ṗ∗

]
=



[
− 1
CLRL

0
2
RL

1
CLRL

][
x∗

p∗

]
if u∗(t) = 0[

nCindM−1
CL(RL+M) 0

2
RL+M

− nCindM−1
CL(RL+M)

][
x∗

p∗

]
if u∗(t) = M.

(4.12)

for given conditions x(0) = x0 > 0 and p(T ) = 0, where u∗(t) ∈ {0,M} according to the
’switching law’ defined by (4.7) and (4.10).

4.1.1 Solving (4.12) backwards in time

Since the end condition for p(t) is known, this problem may be solved backwards in time,
starting from t = T . Thereby we define the switching function; see (4.10)

g∗(t) = p∗(t) + qx∗(t), (4.13)
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where q = CL
1+nCindRL

> 0, so that the ’switching law’ from (4.10) can be redefined to:{
u∗(t) ≡ 0 if g∗(t) > 0

u∗(t) ≡M if g∗(t) < 0.
(4.14)

To simplify further calculations, we will also redefine the constant matrices in (4.12). Anal-
ogously to (4.12) we will write:

[
ẋ∗
ṗ∗

]
=



[
−a 0

b a

][
x∗

p∗

]
if g∗(t) > 0[

c 0

d −c

][
x∗

p∗

]
if g∗(t) < 0.

(4.15)

Later on in this section, we shall use ’A1’ and ’A2’ to refer to the above two matrices. Fur-
thermore, we have implicitly assumed that M > 1

nCind
, so that indeed we have that c > 0. We

remark that this assumption also makes sense, as in the case that M < 1
nCind

we are not able
to charge the system.

Since we have that p∗(T ) = 0 and x∗(t) > 0 ∀t, we can see from (4.13) that g∗(T ) > 0.
The switching law (4.14) then tells us that u∗(T ) ≡ 0. In turn this allows us to calculate the
derivatives ẋ∗(T

−), ṗ∗(T
−) and ġ∗(T

−):

ẋ∗(T
−) = −ax∗(T−) < 0,

ṗ∗(T
−) = bx∗(T

−) + ap∗(T
−) = bx∗(T

−) > 0,

ġ∗(T
−) = ṗ∗(T

−) + qẋ∗(T
−) = (b− qa)x∗(T

−).

By definition, the constant b− qa can be seen to be positive

b− qa =
2

RL
− CL

1 + nCindRL
· 1

CLRL

=
1

RL

(
2− 1

1 + nCindRL

)
> 0.

So that also ġ∗(T
−) > 0.

Since we have that ġ∗(T
−) > 0 together with g∗(T ) > 0, it is reasonable to believe that at

some point (backwards in time) the switching function g∗(t) becomes zero. At this time instant
ts the switching law (4.14) tells us we need to switch our input function from u∗(t) ≡ 0 to
u∗(t) ≡M . It turns out that a switch in input function will indeed occur when the end time T
is sufficiently large, as will be shown later in this section (see (4.19)).

Before we look at this switching instant ts, we first remark that from (4.15) we can see that
p∗(t) < 0 on [0, T ], which follows from the fact that ṗ∗(t) > 0 whenever p∗(t) = 0. As we need to
switch from the input function at t = ts, we will have a look at the derivatives ẋ∗(ts

−), ṗ∗(ts
−)

59



and ġ∗(ts
−):

ẋ∗(ts
−) = cx∗(ts

−) > 0,

ṗ∗(ts
−) = dx∗(ts

−)− cp∗(ts−) > 0,

ġ∗(ts
−) = ṗ∗(ts

−) + qẋ∗(ts
−)

= dx∗(ts
−)− cp∗(ts−) + qcx∗(ts

−)

= −c
[
p∗(ts

−) + qx∗(ts
−)
]

+ (d+ 2qc)x∗(ts
−)

= (d+ 2qc)x∗(ts
−) > 0.

Since we see that ġ∗(ts
−) > 0, it follows that the function g∗(t) crosses the time axis at

t = ts, i.e. it does not remain constant or ’bounce back’ at t = ts. Because of this we have that
the switch u∗(t) ≡ 0 to u∗(t) ≡M will be well defined by the switching function.

For now we have only discussed a single switch of the input function. One may wonder
whether more of these switches will occur in the time window [0, ts). This will not be the case,
as our previous argument ġ∗(ts

−) > 0 in any possible switching instant ts. Specifically, if at any
time t we have that g∗(t) = 0, the above calculation shows that this would imply that ġ∗(t) > 0.
Because of this it is not possible to reach the condition g∗(t) > 0 in the time window [0, ts),
which shows that on [0, T ] only a single switch of input will occur.

Combining the results obtained so far, a conceptual plot illustrating the optimal control
solution of (4.12) is given in Figure 4.1.

An interesting observation is that if the final time T is very small, no switch in input
function will occur. The optimal control would then simply be to ’de-charge’ the system by
letting all the charges escape through a resistor with zero resistance. Although this may seem
somewhat counter intuitive, this result can be explained from the output power equation (3.79).
As assumed, at t = 0 we start with some (random) initial charge x0. At t = 0 the electrical
output power thereby equals:

Pelectrical(0) =

{
1
RL
x0

2 if u(0) ≡ 0
1

RL+M
x0

2 if u(0) ≡M.
(4.16)

We can see from (4.16) that initially the output power is higher for the zero input case.
Therefore, if T is small we have that∫ T

0
Pelectrical(t;u(t) ≡ 0) dt >

∫ T

0
Pelectrical(t;u(t) ≡M) dt.

In fact, choosing u(t) ≡ 0 will produce a momentarily higher output power at any initial
condition xt. Specifically, this will be the case at the switching time ts with initial condition
xts , as is also illustrated in Figure 4.1.
Although we have now explained how momentarily de-charging can be optimal, it may be evi-
dent that this will not be an effective long run strategy. When T is sufficiently large, the positive
exponential obtained with u(t) ≡ M will serve as a good investment. In this case it turns out
to be optimal to first maximally charge the system, whereas close to the end it is optimal to
quickly ’harvest’ a maximal amount of the accumulated charges. From this point of view it may
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Figure 4.1: Conceptual plots of the optimal state x∗(t), costate p∗(t), input function u∗(t),
switching function g∗(t) and output power Pelectrical(t) corresponding to (4.12)

be expected that the switch time ts will occur very near the end time T . This is indeed the
case, as will be shown next.

Explicit solution to (4.15)

To calculate the switching time ts, we solve (4.15) backwards in time using end conditions
x∗(T ) = xT and p∗(T ) = 0. Knowing that u(t) ≡ 0 on [ts, T ], initially the system will be
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represented by the first system matrix of (4.15):[
x∗(T − t)
p∗(T − t)

]
= e(−A1)t

[
x∗(T )
p∗(T )

]
=

[
eat 0

b
2a

(
e−at − eat

)
e−at

] [
xT
0

]
= xT

[
eat

b
2a

(
e−at − eat

) ] . (4.17)

for a more elaborate calculation of e(−A1)t one may refer to Appendix A.4.2.

Combining the above equation (4.17) with the switching function g∗(t), we can now calculate
when the input needs to be changed to u(t) ≡M . Thereby we find:

g∗(T − t) = 0 ⇐⇒
p∗(T − t) + qx∗(T − t) = 0 ⇐⇒

xT

(
b

2a

(
e−at − eat

)
+ qeat

)
= 0, (4.18)

which upon solving for t reduces to:

t =
ln
(

b
b−2aq

)
2a

⇐⇒

=
CLRL

2
ln

(
1 +

1

nCindRL

)
. (4.19)

From which we find that the switching time is equal to:

ts = T − CLRL
2

ln

(
1 +

1

nCindRL

)
. (4.20)

Assuming the values CL = 12 · 10−12, RL = 1012 and nCind = 0.05 · 10−9, as used in [18],
equation (4.19) tells us that switch in input function is approximately 0.12 seconds before the
final time T .

Although to this point we considered the value of RL to be fixed, equation (4.20) provides
a relation between the switching time ts and (fixed) RL. In particular we may consider what
happens if we connect a very small load resistor or a very large resistor, i.e. we may take the
limit RL ↓ 0 or RL ↑ ∞. From (4.20) we can see that this boils down to:

lim
x
ts = lim

x

[
T − αx ln

(
1 +

β

x

)]

= T − α lim
x

ln
(

1 + β
x

)
1
x

where α and β are constants. Furthermore, it has deliberately not been specified yet which
of the two limits we consider. This is because on inspection we can see that either limit will
present a ’L’Hôpital case’; x ↓ 0 results in ∞∞ and x ↑ ∞ results in 0

0 . In either case the limit
can therefore be continued to

lim
x

ln
(

1 + β
x

)
1
x

= lim
− β
x2
· 1

1+β
x

− 1
x2

= lim
β

1 + β
x

,
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so that

lim
RL↓0

ts = T

lim
RL→∞

ts = T − αβ. (4.21)

Returning to our example where we used CL = 12 · 10−12 and nCind = 0.05 · 10−9, we can
see that the switching obtained with RL = 1012 was already close to limit case limRL→∞ ts, as
we see that in this case

αβ =
CL
2
· 1

nCind
= 12 · 10−2.

As a last comment we intuitively expect that a low value for RL is optimal, since this will
both increase the initial output power (see (4.16)), as well as increase the speed at which the
system can be charged (see (4.8)). However, in a later stadium we will also aim to proof this
by considering both RL(t) and Rg(t) as an input.

Knowing the moment that we need to switch the input function, we can see that upon
solving [

x∗(ts)
p∗(ts)

]
= eA2ts

[
x∗(0)
p∗(0)

]
(4.22)

= e(−A1)·(T−ts)
[
x∗(T )
p∗(T )

]
(4.23)

for unknowns p∗(0) and x∗(T ), we have completed the solution to the optimization problem
(4.15).

The latter equation in (4.23) is already worked out in (4.17), so that we only need to turn
our attention to the first equation. Thereby we will refer the reader to Appendix A.4.3 for the
calculation of eA2t. Thereby we find[

x∗(ts)
p∗(ts)

]
= eA2ts

[
x∗(0)
p∗(0)

]
=

[
ects 0

d
2c

(
ects − e−cts

)
e−cts

] [
x0
p0

]
=

[
x0e

cts

x0
d
2c

(
ects − e−cts

)
+ p0e

−cts

]
. (4.24)

Combining equations (4.17) with (4.24), we may rewrite (4.23) to[
x0e

cts

x0
d
2c

(
ects − e−cts

)
+ p0e

−cts

]
= xT

[
ea(T−ts)

b
2a

(
e−a(T−ts) − ea(T−ts)

) ] ,
which gives us two equations for the two unknowns p0 and xT . From these two equations it
follows that:

xT = x0 e
cts · e−a(T−ts)

p0 = x0

(
b

2a
e−2aT+2(a+c)ts −

(
b

2a
+

d

2c

)
e2cts +

d

2c

)
. (4.25)
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4.1.2 Both resistors as an input

In the previous section we have solved the optimization problem (4.1). There we considered a
fixed load resistor RL and a variable resistor Rg(t) as an input u(t). In this subsection we will
investigate what our optimal control will be when both these resistors are free to choose, i.e.
we consider

u(t) =

[
u1(t)
u2(t)

]
=

[
RL(t)
Rg(t)

]
.

The optimal control problem of (4.1) will then turn into:

min

∫ T

0
− 1

u1(t) + u2(t)
x2(t) dt

subject to: u1(t) ∈ [0,M1]

u2(t) ∈ [0,M2]

dx

dt
=

nCind u2(t)− 1

CL(u1(t) + u2(t))
x(t)

x(0) = x0 > 0, (4.26)

where the Hamiltonian is given by

H(x(t), p(t), u(t)) = p(t)
nCind u2(t)− 1

CL(u1(t) + u2(t))
x(t)− 1

u1(t) + u2(t)
x2(t).

Again we will use Pontryagin’s theorem (4.1.1), as it is also valid for the multi-input case.
Thereby we will first investigate for which input the Hamiltonian is minimized. Also now we
will investigate whether the minimum takes place in the interior of U, so that 0 = ∂H

∂u . Simple
calculations yield: [

∂H(x∗(t),p∗(t),u)
∂u1

∂H(x∗(t),p∗(t),u)
∂u2

]
=

 CLx∗
2(t)−(nCind u2−1)p∗(t)x∗(t)

CL(u1+u2)
2

CLx∗
2(t)+(nCind u1+1)p∗(t)x∗(t)

CL(u1+u2)
2

 (4.27)

For the moment we assume that u1 + u2 6= 0, which can only happen if u(t) = 0. From
(4.27) we can then see that ∂H

∂u1
= 0 if:

nCind u2p∗(t)x∗(t) = CLx∗
2(t) + p∗(t)x∗(t) ⇐⇒

u2 =
CLx∗(t)

nCind p∗(t)
+

1

nCind
, (4.28)

and that ∂H
∂u2

= 0 if

nCind u1p∗(t)x∗(t) = −
(
CLx∗

2(t) + p∗(t)x∗(t)
)

u1 = −
(

CLx∗(t)

nCind p∗(t)
+

1

nCind

)
. (4.29)

From (4.28) and (4.29) we can see that an extremum would take place in the interior of U
when u1(t) = −u2(t). Apart from u(t) = 0 this can not happen, since both resistors need to
have a positive value. Also in this dual input case we thus see that the minimum occurs on the
boundary.
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Where however previously the boundary of U was equal to {0,M}, for the dual input case
the boundary is a bit more elaborate. We now have that the boundary consists of 4 edges, i.e.
when either input is chosen fixed to its minimum or maximum while the other input is free,
as well as 4 vertices, i.e. when both the inputs are chosen equal to its minimum or maximum
value. To investigate a minimum on the edges of the boundary, we examine the following partial
derivatives:

∂H

(
x∗(t), p∗(t),

[
0
u2

])
∂u2

=
CLx∗

2(t) + p∗(t)x∗(t)

CLu22

∂H

(
x∗(t), p∗(t),

[
M1

u2

])
∂u2

=
CLx∗

2(t) + (nCind M1 + 1) p∗(t)x∗(t)

CL (M1 + u2)
2

∂H

(
x∗(t), p∗(t),

[
u1
0

])
∂u1

=
CLx∗

2(t) + p∗(t)x∗(t)

CLu12

∂H

(
x∗(t), p∗(t),

[
u1
M2

])
∂u1

=
CLx∗

2(t)− (nCind M2 − 1) p∗(t)x∗(t)

CL (u1 +M2)
2 . (4.30)

For each of the partial derivatives in (4.30) we see that the derivative is never zero as a
function of u1 or u2. Therefore the minimum will always occur on one of the four vertices,
where both the inputs are chosen equal to the minimum or maximum value.
The value of the Hamiltonian in the vertices is given by:

H

(
x∗(t), p∗(t),

[
M1

0

])
=
−p∗(t)x∗(t)− CLx∗2(t)

CLM1

H

(
x∗(t), p∗(t),

[
M1

M2

])
=
p∗(t)x∗(t) (nCindM2 − 1)− CLx∗2(t)

CL(M1 +M2)

H

(
x∗(t), p∗(t),

[
0
M2

])
=
p∗(t)x∗(t) (nCindM2 − 1)− CLx∗2(t)

CLM2
(4.31)

whereas H

(
x∗(t), p∗(t),

[
0
0

])
is undefined due to the division by zero. It may however be

justified to look at the limit:

lim
(u1,u2)↓(0,0)

H

(
x∗(t), p∗(t),

[
u1
u2

])
= lim

(u1,u2)↓(0,0)

(
p∗(t)x∗(t) (nCind u2 − 1)− CLx∗2(t)

CL(u1 + u2)

)
.

(4.32)

Also now we aim to find a solution backwards in time, starting from the condition that
p∗(T ) = 0. Similar to the single input case this can be pursued step by step, by choosing the
input u(t) such that at each moment in time the Hamiltonian is minimized.
Plugging in p∗(T ) = 0 in (4.31) and (4.32) it is easy to see that at t = T the Hamiltonian is
minimized when (u1, u2) ↓ (0, 0), since we then get that:

lim
(u1,u2)↓(0,0)

H

(
x∗(T ), 0,

[
u1
u2

])
=

(
−x∗2(T )

0+

)
= −∞.

65



Hereby remember that x∗(t) > 0 ∀t as previously concluded by (4.9). Since we find that the
is minimized when (u1, u2) ↓ (0, 0), it seems that again our optimal input at t = T is given by
u(t) = 0. However, as mentioned we find that for this choice we have that the Hamiltonian is
undefined due to a division by zero.
To avoid this problem, in the succeeding calculations we consider the solution for very small,
non-zero values of (u1, u2). Later on, we shall use the values (0, ε) or (ε, ε) to describe the
solutions.

Completely analogous to (4.8) and (4.11), the Pontryagin equations (4.2) and (4.3) now give
us that

ẋ∗(t) =
nCind u2 − 1

CL(u1 + u2)
x∗(t)

ṗ∗(t) =
2

u1 + u2
x∗(t)−

nCind u2 − 1

CL(u1 + u2)
p∗(t),

where the input (u1, u2) will be taken to approach zero. Similar to the notation of (4.15), for
convenience we will write:

ã =
1− nCind u2
CL(u1 + u2)

b̃ =
2

u1 + u2
.

Note that for small u1 and u2 these are large positive constants. Furthermore note that
at t = T this gives us the same system dynamics as in the first case of (4.15), with the only
exception being the tilde. Because of this the solution backwards in time is also similar to
(4.17), so that we have [

x∗(T − t)
p∗(T − t)

]
= e(−Ã1)t

[
x∗(T )
p∗(T )

]
= xT

[
eãt

b̃
2ã

(
e−ãt − eãt

) ] . (4.33)

In particular we may conclude from (4.33) that in the neighborhood of t = T we have that
x∗(T−t) is increasing exponentially whereas p∗(T−t) is decreasing exponentially. From here on
we need to investigate how long the vertex (u1, u2) ↓ (0, 0) remains the input that minimalizes
the Hamiltonian, and especially which vertex will be the new minimalizer of the Hamiltonian
when (u1, u2) ↓ (0, 0) stops being the minimalizer. Looking back at (4.31) and (4.32), this boils
down to determining the minimum from the following four terms

−p∗ − CLx∗
M1

(4.34)

(nCindM2 − 1)p∗ − CLx∗
M1 +M2

(4.35)

(nCindM2 − 1)p∗ − CLx∗
M2

(4.36)

lim
(u1,u2)↓(0,0)

(
(nCind u2 − 1) p∗ − CLx∗

u1 + u2

)
, (4.37)

where for simplicity the common term x∗
CL

has been divided out.
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Upon closer inspection of the four cases above, we can draw some preliminary conclusions.
At first we see that the numerators from (4.35) and (4.36) are equal. Due to the difference
in the denominators we can thereby observe that for negative p∗ and positive x∗ the mutual
minimum between (4.35) and (4.36) is given by (4.36).
Furthermore, depending on how we approach the limit (u1, u2) ↓ (0, 0), we can see that the
numerators between (4.34) and (4.37) are identical or very close to being identical. Assuming
that both these numerators are negative we can then see that the difference in denominators will
cause the mutual minimum between (4.34) and (4.37) to be given by (4.37). Due to the term
nCind u2 in the numerator of (4.37) we furthermore see that initially, when x∗ and p∗ are de-
scribed backwards in time by (4.33), the numerator of (4.37) will stay negative for a longer time.

Thereby we can conclude that, in case we need to switch the input function backward in
time (which will approximately be the case when p∗ +CLx∗ = 0), the first switch will be given
by (u1, u2) = (0,M2). If, and if so when, we need to switch to (0,M2) may be determined by
equating (4.36) and (4.37), plugging in the backwards solutions for x∗(t) and p∗(t) from (4.33)
and solving for t. For instance, in the single input case we solved this in (4.18) and (4.19).
However, for the dual input case here it will be convenient to first specify how we approach
the limit (u1, u2) ↓ (0, 0). Thereby note that if we consider ’the direction of approach’ u1 = 0,
u2 ↓ 0, then by (4.21) we can already conclude that in the limit, backwards in time the switch
will be immediate, i.e. tswitch = T .

For completeness we will investigate whether this is also the case for another approach of
the limit (u1, u2) ↓ (0, 0), let us thereby consider u1 = u2 = ε, where ε ↓ 0. We then see that

lim
ε↓0

H

(
x∗(t), p∗(t),

[
ε
ε

])
< H

(
x∗(t), p∗(t),

[
0
M2

])
(nCindε− 1) p∗(t)− CLx∗(t)

2ε
<

(nCindM2 − 1)p∗(t)− CLx∗(t)
M2(

CL
M2
− CL

2ε

)
x∗(t) <

(
nCindM2 − 1

M2
− nCindε− 1

2ε

)
p∗(t)

p∗(t) +
CL(M2 − 2ε)

M2 + ε(nCindM2 − 2)
x∗(t) > 0. (4.38)

From equation (4.38) we again recognize a similar switching function before (see (4.13)).

Thereby we will now write q̃ = CL(M2−2ε)
M2+ε(nCindM2−2) , so that our new switching function is given by:

g̃∗(t) = p∗(t) + q̃x∗(t). (4.39)

With the new ’tilde notation’ we see that the rest of the calculations are analogous to (4.18)
and the first of (4.19), the only difference being the tilde above the constants. Thereby we find
that the switching time is given by:

ts = T −
ln
(

b̃

b̃−2ãq̃

)
2ã

⇐⇒

= T − εCL
1− εnCind

ln

(
M2 + ε(nCindM2 − 2)

2εnCind(M2 − ε)

)
Inspection of the above limit shows that in the sub-limit we get a ’0+ · ∞ case’. In this

sub-limit we have a more or less linear term in ε and a more or less logarithmic term in 1
ε . From
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this observation one may argue that the logarithmic term will ’lose’ from the linear term, so
that the sub-limit is equal to zero. From there we then also see that for the switch time we
get ts = T . That this intuitive limit is indeed correct can be shown from tedious calculations
relying on L’Hôpital rule, as one can find in Appendix section A.5.

Thereby we have thus shown that in either case of approaching the limit (u1, u2) ↓ (0, 0);
u1 ↓ 0, u2 = 0 or u1 = u2 = ε where ε ↓ 0, we see that the moment we need to switch the input
u∗(t) will approach the end time T .

At last we will show that also after the switch the Pontryagin solution for the dual input
case is analogous to the single input case. Instead of constants c and d that were previously
introduced when (u1, u2) = (RL,M), when switching to (u1, u2) = (0,M2) we will now write:

c̃ =
nCindM2 − 1

CLM2

d̃ =
2

M2
.

In this way we see that indeed the Pontryagin problem for the dual input case is completely
analogous to (4.15), as we now obtain the problem:

[
ẋ∗
ṗ∗

]
=



[
−ã 0

b̃ ã

][
x∗

p∗

]
if g̃∗(t) > 0[

c̃ 0

d̃ −c̃

][
x∗

p∗

]
if g̃∗(t) < 0,

(4.40)

where g̃∗(t) is the new switching function as defined by (4.39). One may verify that also here
this function is monotonically increasing for t ∈ [0, T ]. Because of this all arguments of the
previous section still hold for the dual input case.

In particular, as we showed that in the limit u(t) ↓ 0 the switching time equals the end
time (i.e. ts = T ), maximally charging the system at (almost) all time (i.e. choosing u ∗ (t) =
[0,M ]T, t ∈ [0, T )) turns out to be optimal. This is because accumulated charges can instantly
be harvested in the ideal case that u(t) = 0. From equation (4.24) we then have that[

x∗(t)
p∗(t)

]
= eÃ2t

[
x∗(0)
p∗(0)

]
=

[
x0e

c̃ts

x0
d̃
2c̃

(
ec̃t − e−c̃t

)
+ p0e

−c̃t

]
,

Furthermore, we can use (4.25) to show that p0 = x0
d̃
2c̃

(
1− e2c̃T

)
when ts = T .
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4.2 Optimal control dealing with State Variable Inequality Con-
straints (SVICs)

In this section we will investigate whether a solution can be found to the full optimization
problem from which we originally started, i.e. problem (3.80). The main challenge in this
optimization problem lies in the fact that we now also need to deal with state variable inequal-
ity constraints (SVICs), which are not captured in Pontryagin’s Minimum principle (Theorem
4.1.1). Over the years various studies have been performed in search of an extension to Pontrya-
gin’s principle including SVICs. Recently much of this work was bundled in [7], which contains
a survey on the maximal (/minimal) principles for optimal control problems with SVICs. Before
we delve deeper into this somewhat ’newly established’ theory, we would like to start with a
figurative warning sign, which may be given from the following quote from [7]:

“These problems are not easy to solve, and even the theory is not unambiguous,
since there exist various forms of the necessary and sufficient optimality conditions.
Because the literature on this subject is not comprehensive and is, at times, incorrect
or incomplete, it has been hard to understand, especially for people working in
applied areas.”

In particular we note that it seems like the theory of optimal control dealing with SVICs
has not yet fully crystallized. Two main (not always solid! ) approaches that are used are those
of direct and indirect adjoining ([7]).
In the direct approach the SVICs are directly adjoined to the Lagrangian (i.e. the Hamiltonian)
using extra infinite dimensional/time dependent Lagrange multipliers. On the other hand, in
the indirect approach a distinction is made between mixed SVICs (SVICs that are also explicitly
dependent on the control variables) and pure SVICs (SVICs that only dependent on the state
variables and possibly time). In the indirect approach mixed SVICs are still directly adjoined
to the Lagrangian, whereas the pure SVICs are adjoined to the Lagrangian by a certain (higher
order) time derivative of these pure SVICs.

In either way, the extended Lagrangian may serve as a basis for new necessary conditions
that can handle SVICs. In [7] several theorems are proposed for this job. Interestingly these
theorems share quite some similarities with Pontryagin’s theorem; generally the ’old’ Hamil-
tonian needs to be maximized (/minimized) over all admissible input functions. Furthermore
also the state and costate differential equations are similar, even in the way that initial state
constraints and final costate constraints arise in the theorems (As may be compared to Theorem
3.3.12 from [12]). The only difference in these latter differential equations is that the partial
derivatives need to be performed on the new extended Lagrangian instead of the original Hamil-
tonian.
Where at the same time the above discussed similar conditions also fully cover Pontryagin’s min-
imum principle, the proposed (mainly ’informal’) theorems in [7] are more elaborate/restrictive.
The extra conditions hereby mainly being given in terms of the additional multipliers, but also
the derivative of the new Lagrangian with respect to the control u now needs to be zero.

However, we would like to stress again that the ’informal’ theorems in [7] are only necessary
conditions, and at the same time they are not yet rigorously established in their entirety. Fur-
thermore, the only necessary condition that has been proven (at least since the publication of
[7]) also requires a fair amount of assumptions. Due to a ’strong constraint qualification’ we for
instance already have that the theorem is restricted to first order pure state constraints, where
the order of the pure state constraints is given by the minimum number of time differentiations
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needed to have u appear explicitly in the expression.
As we conclude that the research on optimal control including SVICs is still rather incomplete,
we are not surprised that we could not find many references of this particular theory in many
lecture notes or books. However, we did stumble upon [2], which presents a rather complete
discussion on necessary optimal control theorems, including those with SVICs.

One may also note that in [2] the optimal control theory is gradually extended. This as
opposed to [7], where from the start on a very broad class of optimal control problems is
allowed. Particularly, in [2] mixed SVICs and pure SVICs are treated separately, from which we
see that in general pure SVICs are more difficult to handle, although mixed SVICs are already
mentioned to be “notoriously hard to solve.”
This is caused by the fact that mixed SVICs depend explicitly on the control u, where pure
SVICs only depend implicitly on the control u. When dealing with pure SVICs the state x can
thereby only be controlled through the systems differential equation

ẋ(t) = f(t, x(t), u(t)), x(0) = x0.

Since the problems with just mixed SVICs are already judged to be notoriously hard, we
will not consider pure state constraints in this thesis. Therefore we drop the restriction

U1(t) ≤ Umaxtarget

from our originally aimed optimal control problem 3.80. However, since the mixed SVIC

Rg(t)

RL(t) +Rg(t)
U1(t) ≤ Umaxring

seems to be the most significant factor in keeping the current losses at bay, this may partly be
justified. For simplicity we will initially again consider RL(t) to be fixed. The optimal control
problem that we will consider in this subsection is as follows:

minimize : S(tf , x(tf )) +

∫ tf

t0

L(t, x(t), u(t)) dt

subject to : ẋ(t) = f(t, x(t), u(t)); x(0) = x0,

gk(t, x(t), u(t)) ≤ 0, k = 1 . . . ng. (4.41)

This leads to a very similar optimal control problem as in (4.1), where we again have that:

S(tf , x(tf )) = 0

L(t, x(t), u(t)) = − 1

RL + u(t)
x2(t)

f(t, x(t), u(t)) =
nCind u(t)− 1

CL(RL + u(t))
x(t), (4.42)

now only accompanied with the mixed SVICs:

g1(t, x(t), u(t)) = −u(t)

g2(t, x(t), u(t)) = u(t)−MR

g3(t, x(t), u(t)) =
u(t)

RL + u(t)
x(t)−MU . (4.43)
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Note that whereas the input restriction u(t) ∈ [0,MR] first only surfaced in the minimization
of the Hamiltonian, it is now captured in the state constraints g1(·) and g2(·).
Given the above optimization problem we can use Theorem 3.33, accompanied with Remark
3.34 from [2], to provide an extended version of Pontryagin’s Minimum Principle (see Theorem
4.1.1).

Theorem 4.2.1 (Minimum Principle with Mixed Inequality Constraints ([2])). Consider the
optimal control problem (4.41), with fixed initial time t0 = 0 and fixed final time tf = T ,
and where L(·), f(·), and g(·) are continuous and have continuous first partial derivatives with
respect to (t, x, u) on [0, T ] × Rnx × Rnu . Suppose that u∗ ∈ Ĉ[0, T ]nu is a minimizer for the
problem, and let x∗ ∈ Ĉ1[0, T ]nx , continuous at each instant t of continuity of u∗, be the optimal
response. Furthermore suppose that the constraint qualification

rank
[

∂g(·)
∂u diag(g(·))

]
= ng

holds along (t, x∗, u∗) ∀t ∈ [0, T ], i.e. the gradients with respect to u of all the active constraints
g(·) ≤ 0 must be linearly independent.

Define the Hamiltonian and Lagrangian function by

H(t, x, u, λ0, λ) = λ0 L(t, x, u) + λTf(t, x, u) (4.44)

L(t, x, u, λ0, λ, µ) = H(t, x, u, λ) + µTg(t, x, u). (4.45)

We then have that:

There exist (λ0, λ∗) ∈ Ĉ1[0, T ]nx+1 and µ∗ ∈ Ĉ[0, T ]ng , each continuous at each instant t of
continuity of u∗, such that:

1. (λ0, λ∗(t), µ∗(t)) 6= 0, λ0 = constant ≥ 0

2. u∗(t) ∈ argminv∈Rnu{H(t, x∗(t), v, λ0, λ∗(t)) : g(t, x∗(t), v) ≤ 0}

3. 
ẋ∗(t) = ∂L(t,x∗(t),u∗(t),λ0,λ∗(t),µ∗(t))

∂λ , x∗(0) = x0

λ̇∗(t) = −∂L(t,x∗(t),u∗(t),λ0,λ∗(t),µ∗(t))
∂x , λ∗(T ) = ∂S(T,x∗(T ))

∂x

0 = ∂L(t,x∗(t),u∗(t),λ0,λ∗(t),µ∗(t))
∂u .

4. µ∗(t)
Tg(t, x∗(t), u∗(t)) = 0, µ∗(t) ≥ 0

Furthermore, if tf is free we have that

H(t, x∗(t), v, λ0, λ∗(t)) = −
∫ tf∗

t

∂L(τ, x∗(τ), u∗(τ), λ∗(τ), µ∗(τ))

∂t
dτ ,

so that for this case in particular

H(tf∗ , x∗(tf∗), u∗(tf∗), λ0, λ∗(tf∗)) = 0.

�
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In the above theorem we have used Ĉ to denote piecewise continuous functions, and likewise
we used Ĉ1 to denote piecewise continuously differentiable functions. Note that the intervals of
continuity for all these functions are described by the intervals of continuity of u∗(t).
Furthermore, in autonomous systems the Hamiltonian function H(·) will be constant over time.
For these systems, if λ0 > 0, the functions λi∗(t), i = 1 . . . nx are defined up to a common mul-
tiple. This is known as the ’normal case’. In this case it is common practice to normalize the
adjoint variables by taking λ0 ≡ 1. On the other hand, the ’abnormal case’ is given by λ0 ≡ 0,
which is abnormal in the sense that the necessary conditions of optimality become independent
of the cost functional ([2]). We will assume throughout this section that we are dealing with
the normal case, and set λ0 ≡ 1.

Plugging in the given functions S(·), L(·), f(·) and g(·) into (4.44) and (4.45), we find that
the Hamiltonian and Lagrangian are given by

H(x(t), u(t), λ(t)) =− 1

RL + u(t)
x2(t) + λ(t)

nCind u(t)− 1

CL(RL + u(t))
x(t)

L(x(t), u(t), λ(t), µ(t)) =− 1

RL + u(t)
x2(t) + λ(t)

nCind u(t)− 1

CL(RL + u(t))
x(t)

− µ1(t)u(t) + µ2(t) (u(t)−MR) + µ3(t)

(
u(t)

RL + u(t)
x(t)−MU

)
,

which lead to the following necessary conditions for optimality

u∗(t) ∈argminv∈[0,MR]

{
− 1

RL + v
x2(t) + λ(t)

nCind v − 1

CL(RL + v)
x(t) :

v

RL + v
x(t) ≤MU

}
,

∀t ∈ [0, T ] (4.46)

ẋ∗(t) =
nCind u∗(t)− 1

CL(RL + u∗(t))
x∗(t), x∗(0) = x0 (4.47)

λ̇∗(t) =
2

RL + u∗(t)
x∗(t)− λ∗(t)

nCind u∗(t)− 1

CL(RL + u∗(t))
− µ3∗(t)

u∗(t)

RL + u∗(t)
, λ∗(T ) = 0 (4.48)

0 =
1

(RL + u∗(t))
2x∗

2(t) + λ∗(t)
nCindRL + 1

CL (RL + u∗(t))
2x∗(t)

− µ1∗(t) + µ2∗(t) + µ3∗(t)
RL

(RL + u∗(t))
2 (4.49)

0 =− µ1∗(t)u∗(t) + µ2∗(t) (u∗(t)−MR) + µ3∗(t)

(
u∗(t)

RL + u∗(t)
x(t)−MU

)
,

µ1∗(t) ≥ 0, µ2∗(t) ≥ 0, µ3∗(t) ≥ 0. (4.50)

We can see that the necessary optimality conditions (4.46)–(4.50) become rather lengthy,
which is also in agreement with [2] that these problems are notoriously hard to solve. This
also motivates the fact that in practise some priory assumptions can be made in order to apply
Theorem 4.2.1, as described in [2]:

“In practice, applying Theorem 3.33 (and Remark 3.34) requires that an assump-
tion be made a priori on the sequence of (unconstrained and constrained) arcs in the
optimal solution, as well as on the set of active (inequality) terminal constraints.
Then, based on the postulated structure of the optimal solution, one shall check
whether a pair (u(·), x(·)), along with vector functions λ̃(·), µ(·), and Lagrange
multiplier vectors ν∗, ζ∗ , can be found such that all of the necessary conditions of
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optimality are satisfied. If this is the case, then the corresponding control is a candi-
date optimal control for the problem; otherwise, one needs to investigate alternative
solution structures, i.e., postulate different sequences of arcs and/or sets of active
terminal constraints.”

we remark that the Lagrange multiplier vectors ν∗, ζ∗ in the above quote are part of an ex-
tension to general state terminal constraints. In the optimization problem under study in this
section these do not play a role.

At first we will also pursue the approach from the above quote. In particular, we will
investigate whether the intuitive optimal controller from section 3.3.2 (see also Figure 3.8)
holds. Based on this intuitive optimal controller and the results from Pontryagin’s classical
minimum principle (see subsection 4.1.1), we introduce the candidate optimal controller:

u∗(t) =


MR if t ∈ [0, t1]
RLMU

x∗(t)−MU
if t ∈ (t1, t2]

0 if t ∈ (t2, T ].

(4.51)

Clearly this candidate optimal solution consists of three stages. The underlying idea here is
that initially we expect that maximally charging (by choosing u∗(t) = MR) is our best choice.
Note that this idea is also supported in the previous subsection by the results of Pontryagin’s
Minimal Principle without SVICs. If we would continue with this approach however, after some
time the induction voltage constraint will be violated. From the moment this tends to happen
we therefore shift to our seemingly second best option; maximally charging with respect to the
induction voltage constraint, so that u∗(t) moves along g3(·) = 0, which results in the second
input case in (4.51). At last, when the end time is approaching, one can make the best of the
remaining time by quickly harvesting as much charges/current as possible, i.e. by choosing
u∗(t) = 0. The latter is also motivated from our previous results, using Pontryagin’s Minimal
Principle without SVICs.
Upon close inspection of equations (4.46)–(4.50) we find that a solution can be found using this
candidate optimal solution, but even more interesting, we can show that the candidate optimal
solution is also unique for almost all t.

4.2.1 Solving (4.46)–(4.50)

At first, from the fact that the Hamiltonian is unchanged, we can use our previous argument
(i.e. ∂H

∂u 6= 0 for feasible u, see also (4.6)) to show that the input minimizing the Hamiltonian

is always a boundary case; i.e. u∗(t) ∈
{

0, RLMU
x∗(t)−MU

,MR

}
.

If we then start backwards in time with the condition λ∗(T ) = 0, it follows from the minimization
condition (4.46) that we need to start with u∗(t) = 0 at the end time t = T . Note that this is
not in violation with the additional mixed SVIC of g3(·). For this input the condition (4.50)
then gives us

0 = −MRµ2∗(t)−MUµ3∗(t).

Since we need that µi∗ ≥ 0 where i ∈ {1, 2, 3}, the input u∗(t) = 0 implies that µ2∗(t) = µ3∗(t) =
0. In turn, for this input we then obtain from (4.49):

µ1∗(t) =
1

RL
2x∗

2(T−) + λ∗(t)
nCindRL + 1

CLRL
2 x∗(t). (4.52)
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Since we have that λ∗(T ) = 0 and that the state variable x∗(t) is always positive (as shown
by (4.9)), we can already see that µ1∗(T ) > 0. That we also have that µ1∗(t) ≥ 0 when going
further back in time can also be shown to follow from (4.52). Due to positive constants and a
positive x∗, the condition µ1∗(t) ≥ 0 boils down to whether

x∗(t) + λ∗(t)
nCindRL + 1

CL
≥ 0. (4.53)

Interestingly this is similar to the ’switching law’ from (4.10), and from this observation we shall
soon show that µ1∗(t) in (4.52) is indeed positive. At last note that the condition µ3∗(t) = 0
result in the fact that equations (4.47) and (4.48) are equivalent to the regular Pontryagin
problem.

Switching from u∗(t) = 0

For now we thus see that backwards in time the optimal control problem initially behaves
equivalent to the regular Pontryagin problem without mixed SVICs. As a next step we need to
check whether, and if so when, the minimization of the Hamiltonian is taken over by another
control when going further back in time. In (4.10) we already deduced a switching condition
corresponding to

H(x∗(t), 0, λ∗(t)) < H(x∗(t),MR, λ∗(t)), (4.54)

however when x∗(t) is sufficiently large the control u∗(t) = MR may violate the mixed SVIC
g3(·). Since this condition now also gives us a boundary control we will also check when

H(x∗(t), 0, λ∗(t)) < H
(
x∗(t),

RLMU

x∗(t)−MU
, λ∗(t)

)
. (4.55)

Let us assume that x∗(t) > MU whenever we consider the control u∗(t) = RLMU
x∗(t)−MU

. If we
then define

M̃(x∗(t)) :=
RLMU

x∗(t)−MU
,

we can see that M̃ as a function of x∗ is always positive. Since however in the deduction of
(4.10) one can find that the constant M can be divided out, under the made assumption we will
obtain the same switching law in (4.54) and (4.55). That is, we need to stick with u∗(t) = 0 as
long as

λ∗(t) +
CL

1 + nCindRL
x∗(t) > 0. (4.56)

Interestingly, in the time instant that equality is reached in the switching law, the Hamilto-
nian becomes independent of the control u∗(t), as one may verify that:

H
(
x∗(t), u∗(t),

[
− CL

1 + nCindRL
x∗(t)

])
= − nCind

1 + nCindRL
x∗

2(t).

Once the sign in (4.56) changes however, the Hamiltonian will again be dependent on the
control, since we find that

H
(
x∗(t), u∗(t),

[
− CL

1 + nCindRL
x∗(t)− ε

])
= − nCind

1 + nCindRL
x∗

2(t)− εnCind u∗(t)− 1

CL(RL + u∗(t))
x∗(t).

(4.57)
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From the above expression we can see that minimizing the Hamiltonian then boils down to
maximizing

nCind u∗(t)− 1

CL(RL + u∗(t))
x∗(t), (4.58)

which curiously enough is precisely the expression defining the differential equation of the state
x∗; equation (4.47). For bounded, positive u∗ this expression can be seen to be maximized for
the upper bound of u∗, maximally reaching nCind

CL
x∗(t) in the limit u∗ =∞. To formally prove

this claim one may check that when we take the partial derivative to u∗ we obtain:

nCindRL + 1

CL (RL + u∗(t))
2x∗(t),

which is never zero for positive, bounded u∗. Therefore the maximum will occur at the bound-
ary of u∗. As we furthermore see that the computed partial derivative is always positive, we
have that (4.58) as a function of u∗ is strictly monotonically increasing, causing the maximum
to occur for the upper bound of u∗.

We thus need to choose u∗ as large as possible in order to maximize (4.58), and consequently
minimize (4.57). This may also be compared to the somewhat previous result where we found
that maximal charging is achieved when the gate resistor Rg is as large as possible (e.g. see
(3.75)).
Due to the mixed SVIC g3(·) we can however not always choose u∗ = MR, as for large x∗ this
would violate the constraint. The maximum value of u∗ we can take while not violating g3(·) is
thereby on x∗ in the following way:

u∗(t) =

MR if x∗(t) ∈
(

0,MU
MR+RL
MR

]
RLMU

x∗(t)−MU
if x∗(t) ∈

(
MU

MR+RL
MR

,MU (nCindRL + 1)
)
.

(4.59)

Note that we did not set the latter upper bound for x∗(t) to ∞, since we have shown in (3.75)
that x∗ only increases when u∗(t) = Rg(t) >

1
nCind

. Upon solving

RLMU

x∗(t)−MU
=

1

nCind
,

for x∗(t) we therefore conclude that the maximum value the target voltage can obtain is
x∗(t) = MU (nCindRL + 1). Furthermore one may check that the condition MR > 1

nCind
guar-

antees that the latter interval in (4.59) is properly defined (in the sense that the lower bound
is smaller than the upper bound). Note that the assumption MR >

1
nCind

is also quite natural,
as otherwise we would not be able to charge the system.

Inspired on our initial guess for the optimal control (4.51) and assuming that the end time

T is sufficiently large, we first consider the case that x∗(t) ∈
(
MU

MR+RL
MR

,MU (nCindRL + 1)
)

when the discussed switch of control occurs. The idea here being that in the time window [0, ts],
x∗(t) has increased to such an extend that the control u∗ = MR would violate the mixed SVIC
g3(·).
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Switching to u∗(t) = RLMU
x∗(t)−MU

Given the input u∗(t) = RLMU
x∗(t)−MU

, equation (4.50) results in

0 = −µ1∗(t)
RLMU

x∗(t)−MU
+ µ2∗(t)

(
RLMU

x∗(t)−MU
−MR

)
⇐⇒

µ1∗(t) = µ2∗(t)

(
1− MR

RLMU
(x∗(t)−MU )

)
,

whereas µ3∗(t) ≥ 0 remains free with respect to this condition. Due to the constraint µ1∗ , µ2∗ ≥ 0

it follows that µ1∗ = µ2∗ = 0 whenever
(

1− MR
RLMU

(x−MU )
)

is negative. That this is indeed

the case can be verified from the interval condition of x∗(t) in (4.59). Continuing with equation
(4.49), we then find that

µ3∗(t) = − 1

RL
x∗

2(t)− λ∗(t)
nCindRL + 1

CLRL
x∗(t). (4.60)

Analogous to the u∗(t) = 0 case where we checked whether µ1∗ ≥ 0 holds in (4.52), we now
need to check whether the condition µ3∗(t) ≥ 0 still holds in the above equation. Similar to
the derivation of (4.53) we thereby find that due to the positive constants and positive x∗, the
condition µ3∗(t) ≥ 0 now boils down to whether

x∗(t) + λ∗(t)
nCindRL + 1

CL
≤ 0. (4.61)

Again the switching law, i.e. (4.56), confirms that will be the case when u∗(t) = RLMU
x∗(t)−MU

6= 0.

Having established valid multipliers µi∗ , i = 1 . . . 3 in the u∗(t) = RLMU
x∗(t)−MU

case, we will now

turn our attention to the state and costate differential equations, as described by (4.47) and
(4.48). Substituting u∗(t) = RLMU

x∗(t)−MU
and µ3∗(t) according to (4.60) in these equations, and a

bit of reordering thereby results in:

ẋ∗(t) = − 1

CLRL
x∗(t) +

MU (nCindRL + 1)

CLRL
(4.62)

λ̇∗(t) =
MU + 2

RL
x∗(t) +

MU (nCindRL + 1) + 1

CLRL
λ∗(t)−

MU (nCindRL + 1)

CLRL

λ∗(t)

x∗(t)
− 2

MU

RL
.

(4.63)

Unfortunately, unlike the regular Pontryagin problem (see (4.15) and (4.40)), we now stum-
ble upon a set of non-linear differential equations. However, (4.62) on itself is just an ordinary
differential equation. Also, one may note that the state interval restriction from (4.59) in the
u∗(t) = RLMU

x∗(t)−MU
case, provides us with the fact that ẋ∗(t) is always positive for this optimal

control case.

It is not too hard (see Appendix section A.6) to show that the solution of (4.62) is given by

x∗(t) = ce
− 1
CLRL

t
+MU (nCindRL + 1),

where constant c needs to be determined from a given initial condition. While solving (4.46)-
(4.50) backwards in time, this can for instance be provided by the state value at the switching
instant of u∗(t) = 0 to u∗(t) = RLMU

x∗(t)−MU
or u∗(t) = MR. Let us call this instant t2, analogous

to the notation of our initial optimal control guess (4.51). We then find that

x∗(t) = (x∗(t2)−MU (nCindRL + 1)) e
1

CLRL
(t2−t) +MU (nCindRL + 1). (4.64)
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Even though we can find a solution for x∗(t) in this optimal control case, finding a solution
to λ∗(t) satisfying (4.63) is a more challenging task. For this we suggest the use of numeric
computational software like Matlab.
Like in the regular Pontryagin problem, we would like to know whether, after the switch from
u∗(t) = 0, we encounter the switching condition again. Again we will inspect the derivative of
the switching function for this purpose. Thereby we find that

ġ∗(t) = λ̇∗(t) +
CL

1 + nCindRL
ẋ∗(t)

which after plugging in (4.62) and (4.63) and some reordering results in:

ġ∗(t) =
1

RL

[(
2 +MU −

1

1 + nCindRL

)
x∗(t) +

1

CL

(
1 +MU (1 + nCindRL)

(
1− 1

x

))
λ∗(t)−MU

]
.

Furthermore, when we then plug in λ∗(t) = − CL
1+nCindRL

x∗(t), corresponding to the switching
moment, we get:

ġ∗(ts
−) =

2nCind
1 + nCindRL

x∗(ts
−) > 0.

This allows us to conclude that the initial switch in input from u∗(t) = 0 is properly defined.
What we thereby mean to say is that neither g(t) = 0 remains constant, nor that we ’bounce
back’ to g(t) > 0 when going further back in time. Furthermore, note that this result holds at
each moment we reach g(t) = 0, making it impossible to switch back to u∗(t) = 0, as for this
we would need that g(t) > 0.

Having switched to the input u∗(t) = RLMU
x∗(t)−MU

, we observed that ẋ∗(t) > 0 for those state

values that are possible with this input (see (4.59)). This implies that, when going further back
in time, x∗(t) will decrease to the point that x∗(t) = MU

MR+RL
MR

. As this happens we know
from (4.59) that we need to switch to u∗(t) = MR in order to minimize the Hamiltonian while
not violating the constrains gi(·).
Therefore, in what follows we will investigate the solution to (4.46)-(4.50) in the case that
u∗(t) = MR. Note that this optimal control case can also present itself directly after the switch
from u∗(t) = 0, thereby skipping the u∗(t) = RLMU

x∗(t)−MU
case. This would be the case when

x∗(t) ∈
(

0,MU
MR+RL
MR

]
at the moment of the initial switch from u∗(t) = 0.

Switching to u∗(t) = MR

It will turn out that solving the multipliers µi∗(t) for the input u∗(t) = MR will present very
similar results as when solving these multipliers for the input u∗(t) = RLMU

x∗(t)−MU
. Again we start

with the condition (4.50), which for the input u∗(t) = MR reads

0 = −µ1∗(t)MR + µ3∗(t)

(
MR

MR +RL
x∗(t)−MU

)
⇐⇒

µ1∗(t) = µ3∗(t)

(
1

MR +RL
x∗(t)−

MU

MR

)
,

whereas µ2∗(t) ≥ 0 remains free with respect to this condition. Due to the constraint µ1∗ , µ3∗ ≥ 0

it follows that µ1∗ = µ3∗ = 0 whenever
(

1
MR+RL

x∗(t)− MU
MR

)
is negative. That this is indeed
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the case can be verified from the interval condition of x∗(t) ∈
(

0,MU
MR+RL
MR

)
(see 4.59)).

Continuing with equation (4.49), we then find that

µ2∗(t) = − 1

(RL +MR)2
x∗

2(t)− λ∗(t)
nCindRL + 1

CL (RL +MR)2
x∗(t). (4.65)

Also now we need to check whether the condition µ2∗(t) ≥ 0 still holds in the above equation.
Since the constants and the state x∗ are all positive, this question boils down to whether

x∗(t) + λ∗(t)
nCindRL + 1

CL
≤ 0.

Yet again the switching law, i.e. (4.56), confirms that will be the case when u∗(t) = MR 6= 0.
Now only the differential equation for the state x∗ and costate λ∗ remain, i.e. equations (4.47)
and (4.48). However, given the fact that u∗(t) = MR and µ3∗(t) = 0, these equations are equal
to the regular Pontryagin problem, which is discussed in the previous two sections.

Summary of the optimal control results

Combining the results in this section, we have deduced the optimal control strategy for the
extended optimal control problem having mixed SVICs, i.e. (4.41)-(4.43). This was done on
the basis of Theorem 4.2.1, which resulted in the equations (4.46)-(4.50). Note that the rank
condition of the theorem is met, as at each point in time only 1 of the constraints gi(·) is active.
We also remark that we did not always mention the corresponding solution to the optimal state
(x∗) and costate (λ∗). However, we found that most of these solutions are equivalent to those
discussed in section 4.1. Only the state/co-state differential equations from (4.62) and (4.63)
are an exception here. Whereas the solution to the state differential equation is discussed in this
section (see (4.64)), we recommend a numeric solver to solve (4.63), since this is a non-linear
differential equation.

Similar to the results in the previous two sections we can again see that the optimal con-
trol is dependent on the final time T . For example, from (4.19) we find that if T < t̃2 =
CLRL

2 ln
(

1 + 1
nCindRL

)
, it is optimal to only harvest the initial charge x0 by choosing u∗(t) = 0.

In this case the state and costate are described by (4.17). Here xT can be solved from the initial

condition x∗(0) = x0, from which we find that xT = x0e
− 1
CLRL

T
.

In case the end time T is larger it pays of to initially charge the system maximally, choosing
u∗(t) = MR. However, taking u∗(t) = MR can only be done for a limited amount of time, as
otherwise the maximal voltage on the induction rings are exceeded. From the state and costate
equation of (4.24), this maximal time may be calculated from:

x0e
nCindMR−1

CL(RL+MR)
t1 = MU

MR +RL
MR

⇐⇒

t1 =
CL(RL +MR)

nCindMR − 1
ln

(
MU (MR +RL)

x0MR

)
.

Thereby we find that if T ∈ [t̃2, t1 + t̃2] the optimal strategy is to choose u∗(t) = MR for
t ∈ [0, T − t̃2) and to choose u∗(t) = 0 for t ∈ [T − t̃2, T ]. The state and costate equations for
this case are described by (4.24) for the first part, and by (4.17) for the latter part. In these
equations the constants p0 (:=λ0) and xT can again be determined from the initial conditions
x0 and pT = 0 (:=λT = 0). If we adopt the notation t2 = T − t̃2, so that the final switch to
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u∗(t) = 0 occurs at t = t2, this solution is given by (4.25), with only the notational difference
t2 := ts.

At last we consider the case that T > t1 + t̃2. In this case we have more time to charge
the system, but at t = t1 we need to ’throttle back’ the input u∗(t) to RLMU

x∗(t)−MU
so that we

do not exceed the maximal voltage on the induction rings. Given this input, the state and
costate differential equations are given by (4.62) and (4.63). Whereas the solution to the state
differential equation can be solved in an exact manner (see (4.64)), we recommend the use of a
numeric solver like matlab to solve (4.63).

To sum up our results, let us illustrate the solution to the necessary conditions of (4.46)-
(4.50) for the case that T is sufficiently large, i.e. T > t1 + t̃2. The optimal control is then
consists of 3 segments, as illustrated in table 4.1.

Interval Optimal Control Optimal State Optimal Co-state
t u∗(t) x∗(t) λ∗(t)

[0, t1) MR x0e
ct x0

d
2c

(
ect − e−ct

)
+ λ0e

−ct

[t1, t2)
RLMU

x∗(t)−MU
(x∗(t2)− β) ea(t2−t) + β solution of (4.63)

[t2, T ] 0 xT e
a(T−t) xT

b
2a

(
e−a(T−t) − ea(T−t)

)
Table 4.1: The optimal control strategy when T > t1 + t̃2. Note that we adopted the a, b, c, d
notation of (4.15). Furthermore we introduced the constant β := MU (1 + nCindRL).

Working our way backwards we may solve the unknown constants xT and λ0. We will
illustrate this for xT , whereas we would need to know the explicit solution of (4.63) to solve λ0.
When we plug in x∗(t2) from the third row into the second row, we obtain

x∗(t) =
(
xT e

aT − βeat2
)
e−at + β.

for t ∈ [t1, t2), i.e. when u∗(t) = RLMU
x∗(t)−MU

. At t = t1 this must be equal to x∗(t1
−) from the

first row. Thereby we find that

x0e
ct1 =

(
xT e

aT − βeat2
)
e−at1 + β ⇐⇒

xT = e−aT
(
x0e

(a+c)t1 + β
(
eat2 − eat1

))
.

The multipliers that correspond to the solution from table 4.1 are shown in the table below.

Interval Multipliers
t µ1∗(t) µ2∗(t) µ3∗(t)

[0, t1) 0 −α1x∗
2(t)− α2x∗(t)λ∗(t) 0

[t1, t2) 0 0 −α3x∗
2(t)− α4x∗(t)λ∗(t)

[t2, T ] α5x∗
2(t) + α6x∗(t)λ∗(t) 0 0

Table 4.2: Multipliers µi∗ , i = 1 . . . 3 corresponding to solution from table 4.1.

Where the constants αi, i = 1 . . . 6 from table 4.2 are given by

α1 =
1

(RL +MR)2
α3 =

1

RL
α5 =

1

RL
2

α2 =
nCindRL + 1

CL(RL +MR)2
α4 =

nCindRL + 1

CLRL
α6 =

nCindRL + 1

CLRL
2 .
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To conclude we have shown that the optimal control for the problem (4.41)-(4.43) is depen-
dent on the end time T . If T is very small it is optimal to only harvest the initial charge x0. For
a slightly larger value of T it is optimal to first maximally charge the system, only to maximally
harvest the accumulated charges at the end. At last, if T is sufficiently large the situation is
similar to the last, only at t = t1 the control needs to be ’throttled back’ so that the constraint
concerning the maximal induction ring voltage is not violated.

At last we would like to mention how the optimal control problem could benefit when we
consider a variable load resistor RL. As we have seen in the previous section, initially choosing
RL = 0 will be the best choice in order to maximally charge the system. This may also be
evident from the state differential equation, as the derivative is maximized when RL = 0 while
Rg needs to be as large as possible.
Also in the second stage of the optimal control solution, i.e. when u∗(t) needs to be ’throttled
back’ (see the interval [t1, t2) from table 4.1), a variable load resistor RL may be put to good
use. At first, from (4.59) we find that increasing RL can delay the moment that we need to
’throttle back’ our input. Furthermore, from (3.65) and (3.65) one can find that under the
assumed symmetrical conditions the equilibrium for the target voltage is given by:

Û1 = (1 + nCindRL)URg .

Thereby we see that increasing RL allows for a higher equilibrium of the target voltage U1,
while keeping the induction voltage URg at its maximum. On its turn a higher target voltage
will cause the output power to increase, as we have shown in (3.79).
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Chapter 5

Conclusions and recommendations

5.1 Conclusions

The main topic of this thesis is Kelvins water dropper. A ballistic version of this system has
previously been presented in [18]. There it is shown from a practical setup that the system can
be used to harvest electrical energy, as the kinetic energy from the droplets is converted into
electrical energy, with measured efficiencies of up to 18 %. Article [18] also describes that the
behaviour of the system can be analyzed on the basis of an equivalent electrical network.

On the basis of this observation, the Kelvin system has been further analyzed from a mathe-
matical background. Thereby the inductive model from [18] is extended so that charge losses to
the induction rings are also included in the model. These losses occur when the induced charge
of the droplets becomes too high, causing droplets to deflect in their trajectory to the target.
We find that by incorporating these losses an extra stable equilibrium solution arises in the sys-
tem, which occurs when the amount of charge losses is equal to the amount of charge induction.
Furthermore, we show that the differential equation that is obtained for a symmetrical system
can be solved explicitly.

Besides analyzing the Kelvin system, we have also investigated whether the Kelvin system
can be controlled, and if so how this can be done in an optimal way. For this purpose we have
investigated the system where the induction voltages provide the input, as well as the system in
which the resistors are variable and form the input. Especially this last choice of input we found
promising, since we found that the resistors have a direct impact on the charging behaviour of
the system. Therefore the choice of variable resistors has been explored in our quest of finding
an optimal control for the system.

For the above optimal control problem we have mainly considered the well-known Minimum
Principle from Pontryagin. As cost criterion we hereby choose to the output power over a fixed
time window, which will be maximized.
We have shown that the necessary conditions that are obtained from the Minimum Principle
can be solved. Thereby the necessary conditions indicate that the optimal way of controlling the
system is dependent on the total amount of time. If we consider the end time to be sufficiently
large, it turns out that we initially need to charge the system as much as is possible. That is, in
case we do not consider a maximal induction voltage restriction to keep current losses at bay,
the maximal way of doing so is simply given by the maximal value of Rg. In the case that we
do consider a maximal induction voltage restriction, the maximal way of charging the system
is to maximize Rg with respect to this additional restriction.
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At last, in all cases it turns out that close to the end time, it is optimal to de-charge the system
by choosing Rg = 0, so that in this last time window most of the (accumulated) charges can be
harvested.

5.2 Recommendations

The work that is presented in this thesis has many opportunities for further study. At first, the
assumptions that were made to analyze the Kelvin system may be investigated. For instance,
one may check whether similar results can be obtained if we would have considered a slightly
different electrical network to model the systems behaviour.

As in most of the studied examples from this thesis, we assumed that we are dealing with
a symmetrical setup. Thereby one may still investigate the implications of a non-symmetrical
setup. As a part of this, one may for instance investigate whether small deviations in internal
constants of the model, also result in only slight deviations of the model behaviour.
The assumption of a symmetrical setup has, in some sections of this thesis, also served as a mo-
tivation to consider the study of 1-dimensional systems instead of 2-dimensional systems. For
further research, one may for instance also look for a solution to the 2-dimensional non-linear
system equation from (3.3) instead of its one dimensional counterpart. This 2-dimensional sys-
tem equation may also be used in the optimal control problem we considered.

Furthermore, the optimal control problem that is discussed in chapter 4 can also be contin-
ued in many ways. For instance, the Pontryagin equations for the 2 resistor input case with
mixed State Variable Inequality Constraints (SVICs) still needs to be investigated. Also one
may pursue a broader optimal control problem that includes pure SVICs besides only mixed
SVICs. In this way, the proposed optimal control problem in which we also restrict the target
voltage to some maximum can be investigated. Furthermore it is easy to see that this con-
straint is a first order pure SVIC, so that the theory from section 7 of [7] can be used, as well
as Theorem 3.36 from [2].
At last we remark that one may investigate sufficient conditions in the optimal control problem,
which are for instance described in section 8 of [7]. Another example of a sufficient condition is
given by the Hamilton-Jacobi-Bellman equation, and is discussed [12].

Finally, it would also be interesting to verify the results from this thesis in a practical
(ballistic) setup of Kelvins water dropper. In an actual setup, it would furthermore also be
possible to see whether the maximal induction voltage restriction we posed to minimize current
losses can also be relaxed. One could for instance investigate whether a control action that is
based on actual measurements of the current losses is achievable.
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Appendix A

Appendix

A.1 Deriving the manifest behaviour

We start by writing the latent variables I16 and I26 in terms the manifest variables U1 and U2

and the loss currents. Note that the loss currents are directly given in terms of U1 and U2.
Since we will encounter these latent variables more often when rewriting other latent variables,
we choose to stick with these variables for now, where we will substitute them together at once
in the end.

I16 = I12 + I23

=
URg1
Rg1

+ I23

=
U1 − URL1

Rg1
+ I23

=
U1 − I16RL1

Rg1
+ I23

Rg1I16 = U1 − I16RL1 +Rg1I23

(Rg1 +RL1)I16 = U1 +Rg1I23

I16 =
U1

Rg1 +RL1

+m1I23. (A.1)

Note that in Figure 3.1 we do allow non-symmetrical resistors (the resistors for the left and
right jetting system are hereby indicated with a 1 or 2). Simultaneously we will therefore also
need to incorporate the index 1 or 2 for the voltage divider constant m (e.g. in equation (A.1)

we have m1 =
Rg1

Rg1+RL1
).
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A similar result to (A.1) can be obtained for I26:

I26 = I22 + I13

= −
URg2
Rg2

+ I13

= −
U2 − URL2

Rg2
+ I13

= −U2 + I26RL2

Rg2
+ I13

Rg2I26 = −(U2 + I26RL2) +Rg2I13

(Rg2 +RL2)I26 = −U2 +Rg2I13

I26 = − U2

Rg2 +RL2

+m2I13. (A.2)

Using the result of (A.1) and (A.2), also variables I11 and I21 can relatively easy be computed
in terms of U1 and U2 as shown below.

I11 = −n1Cind1URg2
= −n1Cind1(U2 − URL2

)

= −n1Cind1(U2 + I26RL2)

= −n1Cind1
(
U2 +

[
− U2

Rg2 +RL2

+m2I13

]
RL2

)
= −n1Cind1

(
1− RL2

Rg2 +RL2

)
U2 − n1Cind1m2I13RL2

= −n1Cind1m2U2 − n1Cind1m2I13RL2 . (A.3)

And similarly for I21:

I21 = n2Cind2URg1
= n2Cind2(U1 − URL1

)

= n2Cind2(U1 − I16RL1)

= n2Cind2

(
U1 −

[
U1

Rg1 +RL1

+m1I23

]
RL1

)
= n2Cind2

(
1− RL1

Rg1 +RL1

)
U1 − n2Cind2m1I23RL1

= n2Cind2m1U1 − n2Cind2m1I23RL1 . (A.4)

Now the remainder is easy. At first we have that:

I15 = I11 − I14
= I11 − I13 − I16 (A.5)

And completely analogous for I25:

I25 = I21 − I24
= I21 − I23 − I26 (A.6)
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The manifest behaviour of the system with current losses can now be found by plugging
in equations (A.1), (A.2), (A.3) and (A.4), together with the condensator and loss current
equations (as shown in table (3.1)) into equations (A.5) and (A.6). This (and a bit of reordering)
results in:

CL1

dU1

dt
= − 1

RL1 +Rg1
U1 − (n1Cind1RL2m2 + 1)α1U1

β1 − n1Cind1m2U2 −m1α2(−U2)
β2

CL2

dU2

dt
= −n2Cind2m1U1 +m2α1U1

β1 − 1

RL2 +Rg2
U2 + (n2Cind2RL1m1 + 1)α2(−U2)

β2 .

A.2 Solving equation (3.4) using integration by parts

In this section we will show how the separable differential equation from subsection 3.1.4 can be
solved using integration by parts. As a first approach, we see that the equation can be rewritten
to separable differential equation:

dU1

dt
= (C −A)U1 − (B +D)U1

β

= ÃU1 − B̃U1
β

= U1

(
Ã− B̃U1

β−1
)

1

U1

(
Ã− B̃U1

β−1
)dU1 = 1 dt, (A.7)

where Ã := (C −A) and B̃ := (B +D).

In order to solve (A.7), we first expand its left side to a from similar to a partial fraction
expansion:

1

U1

(
Ã− B̃U1

β−1
) =

a

U1
+

b

Ã− B̃U1
β−1

⇔

1 =
(
Ã− B̃U1

β−1
)
a+ U1b (A.8)

Separating the constant terms from terms which contain U1 in (A.8), it follows that a = 1

Ã

and b = B̃

Ã
U1

β−2. We thus have:

1

U1

(
Ã− B̃U1

β−1
) =

1

Ã

U1
+

B̃

Ã
U1

β−2

Ã− B̃U1
β−1 (A.9)

Equation (A.9) can now be integrated as part of solving the separable differential equation
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given by (A.7):∫  1

Ã

U1
+

B̃

Ã
U1

β−2

Ã− B̃U1
β−1

 dU1 =

∫ ( 1

Ã

U1

)
dU1 +

∫  B̃

Ã
U1

β−2

Ã− B̃U1
β−1

 dU1

=
1

Ã
ln |U1|+

∫ − 1

(β−1)Ã

x

 dx where x = Ã− B̃U1
β−1

=
1

Ã
ln |U1| −

1

(β − 1)Ã
ln
∣∣∣Ã− B̃U1

β−1
∣∣∣

=
1

(β − 1)Ã

(
ln |U1|β−1 − ln

∣∣∣Ã− B̃U1
β−1
∣∣∣)

=
1

(β − 1)Ã
ln

 |U1|β−1∣∣∣Ã− B̃U1
β−1
∣∣∣


=
1

(β − 1)Ã
ln

(∣∣∣∣ U1
β

ÃU1 − B̃U1
β

∣∣∣∣) (A.10)

For now constants have been omitted. However, these can be combined with a constant
we get for integrating the right side of (A.7). With the indefinite integral of the left side of
the separable differential equation (A.7) established and given by (A.10), this equation may be
further solved as:∫  1

Ã

U1
+

B̃

Ã
U1

β−2

Ã− B̃U1
β−1

 dU1 =

∫
1dt

1

(β − 1)Ã
ln

(∣∣∣∣ U1
β

ÃU1 − B̃U1
β

∣∣∣∣) = t+ c

ln

(∣∣∣∣ U1
β

ÃU1 − B̃U1
β

∣∣∣∣) = (β − 1)Ã(t+ c)

U1
β

ÃU1 − B̃U1
β

= c2e
(β−1)Ãt where c2 = ±e(β−1)cÃ

U1
β = c2e

(β−1)Ãt
(
ÃU1 − B̃U1

β
)

(
1 + c2B̃e

(β−1)Ãt
)
U1

β−1 = c2Ãe
(β−1)Ãt

U1
β−1 =

c2Ãe
(β−1)Ãt

1 + c2B̃e(β−1)Ãt

U1(t) =

(
c2Ãe

(β−1)Ãt

1 + c2B̃e(β−1)Ãt

) 1
β−1

U1(t) =

(
1
c2
e(1−β)Ãt + B̃

Ã

) 1
1−β

. (A.11)

The constant c2 may be determined from a given initial condition U1(0):

U1(0) =

(
1
c2
B̃

Ã

) 1
1−β

. (A.12)
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Straightforward calculations hereby yield:

c2 =
1

ÃU1(0)1−β − B̃
,

as a solution of (A.12).

A.3 Unique solution of (3.4) for t ∈ [0,∞)

Consider that we are given a system of the form:

ẋ(t) = f(x(t)), x (t0) = x0 ∈ Rn, t ≥ t0. (A.13)

When we are given a differential equation with initial conditions in the form (A.13), there
are some technical irregularities that may occur. At first we can not be sure whether a solution
exists at all, but it may also happen that the system has multiple solutions (i.e. that there is
not a unique solution). As an example of the latter case we consider the system:

ẋ(t) = [x(t)]
1
3 , with initial condition x(0) = 0, (A.14)

where it may be verified that both x(t) ≡ 0 and x(t) =
(
2
3 t
) 3

2 are valid solutions to (A.14).

Fortunately uniqueness of solutions can be guaranteed when the function f(x) from (A.13)
does not increase nor decrease too quickly ([12]). A measure for the rate of increase is the
Lipschitz constant.

Definition A.3.1 (Lipschitz continuity, ([12])). A function f : Rm → Rn is Lipschitz continu-
ous on Ω ⊂ Rm if a Lipschitz constant K ≥ 0 exists such that

‖f(x)− f(z)‖ ≤ K‖x− z‖

for all x, z ∈ Ω. It is Lipschitz continuous at x0 ∈ Rm if it is Lipschitz continuous on some
neighborhood Ω of x0.

If the function f(x) in (A.13) is Lipschitz continuous at x0, then uniqueness of a (maximal)
solution to (A.13) is ensured by the following theorem:

Theorem A.3.1 (Lipschitz condition, ([12], originally by [10])). Let t0 ∈ R and x0 ∈ Rn. If f
is Lipschitz continuous at x0 then, for some δ > 0, the differential equation (A.13) has a unique
solution x(t;x0) on time interval t ∈ [t0, t0 + δ).
Furthermore, for any fixed t ∈ [t0, t0 + δ) the x(t) depends continuously on x0.

We say that a function is locally Lipschitz if it is Lipschitz continuous at every x0. By the
above theorem, solutions x(t) can be uniquely continued at any t if f is locally Lipschitz ([12]).
However, Theorem A.3.1 is a local theorem, since it only guarantees existence and uniqueness
over an interval [t0, t0 + δ], where δ may be very small. By repeated application of the above
theorem one may try to extend this interval. However, in general, the interval of existence of
the solution cannot be extended indefinitely ([10]). This explains the necessity for the notion
of a maximal solution. An interesting phenomenon is that solutions x(t;x0) may ’escape’ in a
finite time, so that they are only defined on a bounded time interval. A more precise notion of
(finite) escape time and maximal solutions is given by Lemma 1.1.4 from [12].
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That the system function f(x) from (3.4) is locally Lipschitz for x0 > 0, will be shown next.
The function f(x) here is given by:

f(x) = Ãx− B̃xβ, where Ã, B̃ > 0 and β > 1

with derivative:

f ′(x) = Ã− B̃βxβ−1. (A.15)

Now if a scalar function f(x) is differentiable on [a, b] then we know from the Mean Value
Theorem that ∀x1, x2 ∈ [a, b] we have that:

f(x1)− f(x2) = f ′(ξ)(x1 − x2)

for some ξ between x1 and x2. A direct consequence is that ∀x1, x2 ∈ [a, b]:

|f(x1)− f(x2)| = |f ′(ξ)| · |x1 − x2|
≤ max

ξ∈[a,b]
|f ′(ξ)| · |x1 − x2|. (A.16)

On the basis of (A.15) and (A.16) we are now ready to make the proof. For any ξ ∈ (0,M ],
with M ∈ R+ we have:

|f ′(ξ)| = |Ã− B̃βξβ−1|

≤ |Ã+ B̃βξβ−1|

≤ Ã+ K̄B̃β, (A.17)

where K̄ = max{1,M,Mβ−1}.
For the sake of completeness; K̄ = 1 when M ∈ (0, 1) ∧ β ∈ (1, 2), K̄ = M when M ≥ 1 ∧
β ∈ (1, 2) or when M ∈ (0, 1) ∧ β ∈ [2,∞) and at last K̄ = Mβ−1 when M ≥ 1 ∧ β ∈ [2,∞).

On the basis of (A.17) it may be concluded that f(x) = Ãx−B̃xβ is locally Lipschitz, where
we can choose the Lipschitz constant in Theorem A.3.1 equal to:

K = Ã+ K̄B̃β,

from which we can conclude that (3.4) has a unique maximal solution for t0 ∈ R and x0 ∈ (0,M ].

As mentioned previously, this does not guarantee that (3.4) has a solution ∀t ∈ [t0,∞), as
in theory it can still happen that the system has a ’finite escape time’. That is, it may happen
that the solution x(t) tends to ±∞ in a finite amount of time. That this is not the case may
be verified from the analytical solution of (3.4), as was deduced in Subsection 3.1.4 (as well as
Appendix Section A.2).

For t0 = 0 and x0 = U1(0), the solution to (3.4) is given by (see also (3.15) and (3.16)):

U1(t) =

[
ce(1−β)Ãt +

B̃

Ã

] 1
1−β

, (A.18)

with constant c given by:

c = U1(0)1−β − B̃

Ã
.
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Note that the exponent 1
1−β in (A.18) is negative. Therefore we can see that solutions ’blow

up’ when:

0 = ce(1−β)Ãt +
B̃

Ã
.

Some simple calculus shows us that this is equivalent to:

0 =

(
U1(0)1−β − B̃

Ã

)
e(1−β)Ãt +

B̃

Ã
⇐⇒

e(1−β)Ãt =
B̃

B̃ − ÃU1(0)1−β
⇐⇒ (A.19)

t∗ = − 1

(β − 1)Ã
· ln

(
B̃

B̃ − ÃU1(0)1−β

)
, (A.20)

where t∗ indicates the ’blow-up time’.

Note that the above derivation is only valid when the right of (A.19) is positive and when
the denominator does not equal zero. Recall from subsection 1.1.1 in the introduction that the
system starts due to some random imbalance, so that we know that

U1(0) = ε,

where ε is some small positive constant. We will hereby assume that ε is sufficiently small,

specifically that ε <
(
B̃

Ã

) 1
1−β

, so that the above derivation can indeed be made.

Furthermore, given that U1(0) is particularly small, it is easy to see that the ’blow-up time’
t∗ in (A.20) is negative. However, since we consider time being positive and started from t0 = 0
in (A.18), we can conclude that the system will never blow up.

Thereby we have thus proven that equation (3.4) has a unique solution for U1(0) = ε > 0
for t ∈ [0,∞).

A.4 Matrix exponentials

A.4.1 eAt from (2.2)

The matrix we consider is given by:

A =

[
−a −b
−b −a

]
.

At first one may note that:[
−a −b
−b −a

]
=

[
−a 0
0 −a

]
+

[
0 −b
−b 0

]
,

and we also have that[
−a 0
0 −a

] [
0 −b
−b 0

]
=

[
0 −b
−b 0

] [
−a 0
0 −a

] (
=

[
0 ab
ab 0

])
.
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Based on this observation we can use the rule e(M1+M2)t = eM1teM2t, since M1 and M2 commute.

Calculation of eM1t is straightforward, and we have

eM1t =

[
e−at 0

0 e−at

]
.

For the calculation of eM2t, we calculate the eigenvalues, given by λ1,2 = ±b, with corre-

sponding eigenvectors v1,2 =

[
∓1
1

]
. From this it follows that:

eM2t =

[
−1 1
1 1

] [
ebt 0
0 e−bt

] [
−1 1
1 1

]−1
=

1

2

[
e−bt + ebt e−bt − ebt
e−bt − ebt e−bt + ebt

]
Thus we have:

eAt = eM1teM2t

=

[
e−at 0

0 e−at

]
1

2

[
e−bt + ebt e−bt − ebt
e−bt − ebt e−bt + ebt

]
=

1

2

[
e(−a−b)t + e(−a+b)t e(−a−b)t − e(−a+b)t
e(−a−b)t − e(−a+b)t e(−a−b)t + e(−a+b)t

]
.

A.4.2 e(−A1)t from (4.17)

Utilizing the ’a, b, c, d notation’ from (4.15), the matrix at hand here is given by

−A1 =

[
a 0
−b −a

]
. (A.21)

It is easy to see that the eigenvalues of (−A1) are given by:

λ1,2 = ±a.

The corresponding eigenvectors are given by:

v1 =

[
−2a

b
1

]
, v2 =

[
0
1

]
.

Thereby we find that:

e(−A1)t =

[
−2a

b 0
1 1

] [
eat 0
0 e−at

] [
−2a

b 0
1 1

]−1
=

[
−2a

b 0
1 1

] [
eat 0
0 e−at

] [
− b

2a 0
b
2a 1

]
=

[
eat 0

b
2a

(
e−at − eat

)
e−at

]
. (A.22)
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A.4.3 eA2t from (4.23)

Also here we will use the simplified ’a, b, c, d notation’ from (4.15). The matrix at hand is:

A2 =

[
c 0
d −c

]
.

Note that A2 is very similar to (−A1) from (A.21). Thereby the calculation of the matrix expo-
nential will be very similar. In fact, the matrices are even identical when making the substitution
c = a, d = −b. In this way the matrix exponential eA2t can also be deduced by performing
this substitution in (A.22). However, as the computation of the eigenvalues and eigenvectors is
quite easy, we will calculate the matrix exponential using the conventional approach.

It is easy to see that the eigenvalues of A2 are given by

λ1,2 = ±c,

with corresponding eigenvectors:

v1 =

[
2c
d
1

]
, v2 =

[
0
1

]
.

Thereby we find that:

eA2t =

[
2c
d 0
1 1

] [
ect 0
0 e−ct

] [
2c
d 0
1 1

]−1
=

[
2c
d 0
1 1

] [
ect 0
0 e−ct

] [
d
2c 0

− d
2c 1

]
=

[
ect 0

d
2c

(
ect − e−ct

)
e−ct

]
. (A.23)

A.5 Limit ts

lim
ε↓0

ts = lim
ε↓0

(
T − εCL

1− εnCind
ln

(
M2 + ε(nCindM2 − 2)

2εnCind(M2 − ε)

))

= T − lim
ε↓0

 ln
(
M2+ε(nCindM2−2)
2εnCind(M2−ε)

)
1−εnCind
εCL

. (A.24)

This sub-limit presents us with the L’Hôpital case ∞∞ . Therefore we look at the limit of the
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derivatives:

lim
ε↓0

 ln
(
M2+ε(nCindM2−2)
2εnCind(M2−ε)

)
1−εnCind
εCL


= lim

ε↓0

 (nCindM2−2)·2εnCind(M2−ε)−(M2+ε(nCindM2−2))·(2nCind(M2−2ε))
(2εnCind(M2−ε))2 · 2εnCind(M2−ε)

M2+ε(nCindM2−2)
−nCind·εCL−(1−εnCind)·CL

(εCL)2


= lim

ε↓0

 2ε2(nCind)
2M2−4ε2nCind−2nCindM2

2+4εnCindM2

2εnCind(M2−ε) · 1
M2+ε(nCindM2−2)

−1
ε2CL


= lim

ε↓0

(
εCL ·

M2
2 − ε2nCindM2 − 2εM2 + 2ε2

(M2 − ε)[M2 + ε(nCindM2 − 2)]

)
=0.

Using the above derivation we may conclude that

lim
ε↓0

ts = T.

A.6 Solution to the ODE from (4.62)

For convenience in notation, let us introduce the constants

α =
1

CLRL

β =
MU (nCindRL + 1)

CLRL

Utilizing this notation, we rewrite (4.62) to classical ODE form

ẋ+ αx = β. (A.25)

For the homogeneous solution of this equation we use xh(t) = ceλt. This results in

λceλt + αceλt = 0 ⇐⇒
λ = −α.

Thereby note that the function ceλt is never zero for c 6= 0, so that the division is allowed. From
here it follows that the homogeneous solution is given by

xh(t) = ce−αt.

For the particular solution we set xp(t) = K, with K being a constant. Plugging this in into
(A.25) gives us

αK = β ⇐⇒

K =
β

α
.

Having found the homogeneous and particular solution of (A.25), we know that it’s solution
is given by

x(t) = xp(t) + xh(t)

= ceλt +
β

α
.
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