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Abstract

Abstract

On naval ships all over the world radars are used to detect and track different objects. The
environment in which they do this has become much more complex over the last couple of years,
e.g. increased population of ships, deception by hostile ships, piracy. So better methods for
detecting and tracking different objects are desired and moreover better methods for classification
of different targets. One of these methods is trajectory analysis.

The goal of this project was to study the suitability of Markov chains for trajectory analysis.
More specifically, the research question was whether modeling of target trajectories using Markov
chains can be used to distinguish a number of trajectories that are encountered in real-life situ-
ations. We focused on distinguishing a weave, consisting of straight lines and curves, from other
trajectories that also consist of straight lines and curves.

The method we developed makes use of a hierarchical state diagram. On the highest level
we have all possible trajectories we want to take into consideration. One level deeper we have
the possible segments of each trajectory. Transitions between the different states are governed by
stochastic Markov processes. We implemented the hierarchical state diagram in a particle filter
which we then use to track a single object and classify its trajectory. The dynamical models used
in the particle filter to predict the particles depend on the current state of each particle.

First we investigated the performance of our method when simulated measurements created by
ourselves were used. Next we used GPS data loggings to see if our method performed well when
‘real’ data is used. Eventually we converted these GPS data loggings into radar measurements
which we used to finetune the different settings of our method.

The output of our method when an object follows a weave trajectory can be distinguished from
the output of our method when an object follows a non-weave trajectory, so our method is able to
classify the different trajectories. In order to make it plausible that this classification can be done
automatically we have modeled a simple detector.

Index terms — Particle Filtering, Hybrid Systems, Multiple Model Filter, Markov Chains, Target
Tracking, Radar Application, Trajectory Analysis
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1. Introduction

1. Introduction

1.1 Background

On naval ships all over the world radars are used to detect and track different objects. The
environment in which they do this has become much more complex over the last couple of years,
e.g. increased population of ships, deception by hostile ships, piracy. So better methods for
detecting and tracking different objects are desired and moreover better methods for classification
of different targets.

In some situations simply detecting and tracking an object is not enough. More refined methods
are needed to fulfill the needs of the naval ships. A method for classification of different objects
uses constraints on the position of the objects to classify these objects. For example a ship can
never sail on land, so if we detect an object on land it can not be a ship. This is a refinement of the
already used methods. First the objective is to detect and track the object, next we want to know
what kind of object we are tracking. Once we have determined, for example, that the object is in
fact a ship, it does not tell us all its 'secrets’. We only know that it is a ship but not what kind
of ship or what its intentions are etc. So we want an even better refinement of the classification.
Therefore the question arises whether or not we can classify objects by looking at their motion
patterns.

Different objects have their own characteristics. Not only the objects themselves are different
from each other, also their actions and intentions can be different. For instance a fishing boat will
systematically sail a pattern such that it makes sure it covers all of the fishing grounds. While
a hostile boat performs certain maneuvers to mislead the object who is being attacked. If these
patterns can be distinguished from another by the radar, it will significantly help the radar operator
in his decision making process, because more detailed information is available.

The recognition of different motion patterns, or trajectory analysis, is based on the idea that
different object classes or different object intentions lead to different object trajectories. This
means that analysis of trajectories could be used to refine object classification or to estimate the
intent of an object based on the trajectory of that object, thereby improving situational awareness.

1.2 Problem description

The goal of this project is to study the suitability of Markov chains for trajectory analysis. More
specifically, the research question is whether modeling of target trajectories using Markov chains
can be used to distinguish a number of trajectories that are encountered in real-life situations.
We will focus on refining the classification, that is distinguishing a weave, consisting of straight
lines and curves, from other trajectories that also consist of straight lines and curves, see figure 1.1
for this kind of trajectories. This focus on distinguishing a weave comes from the fact that a
weave pattern might be performed during an attack, thereby it can indicate suspicious behavior.
A complicating factor is that not every weave is the same, which means that the proposed methods
need to be robust for variations in trajectories.

During the tracking of the object we at the same time want to classify the trajectory of the
object. This classification is needs to be made during the tracking of the object, since for example
a ship needs to act fast after a threat is detected. If we first observe and track the object for a
certain amount of time and thereafter say: ‘The object followed a weave trajectory’, we are already
too late to take any action if necessary. If we are able to classify the object’s trajectory fast and
automatically, we support the radar operator in his decision making process. In this last case the
radar operator does not have to manually investigate all objects which are being tracked, part of
this is done automatically thereby improving situational awareness.

The proposed methods are new in the sense that they focus on classifying a trajectory automat-
ically instead of a post-analysis of the trajectory. Until now the radar operator has to investigate
the different tracks on the radar image and classify them separately. This is a complicating task
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(a) Straight (b) Weave (c) Weave (d) Straight - curve - straight

Figure 1.1: Different trajectories consisting of straight lines and curves

requiring a high level of concentration from the radar operator. We try to ‘outperform’ the radar
operator by classifying the trajectories automatically and as soon as possible. Thereby supporting
the radar operator in his decision making process.

During this research we try to classify different trajectories. Similar research is already per-
formed in different forms for example using the interacting multiple model algorithm or other
multiple model algorithms, see [2], [3], [5], [8] and [9]. We try to improve these kind of methods
by incorporating the classification of the trajectory into the particle filter. Using this method we
try to develop a joint tracking and classification method. We want to use the models of the tra-
jectories in the tracking application of the particle filter. This to reduce the errors of the velocity
and position estimates.

Just like interacting multiple model filters, we simultaneously consider different dynamical
models for the object’s kinematics. But instead of using multiple filters in parallel, which each
consider one dynamical model, we implemented all these models into a single particle filter and also
incorporated Markov chains which govern the transitions between these models. Thereby making
it a joint tracking and classification method.

1.3 Outline

In this report we treat the subject of trajectory analysis. In section 2 we introduce the used
models and explain the implementation of Markov chains in a particle filter which is the basis of
our method. In section 3 we investigate if our method is viable via the use of simulated radar
measurements. Next in section 4 we use GPS data loggings for the finetuning of the settings of our
method. In section 5 we continue with the finetuning of the settings of our method but now using
radar measurements. In section 6 we develop a detector which uses the output of our method to
classify if different trajectories are a weave trajectory or a non-weave trajectory. Section 7 provides
an introduction on other methods for trajectory analysis. Eventually in section 8 we summarize and
discuss the main results and look at the advantages and disadvantages of the different methods for
trajectory analysis. A list of abbreviations and symbols is included on page 49. In the appendices A
to D some extra results of the corresponding sections 3 to 6 are given.
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2. Models

In this section we introduce the used models. Some theory about the models and implementation
issues are given, eventually we further explain our approach to our research.

Our goal is to track an object and classify its trajectory simultaneously. We use a particle
filter to estimate the object’s state. A particle filter is a numerical approximation to the nonlinear
Bayesian filtering problem. The particle filter in the current form became widely know due to the
introduction of the resampling step in 1993, [7]. Until then the primary approach to solve the
Bayesian filtering problem was the use of Kalman filters. The drawback of Kalman filters is that
they can not handle nonlinearities. The systems we encounter during this research are nonlinear,
therefore we use a particle filter. In this chapter we introduce the methods and models which we
use in the particle filter algorithm.

2.1 Hybrid State

During our research we have a system which has a continuous state(vector), si, and the discrete
state variables mode, my, and submode, smy. These last two variables are further explained in
sections 2.3.1 and 2.3.2. All these variables together form the hybrid state of the system. Hybrid
in the sense that the state vector contains both continuous and discrete variables. The continuous
part of the state evolves according to a dynamic model:

Sk+1 = f(skamka S, ’lUk-), (21)

where wy, is the process noise and k the time index. The discrete variables mj and smy evolve
according to a Markov process with transition matrices II,, and Il,;,, respectively. Also the
measurements at each time step k, zx, are related to sy,

ZE = h(Sk,’Uk), (22)

with v the measurement noise. We assume that the probability density functions of the process
noise, measurement noise and initial state, respectively pu,, , P, and ps,.mg,smq, are known.

2.2 Dynamical Models

During our research we use three different dynamical models, each providing the evolution of the
dynamics of s, the continuous part of the hybrid state of the system. The dynamic models
are derived from [1], [10] and [11]. The three different dynamical models we have used are the
nearly constant velocity model (NCV), the curvilinear motion model (CM) and the augmented
coordinated turn model (ACT).

We use the three dynamical models in our particle filter simultaneously. The NCV-model
and CM-model are used when the object follows a straight line. In early research we use the
NCV-model, but it turned out that this model was insufficient for our purposes. Therefore in
later research we used the CM-model, see section 4.2.2. The ACT-model is used when the object
performs a turn.

2.2.1 Nearly Constant Velocity Model

The NCV-model is a discrete time process noise model. We define sj, the continuous part of the
hybrid state vector as follows:

Sk = [m Uy Y vy];€
Where z and y are the z- and y-position in m and v, and v, are the velocities in x- and y-direction
in m/s. The process noise vector wy, is defined as

W = [ax,k ay,k}, ~ N(07 Q)
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Furthermore we define
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with T the time step and 0,4, , and o, , the process noise parameters in z- and y-direction at
time k respectively. This leads to the evolution of s; according to the NCV-model:

Sk11 = Fsi + Guy.

2.2.2 Curvilinear Motion Model

The CM-model is similar to the NCV-model explained in section 2.2.1 except for the process noise
covariance matrix (). We use a rotation matrix to change the direction in which the process noise
acts. In figure 2.1 we see a schematic two dimensional drawing to clarify the different directional
components.

-

‘k
RADAR

Figure 2.1: Two dimensional schematic representation of the directional components

In figure 2.1 we have the radar positioned at the bottom left corner and O as the object being
tracked. This object has a velocity v and possible acceleration terms in z-, y-, tangential or normal
direction, a,, ay, ar or ay respectively. The object has a range r, bearing b and heading h.

The difference between the NCV-model and the CM-model is that the process noise in the
NCV-model acts in the z- and y-direction where in the CM-model the process noise acts in the
tangential and normal direction. Therefore we define the process noise covariance matrix @ for the
CM-model in the following way:

Q = RQrnR,

2 .
with Qry = [JGOT"“ O;V J, R = Eg:((% —62181(1](1]1)} and h = arctan (%)1

We have the process noise parameters Oar,, and o, , in tangential and normal direction
respectively.

Also note that the output of the CM-model is the same as the output of the NCV-model
when o, = 0, = or = on holds. The advantage of the CM-model over the NCV-model is that the
process noise is now dependent of the heading of the object, making the variance of the acceleration
in moving direction controllable. Also we can use the process noise in the normal direction as some

measure of heading uncertainty of the object.

1In the implementation of this model in Matlab, we use arctan 2 instead of arctan. This because of the fact that
elements of arctan 2 lie in the closed interval [—m,n] and elements of arctan lie in the closed interval [—7/2, 7 /2].
Since the heading of the object can lie in any quadrant we choose to use arctan 2 instead of arctan.
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2.2.3 Augmented Coordinated Turn Model

To model the dynamics of an object while it is performing a turn we use the ACT-model. It is a
non-linear model in which we add the angular velocity to s:

Skz[x Vg Y Uy w];,

with w the angular velocity in rad/s. We also extend the process noise vector with a component
for the angular velocity:
wy, = [ax,k Ay i oz]l ~ N(0,Q).
This leads to the ACT-model:
Sk+1 = F(sk) + Guy,

x4 2 sin(wT) — 22 (1 — cos(wT)) it? 0 0
vy cos(wT') — vy sin(wT’) T 0 O oz, O
in which F(s;) = |y + 2 (1 — cos(wT)) + Lsin(wT)|,G=| 0 37? 0landQ=| 0 o2
vy sin(wT') 4 vy cos(wT') 0 T 0 0 0

w 0 0 1

We have the process noise parameters o, , and o4, in 2- and y-direction and o, for the angular
velocity component of the process noise.

In the ACT-model we let the process noise act in z- and y-direction since a turn can be entered
in any direction independent of the heading of the object. Therefore the process noise should act
in a direction independent of the heading of the object, so we choose to let the process noise act
in z- and y-direction.

2.3 Markov chains

As said in section 1.2 the goal of this research is to investigate if different trajectories can be
classified using Markov chains. A Markov chain is a process in which the state undergoes transitions
depending on a transition probability matrix and the current state of the system.

We try to use Markov chains to model the hierarchical structure of the different trajectories
and the different segments of each trajectory. Our idea is to use a Markov chain which describes
the possible transitions between the different trajectories which are being considered, see figure 2.2.
Our focus lies on distinguishing a weave from other trajectories. This weave consists of a certain
sequence of straight lines and curves. The transitions between these segments is also modeled using
a Markov chain. So this Markov chain is ‘embedded’ inside the Markov chain which governs the
transitions between the different trajectories.

2.3.1 Mode

To identify the different trajectories we want to classify, we introduce the discrete variable mode,
my,. This discrete variable can take on four different values:

Mode, m ‘ Meaning

1 Straight line
2 Left curve

3 Right curve
4 Weave

The corresponding trajectories are shown in figure 2.2.

The modes 1, 2 and 3 were chosen because these are the most common (parts of) trajectories
any vessel will follow at a point in time. So these three modes cover the most basic trajectories.
Because our focus lies on distinguishing a weave we also included the mode weave. This formulation
leaves room for extension of the method since we can just add another mode which corresponds to
a certain trajectory we also want to be able to distinguish.

The discrete variable mode evolves according to a first-order Markov chain with transition
probability matrix II,,, i.e.,

P(mgy1 = jlmy = 1) = i,j-th entry of IL,,.

Hence II,,, is stationary over time.
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(=

(a) Straight, m =1 ) Left Curve, m =2 (c) Right Curve, m =3 ) Weave, m = 4

Figure 2.2: Possible values for the discrete variable mode with the corresponding trajectories

The possible transitions are graphically represented in figure 2.3 and the transition probabilities,
the entries of II,,,, are determined via simulations.

'-.

Figure 2.3: Schematic representation of the possible mode transitions

In early research we used different possible transitions, see appendix A. Eventually we found
that the transitions shown in figure 2.3 give better results. The chosen transitions enable our
method to distinguish a weave trajectory better from a straight-curve-straight trajectory, see sec-
tion 4.2.3.

2.3.2 Submode

If we look closely at the weave trajectory, we see that it consists of straight lines and curves. It
is even possible to segment all trajectories in straight lines and curves like the segmentation of a
weave trajectory in figure 2.4.

Figure 2.4: Segmentation of a weave trajectory.

By using this type of segmentation we can identify each trajectory by its specific sequence of
straight lines and curves. To model this segmentation we use the discrete variable submode, smy.
This discrete variable submode can take on four values:

THALES



2. Models

Submode, smy, ‘ Meaning

1 Curve left, CL

2 Straight after curve left, SL
3 Curve right, CR

4 Straight after curve right, SR

Just like the mode, the submode evolves according to a first-order Markov chain but now with
transition probability matrix Il,,, , i.e.,

P(smpy1 = jlsmp = i) = 1,j-th entry of Iy, , |-

Hence 1l,,,, depends on the time index k. This is so since the entries of this matrix depend on

time. In our research we only used the variable submode when the object is in the mode weave,

since the sequence of submodes while in the other modes consist of only one value. The possible
transitions of the submode are graphically represented in figure 2.5.

1 - psck 1 - pcsk

1-— Desy, 1- Dscy,

Figure 2.5: Schematic representation of the possible submode transitions

We explicitly modeled two different straight submodes, one after a curve left and one after
a curve right. This to cover all possible segments which can occur. Each trajectory now has a
unique sequence of submodes. If we would have modeled only one type of straight segment in the
particle filter implementation we would always force some particles in a wrong direction. Because
then transitions need to be allowed from a straight segment to both a curve left and a curve right.
But when we use the two different straight segments we only allow transitions to one specific curve
direction. Thereby making it a more distinct sequence to follow and less prone to errors. Especially
for a weave trajectory we can now identify this trajectory as having consecutive straight and curve
segments in which the curves alternate in direction.

The used modeling of the submodes also leaves room for extension of the method. Suppose
we want to be able to distinguish a different trajectory. We can extend the variable mode to five
possible values and define a new transition probability matrix II,,. Next we also define a transition
probability matrix for the submode, say Ilg,,2, while in this new mode. The rest of the method
remains the same and hence we have extended our method to also take this new trajectory in
consideration while tracking and classifying an object’s trajectory.

We aim for a method which is robust for variation in the different trajectories. When we look

at weave trajectories, we see that there can be variations of the weave like the two variations in
figure 2.6

(a) Weave (b) Weave

Figure 2.6: Two variations of a weave trajectory
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Due to these variations, traditional Markov chains with stationary transition probability matri-
ces are not sufficient for reaching our intended goal of a robust method for distinguishing a weave
trajectory. Our model needs to be able to cope with the variations of weave trajectories. The
variations can be characterized by the length of the straight segments and the angle of the curves.
The question arises to what extent we call a trajectory a weave. To answer this question and
model the variations we introduce the variables §;, and 6;. These variables contain information
about the already traveled length of the current straight segment and the already traversed angle
of the current curve respectively. We also define 6,4, and 6,4, and let these variables characterize
the average weave trajectory we expect to encounter. These variables are used in determining the
entries of the submode transition probability matrix Ilg,,, .

Delta

To model the length of the straight segments of a trajectory we use the variable d, which is defined
as follows:

5 0 when beginning a straight segment, (2.3)
k1 = 2.3
O + \/(ka — xk)Q + (Yrt1 — y;f)2 while already on a straight segment.

So dj, represents the already traveled length of the current straight segment at time step k.
Theta
We model the traveled angle of the curve with the variable j:

0 when entering a curve,

Ors1 = . & (2.4)
0x + wi T while already in a curve.

So 6y, represents the already traveled angle of the current curve at time step k.

As can be seen in figure 2.5 we have two probabilities, dependent of the time index k, which
determine all the entries of 1l,,,, , namely the probability of a transition from a curve segment
to a straight segment, p.s,, and the probability of a transition from a straight segment to a
curve segment, Pse, . SiNce dpqe and O, characterize the average weave trajectory, we use these
variables together with d, and 6 for determining p,., and p.s,. We use these variables because
we want the probability of making a transition from a curve segment to a straight segment or from
a straight segment to a curve segment larger when you stay in that particular submode, since we
expect the object to follow the weave trajectory characterized by 0,4, and 60,4

To determine pg., and p.s, we used two different methods, the min-method and the if-else-
method. We chose to use these two methods since we expect them to determine py., and p.s, such
that submode transitions are likely to occur at the same time the weave trajectory characterized
by 6maz and 6,,,, makes a submode transition. We need to investigate if one method is more
favorable over the other.

Min-method

5 n
Dse, = Min [( k > ,0.95} ,
6mam
Pesy, = min [(091@ ) 7095:| .

Where n is a positive integer to be determined later on based on simulation outcomes.

If-else-method

D1 if 5k} < 5maw7

——

Paer = p2  if 0 > dpmaa-
» _ D1 if Hk < emawv
o D2 if 0k Z emax-
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2. Models

Where p; and ps are probabilities with p; small and py close to unity. These probabilities will be
determined precisely using simulations. This if-else-method is much more ‘strict’ than the min-
method in the sense that the transition probabilities are determined such that it is more likely to
make submode transitions at the points were the average weave defined by 6,4, and 0,4, also
makes submode transitions.

2.4 Integrating Markov chains in a particle filter

A particle filter is a numerical approximation to the nonlinear Bayesian filtering problem. A
particle filter recursively computes an estimate of the posterior density of the system. This is the
probability density function of the state of the system at time k given all measurements up to time
k. The transitional density and the likelihood function play a role in this recursive computation, [4].
Since we use different dynamical models simultaneously in our particle filter, these densities depend
on the current mode and submode. Therefore we modify a general particle filter by integrating
the dependency on the (sub)mode and integrating the corresponding Markov chains.

In particle filtering equation (2.1) is often referred to as the dynamic model and equation (2.2)
as the measurement model. These equations and the knowledge about the probability density
functions of vy, and wy, define the densities p(sg, my, smi|sg—1, Mr—1, smr—1) and p(zk|sk, Mk, smy)
which are respectively the transitional density and the likelihood function. We use these densities in
the recursive computation of the posterior density p(sg,my, smg|z1.k) or posterior. This posterior
gives us information about the state given all measurement up to time k. It can be computed
recursively from p(sp—1,mMg—1, SMi—_1]|21:k—1) in two steps, a prediction step and an update step.
In the general form an analytical solution for this recursion does not exists. But a particle filter
can numerically approximate the posterior using this recursion.

There are various particle filters which use different distributions to predict the random samples,
or particles, which are used to estimate the posterior. The particle filter we use is a modified version
of the so called Sampling Importance Resampling filter, or SIR filter. In this filter we predict our
particles according to the transitional density which follows from the dynamic model (2.1). The
dynamical models we used are explained in section 2.2.

We have modified the SIR filter by integrating the Markov chains described in section 2.3.
The prediction of the particles must depend on the current mode and submode of each particle
since different dynamical models are used in different (sub)modes. Therefore before we predict
the particles, we first predict the new mode and if necessary the new submode of each particle by
using the previous (sub)mode of that particle and the transition probability matrices II,;, and Iy, .
Next the particles can be predicted using the different dynamical models. After this prediction the
variables ¢ and 6 are updated accordingly.

We give the complete algorithm of the used particle filter below.

Particle filter algorithm
Inpl‘It: T7 N7 pSo,mU,sﬁLo I p?)k bl pwk ’ HTer Hsmk .
Initialization _ , _
Draw initial particles: {séz), m(()l), sm(()l) N |~ Dsomo.smeo-

Set initial weights qu) to %, 1=1.N
Uniformly distribute the particles over m and sm.

For all time steps £k =1,2,3,...,T:

For all particles i =1,2,...,N:
Predict m,(:) and smg)
Generate w,(le ~ Dw_q -

Predict the particles: s,(f) = f(sl(ﬁpm,(f),smlii),w,iizl).

Update ¢, and 6, accordingly using (2.3) and (2.4).

Update the weights: q,(:) = q,(:zlp(zﬂs,(f), mgj), smg)).
end

using I1,,, m,(fll, Mgpmyx and sm,(le. Markov chain aspect.

. (i)
Normalize the weights: q,(:) = Equ gy,%=1.N.
=19
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Resample

Generate new particles {5 mé% smk)}, 1, such that:

P55} = (s m,?%smﬁ})—q“
Set the weights {qk)} Y, to &

end

Output: {sk ,mk ,smk ,qk } , for all time steps k =1,2,...,T.

2.4.1 Resampling

In our algorithm we resample at every time step. The idea of resampling is to duplicate particles
which have a high weight and omit particles with a low weight. This technique is commonly used
to overcome the problem of degenerating particles. With degenerated particles we mean particles
which have a negligible weight, thereby they do not really contribute to the estimate of the state
according to the particle filter. So these particles are not ‘effective’ and hence the effective sample
size? decreases. Since we resample at every time step we expect no problems with degenerating
particles.

On the other hand the choice to resample at every time step could cause some new problems.
In our case it could lead to a low diversity of the particles among the different modes. For example
when particles are predicted according to a certain mode and the new measurement is close to this
prediction. It could be that after resampling we end up with particles only in that specific mode.
Thereby the new prediction will mostly be done according to this mode while it could be that the
object switches from mode during that time step. So the prediction in this time step could be
completely off.

So in our case resampling is a trade off between the prevention of degenerating particles and
the diversity of the particles among the different modes. Therefore we need to be aware of the
possible occurrence of these problems.

2.4.2 Classification using particle filter output

To eventually classify the different trajectories we use the output of the particle filter, especially
the variable mode. The question arises how the particle filter can make a classification using
this variable. The idea is that using the variables mode and submode we predict the particles
according to the different dynamical models. In the update step we use the new measurement
to adjust the weights of the particles. The new measurement will probably lie closer to one of
the predictions making the weights of this prediction larger with respect to the other predictions.
Then after resampling we are likely to end up with more particles according to the prediction with
a larger weight. The particle filter makes a ‘choice’ on which mode it finds more likely since the
measurement fits better with the prediction according to that mode and therefore we can use this
output of the particle filter to classify the objects trajectory.

2.5 Approach to our research

In the previous sections we have introduced the different models used in our research. The goal of
our research is to develop a method which is able to distinguish different trajectories. From now on
when we speak of ‘our method’ we mean the method developed during this research. Our method
should specifically be able to distinguish a weave trajectory. This focus on distinguishing a weave
trajectory comes from a naval standpoint. On naval ships radars are used to locate all the objects in
the surrounding area. Some hostile ships perform a weave trajectory to mislead the radar operator
who is tasked to classify the different trajectories of the radar image. Our method has to be able to
automatically perform a fast classification of such a (hostile) weave trajectory, such that the radar
operator can make a decision which actions need to be taken. So the classification needs to be
done as soon as possible. This classification has to be performed using radar measurements since

N
2The effective sample size is often estimated by Ness =1/ _Zl(q,(;))Q
1=
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2. Models

these measurements are used on the naval ships to locate the different objects in the surrounding
area.

First in section 3 we investigate if our method is viable. Our method is tested using simulated
radar measurements. These measurements are created by ourselves to see if our method works in
the best possible conditions. Next in section 4 we try to find good settings for our method. With
good settings we mean settings such that our method is able to distinguish different trajectories
correctly without having to adjust these settings per case. So we try to come up with some general
settings which lead to a good overall performance of our method without having to adjust these
settings per situation. We try to find these settings using GPS measurements. We use GPS
measurements in the finetuning of our method since these are much more accurate in comparison
to radar measurements. In section 5 we investigate if the proposed general settings still hold when
radar measurements are used instead of GPS measurements. Eventually in section 6 we develop
a detector which can automatically distinguish a weave trajectory from a non-weave trajectory.
Again we try to find general settings for our detector such that our method has a good overall
performance when different trajectories are encountered without having to change these settings.
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3. Results using simulated radar measurements

3. Results using simulated radar
measurements

In section 2 we introduced the to be used method. To investigate if this method is viable and to get
familiar with the different aspects of the method we have tested our method on simulated radar
measurements created by ourselves. First we explain how we have created these measurements
whereafter we look at the different aspects of the method. Some preliminary results are then
given. More results from the investigation of the different aspects of the method are given in
appendix A.

The results in this section are merely used to investigate if our method is viable. We will not
go into great detail on all the aspects of our method, this will be done in later research. Since our
main goal is to implement our method in a radar environment, we simulated radar measurements
which we use while investigating the viability of our method.

3.1 Simulated measurements

Since our focus lies on distinguishing a weave trajectory, we have created such a weave trajectory
ourselves. This weave trajectory is based on the NCV- and ACT-model. We chose an initial state
and let this state evolve according to either the NCV- or the ACT-model in such a way that a
weave trajectory was created. We used an angular velocity of 0.1rad/s and set the process noise
equal to zero. Next we converted the state into radar data using the following equations:

\Tr + Vs

Ty =

b, = arctan(%), (3.1)
Yk

de = TrVUg k + YUy k

ko = .
Tk

With ri the range, by the bearing and dj the Doppler velocity of the object at time k. We added
some measurement noise to this data to create the radar measurements.

To obtain results we performed Monte-Carlo simulations. We used this technique since our
method contains stochastic elements. To get representative results of our method and not by
accident get one really good or really bad result we performed multiple Monte-Carlo runs. We also
want to know if our method structurally performs well. The measurement noise was generated
separately for each Monte-Carlo run. We also created a straight-curve-straight trajectory using
the same dynamical models. The created trajectories are shown in figure 3.1. Both trajectories
start at « = 200m and y = 200m and have initial velocities of v, = 1m/s and v, = 1m/s.

3.2 Model settings

Using the created measurements we have investigated the influence of different settings of the
models on our method. We looked at the following parameters:

Number of particles

Process noise

Initial state

Measurement noise

Sampling time

Mode transition probability matrix
Submode transition probability matrix
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Figure 3.1: Created trajectories

3.2.1 Number of particles

In particle filtering the particles are used to approximate the posterior density function. This
posterior is better approximated when more particles are used. Unfortunately the use of more
particles leads to an increased computation time of our method. So we need to find a number of
particles which is large enough to approximate this posterior well, but we also do not want a too
large number to keep the computation time small enough.

We also need to keep an eye on the number of particles per mode and per submode. It is
possible that in some cases there is only a small number of particles in a certain mode. This
can lead to an inaccurate representation of the posterior in that particular mode, which on one
hand is undesirable. On the other hand when we encounter a scenario in which the object very
clearly follows the trajectory corresponding to a certain mode. It is likely to get a small number of
particles in the other modes which in this case is not unexpected and perhaps even not undesirable.
But in general we want a large enough number of particles in each mode to represent the posterior
in each mode correctly.

3.2.2 Process noise

The process noise influences the prediction of the particles. It is unlikely that the object precisely
follows the used dynamical models, so some uncertainty is added in the form of process noise. The
magnitude of the process noise should be chosen such that it is just large enough to cope with the
deviation of the object with respect to the dynamical models, but not too large. If we choose the
process noise too large it can happen that predictions according to different dynamical models have
some overlap, see figure 3.2. Obviously this overlap between dynamical models is undesirable since
for example when the process noise is set too large a curve can be predicted via the dynamical
model for a straight line trajectory. So a wrong classification can be made while the object is being
tracked correctly. So we need to set the process noise such that the different dynamical models are

distinctive enough.
%&b PO

(a) High process noise creating overlap (b) Low process noise, no overlap

Figure 3.2: Prediction via the dynamical models for a straight and a curve
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3.2.3 Initial state

To investigate the limitations of our method we have looked at the performance of our method
for different ranges of the object with respect to the radar. We performed simulations using
different initial states for our created measurements. It turned out that our method can not handle
trajectories which start close to the radar, within 10 - 20 meters. This is a direct consequence of the
way we initialize the particles. We initialize the particles in a square around the first measurement,
therefore if the first measurement is close to the radar we get a large interval for the possible bearing
angles for these initial particles. So the predication of these particles is off, creating a larger error
as a result of a ‘bad startup’ due to our method. But since we do not expect a hostile ship to be
starting its trajectory this close to the radar we do not expect any startup problems like the one
described.

Furthermore we see a larger error when the trajectory lies close to the radar at any point in
time. This is the result of the particle cloud lying ‘over the radar’ creating predictions via ‘wrong’
bearing angles, creating a larger error.

Also the further away the object’s trajectory with respect to the radar is, the larger the errors
of our method. This is something we expected since the radar’s absolute error due to the bearing
error of the radar increases when an object is further away from the radar. The radar is less able
to accurately track the object.

3.2.4 Measurement noise

The measurement noise is a measure of uncertainty of the radar. The values of the measurement
noise can therefore differ per radar. We performed simulations using various magnitudes of mea-
surement noise. These simulations show us smaller errors when the measurement noise is smaller.
This is a logical outcome since the radar then has a smaller uncertainty and hence a larger accuracy.

3.2.5 Sampling time

The sampling time is the time between measurements. Normally this sampling time is determined
by the radar system and can not be influenced. But for the purposes of investigating the effect
of the sampling time on our method we performed simulation using various sampling times. It
turned out that for the values we have used, namely 1s, 2s, 3s and 5s, the method still performs
well. Obviously the errors become larger when the time between measurements increases. Since
the time between measurements is larger the influence of the process noise is also larger since the
process noise depends on the time step, T. So the uncertainties on the prediction of the particles
is larger due to the process noise, hence we expect to see larger errors.

3.2.6 Mode transition probability matrix

The mode transition probability matrix, IL,,, governs the transitions of the mode of each particle.
The entries of this matrix directly influence the tracking and classification performance of our
method. When we ‘force’ more particles in a certain mode by making the probabilities of transi-
tioning to this particular mode larger, we see a larger fraction of particles this mode. If this mode
is not the mode the real object is following, we see an increase in errors since a large number of
particles is predicted according to the wrong mode. Not all these ‘wrong’ predictions are omitted
in resampling, so errors increase. Small changes of the entries in this matrix immediately affect
the outcome of our method.

3.2.7 Submode transition probability matrix

In the same way the mode transition matrix governs the transitions of the mode of each particle,
the submode transition probability matrix, Il,,,,, governs the transitions of the submode of the
particles when they are in the mode weave. This matrix is completely determined by ps., and pcs,
These probabilities are determined by the min-method or by the if-else-method. We performed
simulations using different parameters settings of both methods. We see that the classification is
better when 6,4, and 6,4, are better estimations of the actual weave size. We also see that these
variables can better be estimated too large then too small since otherwise an undesired transition
is forced too soon. We got good results for the if-else-method when we chose p; in the order of
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0.05 and p2 in the order of 0.95. For the min-method we got good results for n = 25. But more
simulations with varying values of these parameters need to be carried out using real measurements.

3.3 Preliminary conclusions

In figure 3.3 the results of the most promising simulation are presented. We used the weave
trajectory of figure 3.1a as the true trajectory. We performed 100 Monte-Carlo runs in which the
measurement noise was generated separately each run. Per run we used 6,500 particles, also we
used the if-else-method to determine the entries of the submode transition probability matrix. We
used p; = 0.05 and py = 0.95 and slightly overestimated the values of 9,4, and 6,,4,. The shown
results are averages over all runs.

Average position error Average fraction of the particles in different modes
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Figure 3.3: Errors and classification of most promising results using simulated radar measurements

When we look at the results in figure 3.3 we see after some ‘startup period’ a large fraction of
particles in the mode weave. This is exactly what we want since the object is following a weave
trajectory. Furthermore we see that the position error in both z- and y-direction is approximately
2m. The error in velocity in both directions is approximately 0.2m/s. We see some peaks in the
errors of the velocity. These peaks come from the fact that the object performs a turn at these
points. Therefore it is hard to accurately estimate the velocity of the object.

We see that our method has a good tracking and classification performance and therefore we
can conclude that our method is viable. We need to further investigate the performance of our
method when real measurements are used. During this further research we need to be aware of
the used number of particles to represent the posterior correctly. The magnitude of the process
noise should be investigated when real measurements are used since these real measurements are
not that neatly defined as our simulated measurements. Our method can track and classify an
object at different ranges with respect to the radar, but also has its limitations in the sense that
this ability decreases when the object is too close or too far from the radar. Our method is also
able to cope with different sampling times. The entries in the mode transition matrix should be
determined by performing many simulations using real measurements since small changes in these
entries already affect the outcome of the method. While determining the entries of the submode
transition matrix we need to keep comparing the results for both the if-else-method and the min-
method to see which method performs better. As for the estimations of d,,4, and 6,4, we can
better overestimate than underestimate these values for a better classification.
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4. Results using GPS
measurements

The preliminary results of section 3 show us that our method is viable. Until now we have tested
our method only using measurements created by ourselves. These measurements are very neatly
defined and present the most favorable conditions for the method to work with. Unfortunately in
real-life situations these measurements are often not that neatly defined. So to investigate if our
method also works in these kind of real-life situations we used measurements obtained by Thales.
These measurements are GPS data loggings of different vessels. We use this data in the finetuning
of the setting of our method and in the investigation of the distinctiveness of the different dynamical
models.

Eventually we want to implement our method in a radar environment. Unfortunately radar
measurements have some disadvantages over GPS measurements like the accuracy and dependency
of the measurement noise on the position of the object. But in real life we need to use a radar to
obtain the measurements since not all vessels simply "hand over’ their correct GPS information.
Since the theory behind our method does not change when different measurement types are used,
we first try to finetune the settings of our method using GPS measurements. These settings should
be chosen such that they work for a wide variety of trajectories and variations of trajectories since
we do not want to have to establish these settings in each different situation. Due to the advantages
of GPS measurements over radar measurements we first try to find these settings using the GPS
measurements and in section 5 use these settings to see if they still hold when radar measurements
are used.

4.1 GPS Measurements

GPS is the abbreviation of Global Positioning System. It is a satellite navigation system which pro-
vides the location of the object. GPS measurements have the advantage over radar measurements
that the measurement noise of GPS measurements is independent of the position of the object, it
acts in the x- and y-direction. Therefore this GPS measurements are useful in the finetuning of
the settings of our method and determining the magnitude of the process noise parameters for the
different dynamical models.

The trajectories we use as true trajectories in this section are shown in figure 4.1. During the
finetuning we also used different trajectories. More details and results using these other trajectories
are given in appendix B.

4.2 Tuning of the settings

To describe reality closely, the settings of our method should be chosen such that our method is
first of all able to track an object correctly. We used the GPS data loggings to tune the settings
such that we get some general settings for which our method has a good tracking performance for
various trajectories. We do not want to have to establish new values for the parameters whenever
a new scenario is encountered. Next we looked at the ability of our method to classify the different
trajectories.

4.2.1 Measurement noise

For the tuning of the settings we first investigated the used measurements. We started by looking
at the possible measurement noise settings. In most cases these settings are known since it is known
what kind of GPS is used and what its reliability is. In our case we only have the knowledge that
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Figure 4.1: Different trajectories obtained from GPS data loggings

the measurements are GPS data loggings but have no knowledge of the reliability of this GPS
system.

We investigated the magnitude of the measurement noise by applying a moving average scheme
on the measurements and comparing these results with the original measurements. We expect
the vessels to follow a smooth pattern, so by investigating the differences between the original
measurements and the measurements on which a moving average scheme is applied we try to
find the magnitude of the measurement noise parameters. We found that the measurement noise
parameters in both x— and y—direction have a magnitude of 1m, which is a magnitude which can
be expected for GPS measurements.

4.2.2 Process noise

After we established these measurement noise parameters we investigated the tracking performance
of our method. Because we first want to know if the used dynamical models are distinctive enough
and result in a good tracking performance, we temporarily ‘disabled’ the mode weave. So we only
allowed particles to be in the modes straight, left curve and right curve. The tracking performance
is among others influenced by the process noise parameters, so we investigated the magnitude of
these parameters.’

In the NCV-model we have two process noise parameters one in x— and one in y—direction. In
most literature both parameters have a value of % times the maximal acceleration in that direction.
When we looked at the measurements, we saw that some vessels decelerate before making a turn
at such a rate that our method could not cope with this deceleration. These turns were entered
in various headings. Therefore we could not simply adjust the magnitude of the process noise
parameters of the NCV-model, since these act in the z— and y—direction and are not dependent
on the heading of the object. So we introduced the CM-model in which the process noise acts in
normal and tangential direction, see section 2.2.2. Using this modification we could tune the process
noise parameters such that our method could cope with this kind of deceleration. Now the process
noise acts in the heading direction and is therefore better ‘tunable’ to cope with the deceleration.
Eventually we found a good tracking performance using o, = 2m/s? and o,, = 1.754e — 5m/s2.
Using these magnitudes our method is able to cope with the deceleration before turns. The ‘heading
uncertainty’, o,, , is chosen small since we expect and see that the vessels follow nice straight lines.

The ACT-model has three process noise variables, one in x—direction, one in y—direction and
one for the angular velocity. In this model the process noise parameters on the position act in

1One thing to note is that in the particle filter implementation we made sure that the dynamical models for a
left curve and a right curve are really distinct. Since we update the angular velocity of a particle by adding a noise
term to the old angular velocity it could happen that this angular velocity changes sign during such an update
thereby creating some overlap between the two dynamical models. This is obviously undesirable since the particle
can be ‘considered’ as being in a right (or left) curve but be predicted according to a left (or right) curve. To work
around this problem and not change the distribution of the noise term which is added to the old angular velocity we
give the particles of which the angular velocity changes sign a weight of 0. We also rescale the weights of the other
particles such that the sum over all weights remains 1 which is necessary to use the posterior as a distribution.
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the z— and y—direction since a turn can hypothetically evolve in any direction since the angular
velocity can increase or decrease making the curve more sharper or more straight. Therefore the
process noise should act independent of the heading of the object, so we chose to still use the
NCV-model when an object follows a curve. The process noise parameter for the angular velocity
is set to 0.01rad/s since we expect only small changes in the angular velocity while in a curve.
The other process noise parameters are chosen as follows 0, = 04, = 1m/ s2.

The magnitude of these settings is determined by performing simulations using different set-
tings. It can be that these values are not optimal in the sense that an even better tracking
performance can possibly be reached. But finding the optimal values would take even more simu-
lations. Using these settings for the process noise parameters our method is able to track an object
correctly. Therefore we choose to continue our research using these magnitudes.

After we got a satisfying tracking performance we ‘enabled’ the mode weave again. We looked
if the method still had a good tracking performance, this was indeed the case. This was expected
since the models used in the mode weave are the same as the models which we used in the finetuning
of the tracking performance. Therefore the tracking performance of our method did not decrease.

4.2.3 Classification

Eventually we want to classify the trajectory based on the output of our method. For this classifi-
cation we look at the fraction of particles in each mode per time step. In this way these fractions
represent the probability our method gives to the object following the trajectory corresponding
to that mode. To investigate which settings give the best results we performed many simulations
using the different trajectories as true trajectories and different settings for our method.

Mode

We started by closely looking at the mode transition probability matrix, II,,. This matrix should
represent the (real-life) probabilities of making transitions between the different possible modes or
trajectories. We first used a matrix in which the following transitions were possible, see figure 4.2.

lght y .

Figure 4.2: Schematic representation of possible mode transitions used in early research

We only allowed transitions out of the curve modes to go to the mode weave. But after
reexamining this, we argued that transitions to the mode ‘weave’ should only be possible from the
mode ‘straight’. Modeling transitions in this way we think gives a better representation of the
transitions in real life.

Using the old transitions a straight-curve-straight trajectory would at some point be classified
as a weave trajectory since the particles can only get to the mode straight from a curve mode via
the mode weave. Since we use the same dynamical models in all the modes we get that our method
still is able to track the straight-curve-straight trajectory but at some point classifies it as a weave
trajectory, which is undesirable.

Also when we compared results using the ‘old’ possible mode transitions and the ‘new’ possible
mode transitions of figure 2.3, we found better classification performance using the ‘new’ possible
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transitions when a straight-curve-straight trajectory was used in the simulations as the true tra-
jectory. By performing additional simulations using different trajectories as true trajectories we
chose II,,, in the following way:

0.97 0.01 0.01 0.01
035 065 O 0
035 0 065 0
0.03 O 0 097

10, = (4.1)

We used this matrix while finetuning the other settings.

Submode

From the preliminary results of section 3.3 we know that we can better overestimate than under-
estimate the variables 0,4, and 0,,4,. To get a feeling on how large these variables should be, we
investigated the measurements. We looked at the trajectories of of the GPS data loggings to see
how the average weave encountered in the GPS data loggings looks like. The different trajectories
obviously contained different sized weave trajectories. Eventually we set the variable d,,,4, to 500m
since this is the maximal length of a straight segment in one of the weave trajectories. We chose
Omaz to be 180° or wrad, this is a choice to define a weave trajectory as having curves of maximal
mrad.

We choose these values in such a way that all the segments of the weave trajectories we inves-
tigated are smaller than the segments defined by 0,4, and 6,,4,. This for the fact that we want
to keep these variables the same while investigating different trajectories. In real life we do not
have this kind of knowledge for each individual weave trajectory. So to cope with the absence
of this knowledge we chose 0,4, and 0,4, large so we do not underestimate these variable, since
we have already established that we can better overestimate than underestimate these variables.
Remember that we try to find general settings such that our method has a good tracking and
classification performance for various trajectories and variations in trajectories without having to
change or re-establish these settings.

The transition probabilities in the submode transition probability matrix, Ils,,, , are determined
using two methods; the if-else-method and the min-method, see section 2.3.2. We have compared
the different methods and varied the magnitude of §,,,, and 6,,4,. These results can be found in
appendix B.

From these simulations we conclude that the preliminary conclusions of section 3.3 regarding
the submode still hold. A better estimation of d,,4, and 6,,., results in a better classification
and overestimating these variables is better than underestimating these variables. Also the if-else-
method gives better results and therefore we find this method more favorable.

Non-weave trajectory

To see how our method copes with trajectories that are not a weave or a straight line, we performed
simulations using other non-weave trajectories. We specifically used a straight-curve-straight tra-
jectory in which the angle of the curve is approximately nrad, see figure 4.3. It is important to
note that the trajectory shown in this figure is simulated by ourselves and is not obtained from
the GPS data loggings.

The curve of this trajectory is close to 0,42, possibly making it hard for our method to dis-
tinguish this non-weave trajectory from a weave trajectory. To obtain the results of figure 4.4 we
used 10,000 particles and performed 10 Monte-Carlo runs in which the measurement noise was
generated separately. We used the trajectory of figure 4.3 as the true trajectory. The shown result
is the average over all runs.
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Figure 4.3: True trajectory for straight-curve-straight trajectory
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Figure 4.4: Errors and classification for straight-curve-straight trajectory using IL,, as in (4.1)

We see that the errors in both velocity and position in all directions is very small. We see a
peak in the errors at the first time step in which the object enters the left curve. These errors are
due to the fact that our method needs some time steps to get a large fraction of particles in the
correct mode such that the object is tracked correctly.

Figure 4.4b show us that our method gives a high probability of the trajectory being a weave
when the object is in the curve of the trajectory. This is undesirable since we specifically stated
that we want to classify this trajectory as a non-weave trajectory. But when we look at II,,, again,
see (4.1), we see that this peak in the fraction of particles in the mode weave is explainable. The
probability of a transition from the mode straight to any other mode is equal for these modes. But
the probability of staying in the mode weave is significantly larger than the probability of staying
in a curve mode. Since we use the same dynamical models in the different modes we are able to
track the turn of the object in the mode weave as good as in any curve mode. Together this results
in a higher fraction of particles in the mode weave while making a turn.

Since we were not yet satisfied with this result we again looked at the entries of IT,,. We made
the probability of a transition from the mode straight to any of the curve modes larger than the
transition of the mode straight to the mode weave. In real life it is more likely to come across
a curve in comparison to a weave, therefore we choose the probability of a transition to a curve
mode larger than a transition to the mode weave. We want to ‘force’ more particles in the curve
modes. Also we slightly increased the probability of staying in a curve mode while in this curve
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mode. These adjustments led to the following mode transition probability matrix:

0.97 0.012 0.012 0.006
0.34 0.66 0 0
M = 0.34 0 0.66 0 | (42)

0.03 0 0 0.97

Using this II,,, we found better results. In figure 4.5 the results for a simulation in which we used
the trajectory shown in figure 4.3 as the true trajectory. We used 10,000 particles and performed
10 Monte-Carlo runs in which the measurement noise was generated separately. The shown results
are averages over all runs.
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Figure 4.5: Errors and classification for straight-curve-straight trajectory using IL,, as in (4.2)

The errors of figure 4.5a are of the same magnitude as the errors of figure 4.4a. In figure 4.5b
we still see a peak of the fraction of particles in the mode weave, but it is smaller than in figure 4.4b
and also the fraction of particles in the mode left curve is larger. We could try to reduce the peak
in the fraction of particles in the mode weave for these kind of trajectories even more by making
the probability of staying in one of the curve modes larger. But we chose not to do this since then
we feel like these probabilities reflect the probabilities for real-life situations worse. It is likely that
a turn of an object ends at some point and the object transitions to a straight segment. While
when an object follows a weave trajectory it is likely to keep following that trajectory. Therefore
the probability of staying in one of the curve modes is smaller than the probability of staying in
the mode weave.

Also when we increase the probability of staying in one of the curve modes to the order of
0.97, we see that a weave trajectory is not classified as such anymore. It is classified as a sequence
of curve and straight segments. Since more particles are now forced into the curve modes in
comparison to the mode weave and the tracking performance in all modes is equal we see that
the fraction of particles in the mode weave stays low. So our method’s classification performance
decreases when tracking a weave trajectory. Therefore we choose to keep II,, as in (4.2).

4.3 Final settings

Using the GPS data loggings we finetuned the settings of our method. We found general settings
with which we can track and distinguish different types of trajectories using GPS measurements
without having to adjust these settings per trajectory we encounter. We found the following
settings:

0.97 0.012 0.012 0.006

o Il — 0.34 0.66 0 0
™ 10.34 0 0.66 0
0.03 0 0 0.97
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To show the outcomes of our method using these ’final’ settings we performed simulations using
10,000 particles and 10 MC-runs. For trajectory 1 the measurement noise was the same for all
runs. For trajectory 2 the measurement noise was generated separately each run.? These results
are shown in figure 4.6 and 4.7. More results using other trajectories can be found in appendix B.
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Figure 4.7: Errors and classification using trajectory 2 as true trajectory

Figure 4.6b shows the classification of trajectory 1. It clearly shows that this trajectory is most

likely a straight trajectory which is indeed the case.

When we look at the errors in position and velocity of the figures 4.6 and 4.7, we see that the
errors of figure 4.7 are clearly larger. The dynamical model used when the object follows a curve is
more complex then the dynamical model when the object follows a straight line. Also the angular
velocity has to be estimated in a curve. Therefore there is a larger uncertainty when estimating
the position and velocity of the object while it follows a curve in comparison to when it follows a

2This difference in measurement noise generation is due to the format in which the measurements were available

at Thales
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straight line. In figure 4.6 the object only follows a straight line. Where in figure 4.7 the object
also follows curves. Therefore the errors of figure 4.7 are larger than the errors of figure 4.6.

If we look at figure 4.7b we do not see such a clear classification. Our method starts well
by giving large probability of the first part of the trajectory being a straight trajectory, which is
indeed the case. Next a weave is entered, which we see in the classification output by an increase
of the fraction of particles in the mode weave. But while this weave continues we see that the
fraction of particles in the mode weave somewhat alternates with the fraction of particles in the
mode straight. While in the best case scenario when the object follows a weave trajectory we do
not want this alternating behavior but just a high fraction of particles in the mode weave.

This alternating behavior is explainable. Since we use the same dynamical models in the
different modes we are able to track a straight segment in the mode weave as good as in the
mode straight. So we expect to still see a large fraction of particles in the mode weave while the
object follows a straight segment of a weave trajectory. But when we look at II,,, see (4.2), we
see that more particles are forced into the mode straight than into the other modes. This is so
since the probability of transitioning from the mode straight to the mode weave is smaller than the
probability of a transition from the mode weave to the mode straight. Also there are transitions
possible from the curve modes to the mode straight and not to the mode weave. So when the
object is following a straight segment in a weave it is more likely for the particles to transition to
or stay in the mode straight than it is to transition to or stay in the mode weave since in both
modes the tracking performance is exactly the same.

Perhaps the idea of more particles being forced into the mode straight becomes more clear when
we look at the stationary distribution of the Markov process governed by II,,. We computed that
this stationary distribution is:

[m1 my ms m) =[0.7870 0.0278 0.0278 0.1574].

Hence we indeed see a larger fraction of particles being forced in the mode straight in the long
run if we only look at the evolution of the Markov process. As said before, the tracking performance
in each mode is equal so it is likely that this phenomenon is not negated by other aspects of our
method as for example the resampling of the particles. Therefore we see this alternating behavior
between the modes straight and weave while the object is following a weave.

The last part of the classification also shows the alternating behavior between the modes weave
and straight while the object follows a weave trajectory. Right before this second weave the object
follows a curve of more than nrad. In the classification plot of figure 4.7b we see a peak at this
point of the fraction of particles in the mode left curve, which is good. We also see a (smaller) peak
in of the fraction of particles in the mode weave. This peak is explained by the fact that at first
this curve looks very much like the average curve of a weave defined by 0,4, which is 7rad, we
see an increase in the fraction of particles in the mode weave. But as the object continues further
in a straight line trajectory we see that the fraction of particles in the mode weave decreases again
and only starts to increase again when the object starts following a weave trajectory.
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5. Results using radar
measurements

Our research until now shows that our method is viable and that we have a method which has a good
tracking performance when GPS measurements or simulated measurements created by ourselves
are used. Our method is also able to distinguish different trajectories when GPS measurements
are used. But as stated throughout this report we aim for a radar application which is able to
track and classify the different trajectories. Therefore we convert the GPS data loggings into
radar measurements using (3.1). Using this conversion we position the radar at the point (z,y) =
(0m,0m). We used the same GPS data loggings which are used in section 4.

Throughout this section we see the GPS data loggings as the true trajectory. We convert these
to radar data and add some measurement noise to create the corresponding radar measurements.
The goal of this section is to find settings such that our method is able to track and classify various
trajectories using only one specific set of settings. Since in real life we are not able to establish
these settings for each situation, we want to find a set of settings such that our method performs
well in general.

5.1 Radar measurements

Where a GPS ‘measures’ the x— and y—position of the object, the radar we use measures the range,
bearing angle and Doppler velocity of the object. Therefore we also have three measurement noise
parameters. Due to the different type of measurements, we also get a different ‘shape’ of the
measurement noise. To clarify this we have schematically drawn the measurement noise ‘clouds’
for a measurement of a weave trajectory using a GPS and a radar, see figure 5.1.

(a) Measurement noise cloud using GPS ~ (b) Measurement noise cloud using radar

Figure 5.1: Schematic drawing of measurement noise cloud for different measurement types.

When using radar measurements the measurement noise can have a more significant influence
on the output of the method since it can lie over a larger part of the trajectory. Perhaps even
overlapping a (part of a) curve segment and a (part of a) straight segment, making it harder to
distinguish these segments from another.

Also the effect of the measurement noise ‘increases’” when the range of the object increases.
Of course the measurement noise parameters stay the same but due to the increasing range the
bearing measurement has a larger absolute error, therefore creating a larger measurement noise
‘cloud’.

The values of the measurement noise parameters can differ per radar since different radars
can have different performances. We chose to use the following values for the measurement noise
parameters: o, = 10m, o, = 0.005rad and o4 = 3m/s.
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5.2 Results using final settings

In section 4 we determined settings for which our method tracks and classifies different trajectories.
These settings are determined using GPS data loggings. The conversion of these GPS measure-
ments to radar measurements do not change the proposed method. The only difference is the
type of measurements which are being used. This can of course influence the performance of the
method. In this case we expect our method to have a better performance when GPS measurements
are used compared to when radar measurements are used. As explained in section 5.1 the noise of
radar measurements is more complex and depends on the position of the object. Where the noise
of GPS measurements is independent of the position of the object. Therefore we expect that the
radar measurements have a negative influence on the performance of our method in comparison to
GPS measurements.

To investigate if our expectations about the performance of our method using radar measure-
ments is true, we performed simulations using the settings of section 4.3. We performed simulations
using 10,000 particles and 10 MC-runs. The results are shown in figures 5.2 and 5.3 and use re-
spectively the trajectories of figure 4.1 as the true trajectories. For trajectory 1 the measurement
noise was the same for all runs. For trajectory 2 the measurement noise was generated separately
each run.! The shown results are averages over all runs. Results for other trajectories can be found
in appendix C.
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Figure 5.3: Errors and classification using trajectory 2 as true trajectory

IThis difference in measurement noise generation is due to the format in which the measurements were available
at Thales
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We see that both results have a significantly larger position and velocity error than the results
of figures 4.6 and 4.7 where GPS measurements were used. For these last results we use radar
measurement which result in a larger error as already explained.

Figure 5.2b shows the classification of trajectory 1. Just like the simulation outcome using
GPS measurements, it clearly shows that this trajectory is most likely a straight trajectory which
is indeed the case. We do see that the fraction of particles in the mode straight is bound between
approximately 0.85 and 0.95 where the fraction of particles in the mode straight in figure 4.6b
is almost everywhere around 0.98. So we do see some differences between the classification plots
when GPS or radar measurements are used but these differences seem not significant.

When we look at figure 5.3b we see a similar classification plot as when GPS measurements
were used, see figure 4.7b. We do see that the fraction of particles in the modes left curve and
right curve is lower when radar measurements are used. Also the alternation between the modes
weave and straight is bound between approximately 0.3 and 0.7 where this alternation is bound
between 0.2 and 0.8 when GPS measurements are used.

It looks like the classification when radar measurements are used is less reactive in compari-
son to the classification when GPS measurements are used. This can be explained by the larger
uncertainty of the radar measurements. The GPS measurements are more accurate and can there-
fore detect the different turns the object makes faster. So when using the GPS measurements
the classification our method makes reacts faster in comparison to when radar measurements are
used. But still when radar measurements are used we can distinguish the classification plots for
the different trajectories.

5.3 Limitations

The results in section 5.2 show that we are able to distinguish a weave trajectory from a straight
line trajectory using the proposed methods. To see to which extent our method is able to do so
we investigated the limitations of our method which originate from the use of using radar mea-
surements. As said before, radar measurements can influence our methods performance since the
uncertainty of the radar measurements is larger then for GPS measurements and is also dependent
on the position of the object.

To investigate the limitations of the use of radar measurements we rotated a weave segment
of the trajectory of figure 4.1b and moved this trajectory in the x,y-plane to use it as the true
trajectory during the simulations, see figure 5.4. The object starts at the leftmost point and ends
at the point (x,y) = (1000m,1000m). For each of the simulations we used 10,000 particles and
performed 10 Monte-Carlo runs for which the measurement noise was generated separately each
run. The shown results are averages over all runs.
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Figure 5.4: Weave trajectory

5.3.1 Range

The radar measurements we use have a fixed measurement noise parameter for the noise in bearing.
Since this angle is fixed we see a larger ‘absolute’ uncertainty of the bearing measurement when
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the range of the object increases. We expect that at some point our method is not able anymore
to distinguish a weave trajectory from other trajectories due to this larger uncertainty.

For example suppose an object follows a straight line trajectory and for explanatory purposes
only take the uncertainty in bearing into account. Since the bearing measurement noise has a
Gaussian distribution, we know with a certainty of 99.7% that the measurements of this straight
line lie between the two 3op-lines, see figure 5.5.

__---30p-line

"7 =-- 30p-line

Figure 5.5: Schematic drawing of bearing measurement for straight line trajectory.

In this figure we have also drawn two weave trajectories, one close to the radar and further
away from the radar. We see that (parts of) the close weave trajectory lie outside these 3o-lines,
but almost the entire weave trajectory further away from the radar lies between the 3o}-lines.
This means that it could be that the measurements of the straight line trajectory follow this
weave trajectory due to the uncertainty of the measurements. Which could lead to the straight
line trajectory being classified as a weave trajectory. But also our method could find that the
measurements of a weave trajectory lie within the measurement uncertainty of a straight line
trajectory and therefore could classify a weave trajectory as a straight line trajectory. So we
expect our method’s ability to classify the different trajectories to become worse when the range
of the object increases.

To see if our expectations about our method’s classification ability do hold we calculated at what
range an entire straight segment defined by 6,4, lies between the 3op-lines for the used parameter
values. This happens from a range around 16, 700m. We performed simulations in which we used
the weave trajectory of figure 5.4 as true trajectory and translated this trajectory such that it
ends at (z,y) = (1000m, 1000m), (2500m,2500m), (5000m,5000m) and (10000m,10000m), see
figures 5.6 to 5.9 respectively. With translated we mean that we shift the whole trajectory in the
x,y-plane such that the endpoints of these trajectories lie on the specified points.
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Figure 5.7: Errors and classification for weave trajectory ending at (z,y) = (2500m, 2500m)
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Figure 5.8: Errors and classification for weave trajectory ending at (z,y) = (5000m, 5000m)
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Figure 5.9: Errors and classification for weave trajectory ending at (z,y) = (10000m, 10000m)

When we look at the figures 5.6 to 5.9 we indeed see that our method’s ability to distinguish a

weave trajectory becomes worse when the range of the object increases. Already before a range of
16.700m this ability becomes so bad that the classification plot of a weave trajectory, figure 5.9b,
is similar to the classification plot of a straight line trajectory, figure 5.2b. We also see an increase
of the errors when the range increases as a result of the larger measurement uncertainty.
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When we look at the errors in position and especially velocity of the figures 5.6 to 5.9, we
see that these errors have a somewhat sinusoidal form. The dynamical model used when the
object follows a curve is more complex then the dynamical model used when the object follows
a straight line. Also the angular velocity has to be estimated in a curve. Therefore there is a
larger uncertainty when estimating the position and velocity of the object while it follows a curve
in comparison to when it follows a straight line. This causes the errors in position en velocity
to increase when the object follows a curve. When the object then follows a straight line these
errors decrease again. Since a weave trajectory consists of a sequence of alternating straight lines
and curves this increase and decease in position and velocity errors causes these plots to have a
sinusoidal form.

5.3.2 Quadrants

Another limitation we investigated is the quadrant in which the trajectory lies. We performed
simulations in which we used the weave trajectory of figure 5.4 as true trajectory and rotated
this trajectory around the radar such that the object still starts close to the radar and ends
at (z,y) = (1000m,1000m), (—1000m,1000m), (—1000m,—1000m) and (1000m,—1000m), see
figures 5.10 to 5.13 respectively.

When we look at the results in the figure figures 5.10 to 5.13 we see that the errors in all four
quadrant are of the same magnitude. Also the classification plots are similar. So both the tracking
performance and the classification performance is independent of the position of the object with
respect to the radar at the same range with respect to the radar.
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Figure 5.10: Errors and classification for weave trajectory ending at (z,y) = (1000m, 1000m)
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Figure 5.13: Errors and classification for weave trajectory ending at (z,y) = (1000m, —1000m)

5.3.3 Orientation

The last limitation we investigated is the ability of our method to distinguish a weave trajectory
when its overall direction differs, so for different orientations of the weave. The orientations of a

weave

trajectory we investigated are shown in figure 5.14.
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Figure 5.14: Schematic drawing of different overall orientations of weave trajectories.
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For the true trajectory we used the weave trajectory of figure 5.4. We rotated this trajectory
such that the orientations of figure 5.14 were investigated. All different trajectories ended at
the point (x,y) = (1000m, 1000m). The results using these different orientations are shown in
figures 5.15 to 5.19.

When we look at the results of figures 5.15 to 5.19, we see that all figures except figure 5.19
show similar classification plots and the errors are of the same magnitude. The results in figure 5.19
show a slightly larger error and a slightly worse classification plot. This comes from the fact that
the weave used as true trajectory for this orientation starts further away from the radar and ends
at the point (z,y) = (1000m,1000m). Therefore it is expected to see a little worse classification
and some larger errors as already stated in section 5.3.1. So we conclude that the orientation of the
weave does not affect the tracking and classification ability of our method when these trajectories
are at a similar range with respect to the radar.
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Figure 5.17: Errors and classification using weave orientation 3
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Figure 5.18: Errors and classification using weave orientation 4
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Figure 5.19: Errors and classification using weave orientation 5

5.4 Preliminary conclusions

We can conclude that our method is able to distinguish weave trajectories from other trajectories
when radar measurements are used in combination with settings which we do not have to adjust
per trajectory in the sense that we can clearly distinguish the different classification plots from
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each other. So in this sense our research question can be answered. But we also want to make it
plausible that the classification can be done automatically at each time step. Therefore we have
modeled a detector which is further explained in section 6.

Also we looked at the limitations of our method and can conclude that our method’s tracking
and classification performance gets worse when the range of the object with respect to the radar
increases. The quadrant in which the trajectory lies and the orientation of the trajectory has no
influence on the tracking and classification performance.
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6. Detector

At this point in our research we are able to distinguish different classification plots when different
trajectories are used as true trajectories in combination with radar measurements and with settings
which do not have to be re-established for each trajectory, see section 5.2. But this classification
is now done by looking at the plots after the simulation is completed. Since our goal was to
help the radar operator in his decision making process, we want our method to track and classify
the different trajectories simultaneously and as fast as possible. To make it plausible that this is
actually possible we want to build a simple detector.

6.1 Simple detector

When we look at the classification plots in section 5 we can distinguish different types of classifi-
cation plots but the classification itself is not immediately clear. The plots are hard to interpret
by just looking at them. Therefore we want to build a detector which provides us with the most
likely trajectory the object is following at each point in time.

First we used a very simple detector. The detector looks at the largest fraction of particles in
the different modes and outputs that particular mode as being the most likely trajectory. When we
look at figure 6.1a, where we see the classification plot, of a simulation using a weave trajectory as
true trajectory, of figure 5.6 again, we already see that the fraction of particles in the mode weave
is not always the largest fraction of particles. Hence when we look at the output of the proposed
detector, figure 6.1b, we see that the detector classifies this trajectory as not being a weave for
many time step, but we want to see a clear classification of the trajectory being a weave at all time
steps.
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Figure 6.1: Classification and detector output using largest fraction of particles in the detector

So we conclude that a detector which looks at the highest fraction of particles does not work.
Therefore we looked at a different detector. Eventually we used a detector which is based on
applying a threshold on the average fraction of particles in the mode weave over the past N time
steps.

6.2 Final detector

The idea behind looking at the average fraction of particles in the mode weave over the past N time
steps comes from the current classification plots. We see an alternation between a large fraction of
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particles in the mode weave and a large fraction of particles in the mode straight, as explained in
section 4.3. If we take the average fraction of particles in the mode weave over some time steps we
hope to end up with a plot in which we ’filtered out’ this alternation and make it easier to apply
a threshold on these averages.

The detector we have built uses the average fraction of particles in the mode weave over the
past N time steps. So at time step k we look at the following:

k
+~ X F(i),ifk>N,
AF(k) _ i=k—N+1

When AF(k) < 7, no weave detected,
when AF(k) > 7, weave detected.

In which N is the window length, k the current time step, F'(¢) the fraction of particles in the
mode weave at time i, AF(k) the averaged fraction of particles in the mode weave at time k and
7 the threshold for detecting a weave.

By looking at the average fraction of particles we expect our detector to be more robust. A weave
trajectory should be followed for a longer period of time, therefore we expect the average fraction
of particles over a most of this period to be larger then a certain threshold. The window length
N should be chosen such that a weave is expected to last longer than N time steps. This to make
the detector robust. If we would choose a window length which for example only covers a straight-
curve-straight segment of a weave trajectory, we would get a lot of weave classifications for straight-
curve-straight trajectories thereby giving false alarms. By choosing the window length large enough
we will not classify such trajectories as being a weave trajectory and thereby decreasing the false
alarm rate.

Also when we look at a part of the weave trajectory of N time steps we need to be able to
classify that part of the trajectory as a weave trajectory ourselves since otherwise we would not
need such a detector after all since we then are able to classify only parts of a weave trajectory
already as a weave trajectory. We need to determine the threshold 7 later on such that a weave
is classified as such before the object has followed a weave trajectory for N time steps, since we
want to outperform the radar operator. Taking all this in consideration we choose N = 80.

The threshold 7 is determined by performing simulations using the different trajectories already
used throughout this research. This threshold should be chosen such that a fast weave detection
is possible and trajectories like a straight-curve-straight trajectory are not classified as a weave.
Also we want to keep the threshold the same for all scenarios. We do not want to re-establish
this threshold for every trajectory we encounter. We find a fast weave detection important since
our detector should help the radar operator in his decision making process. So we need to be
able to make a fast detection of a weave trajectory such that the radar operator can decide which
actions need to be taken. When the radar operator has made this decision, the classification
performance of that certain trajectory from that point on is not that important anymore since the
radar operator already made a decision about which actions need to be taken. After performing
different simulations we choose 7 = 0.269.

6.3 Results using final detector

Using N = 80 and 7 = 0.269 we performed simulations using the trajectories in figure 4.1 as
true trajectories in combination with radar measurements. The results using a weave trajectory,
trajectory 1 and trajectory 2 are shown in sections 6.3.1 to 6.3.3. The results for other trajectories
can be found in appendix D.

For these simulations we used 100,000 particles and performed only 1 Monte-Carlo run. In real
life we also only have ‘one run’ to make our classification. Since we only have one run we have
increased the number of particles to get a better estimation of the probability density functions.
Also during our research it turned out that our method performs well in general. Therefore multiple
MC-runs are not needed anymore. So we perform only 1 MC-run with a large number of particles
for the simulations using the detector.

Since we initialize our particles uniformly over all modes we see that our method has a startup
time. During this period the object is tracked but the classification is not yet reliable. Therefore

THALES 36



6. Detector

we do not take the fraction of particles in the mode weave in consideration during this startup
time. We disregard the detector output during this period. For the simulations in this section we
considered our method to have a startup time of 25 time steps.

6.3.1 Results for a weave trajectory

To investigate the performance of our detector when the object follows a weave trajectory we first
looked at the weave trajectory of figure 5.4 as true trajectory, see figure 6.2. This trajectory starts
at the leftmost point in figure 6.2a.
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Figure 6.2: Weave trajectory with detector output and classification

We see that our detector classifies this trajectory as a weave trajectory right after the object
goes straight again after the third turn in alternating directions. We chose the window over which
we average the particles to be 80 time steps. This window length was chosen such that we ourselves
would classify a weave trajectory as such. Therefore we want our detector to classify this trajectory
as a weave trajectory within 80 time steps, since we want to outperform the radar operator. It
turns out that this is indeed the case, see figure 6.2b.

6.3.2 Results for trajectory 1

In figure 6.3 we see the classified trajectory and detector output for which trajectory 1 is used as
true trajectory. The object follows a straight line trajectory. Our detector classifies this trajectory
as a non-weave trajectory as can be seen in figure 6.3b.
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Figure 6.3: Trajectory 1 with detector output and classification
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6.3.3 Results for trajectory 2

In figure 6.4 we see the classified trajectory and detector output for which trajectory 2 is used
as true trajectory. The object starts by going straight for some time, then it makes two right
turns and starts a weave trajectory. After some time following a weave trajectory the object goes
straight again then makes a long left turn and starts following a weave trajectory again.
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Figure 6.4: Trajectory 2 with detector output and classification

The first weave trajectory the object follows is classified as such by our detector very soon.
This comes from the fact that right before this weave trajectory starts with a left turn, the object
makes a right turn and goes straight for some time. Since these two turns have opposite directions
we see that the fraction of particles in the mode weave already increases a bit. Therefore when
the second turn of the weave trajectory is entered we see that our detector already classifies this
trajectory as being a weave trajectory.

After this first weave trajectory ends we see that our method holds on to the classification of a
weave trajectory while the object is already going straight for a longer period of time. This comes
from the fact that we use the average fraction of particles in the mode weave over the last 80 time
steps. In this way we take into account the history of the mode of the the particles. Therefore the
detector holds on to this weave classification, it is not very reactive. But this is a phenomenon we
do not find disturbing. Since the detector’s intention is to help the radar operator in his decision
making process, we need the detector to detect a weave trajectory fast. When a weave is detected,
the radar operator makes a decision on which actions he needs to take. When the object then stops
following a weave trajectory it initially does not matter that the detector classifies the straight line
trajectory which is now followed as a weave trajectory, since the radar operator has already made
a decision on which actions to take at that point in time. So we take this wrong classification for
granted.

Also when the second weave trajectory is followed by the object the detector does classifies this
as a weave trajectory. In this case the detector classifies this trajectory as a weave trajectory after
the fourth turn of the object in alternating directions.

Remark

It is important to keep in mind that the detector we have build is only used to show that it is
plausible for our method in combination with a detector to simultaneously track and classify an
object. We came up with a simple detector which fulfills this purpose. Due to time constraints
we did not focus on extending the analysis of this detector. Therefore a detailed analysis of the
detector, including an analysis of the false and missed detection and the impact of them has
not been performed. We have built this detector merely to show that simultaneous tracking and
classification is possible without having to establish different settings for this detector for each
different scenario or trajectory.
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7. Other methods for trajectory
analysis

For our research we investigated whether Markov chains can be used for trajectory analysis. Dur-
ing this research we also found literature about other methods which perhaps could be used for
trajectory analysis. These methods have some similarities to the method we developed. There-
fore we wanted to carry out some initial research on these methods to investigate whether these
methods should be investigated thoroughly in later research as alternative methods for trajectory
analysis.

The first method we investigated is stochastic context-free grammar. Grammar theory origi-
nated in computational linguistics to understand the structure of natural languages and is nowadays
widely used in biology for the probabilistic modeling of RNA structures. Bluntly said grammar
divides a sentence into words and those words are then again divided into letters. The grammar
states how the letters, words and sentences are related to each other. It is this subdivision which
perhaps could be used in trajectory analysis: a scenario (a sentence) is divided into trajectories
(words) and these trajectories are again divided into straight and curve segments (letters).

The second method we investigated are hierarchical hidden Markov models. During our research
on grammars we found some relations between different grammars and Markov models. In articles
about grammars the use of hierarchical Markov models is also spoken of. Therefore we wanted to
further investigate hierarchical hidden Markov models.

An introduction on grammars, following [17], together with an example, following [14], of
the use of stochastic context-free grammars in trajectory analysis is given. Then we present some
theory on hierarchical hidden Markov models, following [13]. Next some relations between different
grammars and Markov models is presented.

Keep in mind that the work we present here is merely some initial research into both methods.
It is not our intention to give a detailed analysis of these methods, we just want to present a general
overview of these methods, their working and possible use for trajectory analysis.

7.1 Introduction on grammars

Grammars are used in the field of formal languages and computational linguistics. A formal
language is a collection of strings having a certain predefined structure. The main questions of the
theory of formal languages are:

e String generation: Given a language, how can we derive any string from this language?

e String parsing: Given a certain string and language, how can we tell if this string is part of
this language?

The finite-dimensional models of languages that help answering these fundamental questions are
called grammars. A deterministic grammar G is a four-tuple

G = (Av g» F7 S())7
where:

A is the alphabet (the set of terminal symbols of the grammar);
£ is the set of non-terminal symbols of the grammar;

T" is the finite set of grammatical production rules;

Sp is the starting non-terminal.

The terminal symbols can be viewed as observation symbols which are generated from non-
terminal symbols. A non-terminal symbol is a symbol which can not be observed and can be
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thought of as an intermediary symbol which is eventually replaced by a single or combination of
terminal symbols. In general, T is a partially defined function of the type I' : (AU&)* — (AUE)*,
where (AU E)* is the infinite set of all finite strings formed by concatenation of symbols from A
and the empty string. We can see these production rules as a rewriting operation. In the rest of
this section we will write non-terminal symbols as capital letters and terminal symbols using lower
case letters. Using the definition of a deterministic grammar we can redefine a language in terms
of its grammar £ = L(G).

So far, the formulation of the production rules is very general in the sense that no restrictions on
this rewriting operation are given. The properties of the production rules are used by N. Chomsky
to develop a hierarchy known as the Chomsky hierarchy of grammars:

e Regular grammars (RG): Only production rules with one non-terminal on the left-hand side
of the production rule and either one terminal or one terminal followed by a non-terminal
on the right-hand side are allowed. So only production rules of the form S — a and S — aS
are allowed. Regular grammars are also referred to as finite-state grammars.

o Context-free grammars (CFG): The left hand side of the production rule must contain one
non-terminal only and the right hand side may be any string. So it has the following form:
S — vy with vy € (AUE)* .

o Context-sensitive grammars (CSG): Production rules of the form a Sas — «a;Bas are allowed
with aj,ay € (AUE)* and B a non-empty string. So the allowed transformations of non-
terminal S are dependent on its context oy and as.

e Unrestricted grammars (UG): Any production rules of the form a3 Sas — v with ay, g,y €

(AU &)*.

This hierarchy of the grammars is used by Chomsky to classify the languages in terms of the
grammars that can be used to define them: Context-sensitive language is a more restricted form
of unrestricted language, context-free language is a special case of context-sensitive language and
regular language is a special case of context-free language.

Some practical applications in which grammars could be used contain certain amounts of uncer-
tainty that are often represented by probabilistic distributions. These factors require the extension
of the grammars described above. We define a stochastic grammar. A stochastic grammar G, is a
five-tuple

GS = (A7 gv F7 PS7 SO)7

where:

A is the alphabet (the set of terminal symbols of the grammar);
£ is the set of non-terminal symbols of the grammar;
T" is the finite set of grammatical production rules;
P; is the set of probability distributions over the set of production rules I';

Sp is the starting non-terminal.

Stochastic grammars are classified and analyzed on the basis of their underlying characteristic
grammars. A characteristic grammar is obtained from the stochastic grammar by removing the
probability distribution from the grammar definition. If the underlying characteristic grammar
is an finite-state (or regular) grammar, the stochastic grammar is called a stochastic finite-state
grammar (SFSG). If the characteristic grammar is a context-free grammar, the stochastic grammar
is referred to as a stochastic context-free grammar (SCFG).

7.2 Example of the use of stochastic context-free grammar
in trajectory analysis

In [14] a stochastic context-free grammar approach is used for intent inference. We present this
example here, following [14].

In the tracking application the terminals of the grammar correspond to modes exhibited by the
target. A target mode is defined as the direction of acceleration or orientation of the target at any
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given time instant. The possible modes belong to the set © = {0, 7, 7, ?jf,w, %’“, 37”, %‘}, which
represent the radial angular direction of acceleration of the target. Each mode is associated with a
lower case alphabet; Ag = {a,b,¢,d, e, f,g,h}. The terminal symbols correspond to modes of the
target which are generated from non-terminal symbols. A non-terminal symbol can be thought
of as an intermediary symbol which is eventually replaced by a single or combination of terminal
symbols. They can be abstracted as high-level components of the shape of the trajectory that a
target might travel.

The trajectory generation process begins with a unique starting non-terminal symbol Sy. A
set of production rules I' with associated probabilities of selection Ps define the manner in which
non-terminal symbols produce other non-terminals and terminals. The set of all strings that can
thus be generated by a grammar is called a language. Hence, each different trajectory which is
being considered is a language with a specific grammar to model them. The tracking application’s
goal is to find which model is able to best explain the observed trajectory.

The trajectories which are being considered in [14] are a line trajectory, an arc trajectory and
a rectangular trajectory. The line trajectory is modeled using a regular or finite-state grammar.
It can be expressed as L. = {a € a™}, where « represents any arbitrary string belonging to the
language and a™ represents an arbitrary number of symbols corresponding to direction a € Ag.

The language of an arc can be expressed as L,.. = {a € c"a*g"}, where « represents any
arbitrary string belonging to the language and a, ¢, g € Ag. These strings contain an equal number
of ‘upward’ symbols and ‘downward’ symbols corresponding to the directions ¢ and g. The middle
of the string is formed by an arbitrary number of symbols corresponding to direction a.

The rectangles which are being considered are defined as trajectories comprising of three left
ninety degrees turns but are not necessarily closed. However, at least two opposite sides of
the rectangle have to be of equal length. The language of these rectangles can be expressed
as Lrectangle = {@ € c"aTg"et}, where a represents any arbitrary string belonging to the lan-
guage and a,c, e,g € Ag. These strings contain an equal number of symbols corresponding to the
directions ¢ and g and an arbitrary number of symbols corresponding to directions a and e.

In the tracking application a base level tracker is used to estimate the target’s position and
velocity. Next a second-tier tracker is responsible for estimating the mode of the target using inputs
from the base-level tracker. The output of this secondary sensor is an estimate of the actual target
mode and is represented by a string of symbols, from Ag, corresponding to the different directions.
A meta level tracker is used to find the most likely trajectory corresponding to the outputted string.
This is related to string parsing: ‘Given a certain string and language, how can we tell is this string
is part of this language?’ In this example the trajectories under consideration are represented by
the languages Liine, Larc and Lyectangie and for each of these languages a grammar is constructed.
The Early-Stolcke parser is used to compute the posterior model probabilities. It accepts a string
of terminals as input and outputs a most likely production rule sequence that led to the generation
of the observed symbols. In a formal language context this is called stochastic parsing, since we are
parsing the language corresponding to the trajectory of the target. The Early-Stolcke parser is a
top down parser and it builds a parse three that best describes a sequence of terminals, namely, the
modes followed by the target. The Early-Stolcke parser is able to compute the likelihood of a string
being generated by a certain grammar. So in this example the Early-Stolcke parser computes the
likelihoods of a string of symbols which are observed being generated by the different trajectories
which are being considered. Hence we are able to find the trajectory which is most likely to be the
trajectory the target follows.

7.3 Hierarchical hidden Markov models

The method we developed is similar to a hierarchical hidden Markov model (HHMM). A hierar-
chical hidden Markov model is related to a ‘normal’ hidden Markov model (HMM). In a HHMM
each state itself is again a HHMM, so hierarchical hidden Markov models are structured multi-level
stochastic processes, just like our method.

Each state of a HHMM emits a sequence of symbols instead of a single symbol. Whenever a
state in a HHMM is activated, it activates one of the substates of that state. This substate might
also consist of substates of which one is activated etc. The activation of substates ends whenever
a special state called a production state is reached. The production states are the only states
which emit output symbols, which happens in the same way a ‘normal’ hidden Markov models
emits output symbols. Hidden states which do not emit output symbols are called internal states.
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When the production state has emitted a symbol, control returns to the state that activated the
production state.

This hierarchical structure can be related to our method. We can see the production states
as straight or curve segments. The higher levels can be seen as possible trajectories or parts of
trajectories and at the top node the scenario which need to be classified itself.

Activation of a substate by an internal state is called a vertical transition. After such a vertical
transition is completed, a horizontal transition occurs. This is a transition to a substate within the
same level. When after a horizontal transition a terminal state is reached, control is returned to
the substate in a higher level from which the last vertical transition originated. Note that multiple
vertical transitions can occur before a sequence of production states is reached. Therefore the state
at the top level produces sequences of observation symbols instead of a single observation symbol.
See figure 7.1 for a schematic drawing of the structure of a hierarchical hidden Markov model.

Figure 7.1: Schematic drawing of the structure of a hierarchical hidden Markov model

In figure 7.1 the vertical transitions are indicated by gray lines. Black lines represent the
horizontal transitions. The internal states are indicated by light gray circles and the terminal
states by dark gray circles. The production states are not shown in this figure.

It is important to note that every hierarchical hidden Markov model can be represented as a
‘standard’ single level hidden Markov model. The states of the HMM are the production states of
the corresponding HHMM with a fully connected structure, i.e. there is a non-zero probability of
moving from any of the states to any other state. The methods for estimating the parameters of a
HHMM are more complex than for a HMM. However a HHMM exploits its hierarchical structure
to solve certain problems more efficiently.

7.4 Relations between different grammars and Markov mod-
els

In this section we present some relations between different grammars and Markov models, follow-
ing [17].

The grammars introduced in section 7.1 are related to Markov chains. Discrete-state discrete-
time Markov chains are naturally considered the equivalent representations of stochastic finite state
languages. A discrete-time Markov chain can be defined as stochastic timed automaton. However
Markov chains do not accommodate for the alphabet of the grammar. Therefore, Markov chains
can only capture the transition dynamics of the grammar, but do not address the generation and
transformation aspects of the stochastic finite-state grammars. Hidden Markov models address
this issue.

Generally speaking hidden Markov models are Markov chains which are indirectly observed
trough a noisy process. To accommodate for the structural constraints of the hidden Markov model,
the underlying Markov chain has to be converted to the Moore machine. Using this transformation
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the hidden Markov model representation of a stochastic finite state grammar can be made which
does accommodate the alphabet of the grammar.

Some context-free grammars can also be represented by a Markov chain. When a context-
free grammar is non-self-embedding, it generates a finite-state language. A context-free grammar
G = (AE,T,Sy) is self-embedding if there exists a non-terminal symbol A € & such that a
string aAB, with a and § any non-empty strings of terminal and non-terminal symbols, can be
derived from it in a finite number of derivation steps. So when a context-free grammar is non-self-
embedding it can be represented by a Markov chain since it generates a finite-state language.
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8. Conclusion & Discussion

In this chapter we summarize the results of the research we carried out and discuss these. Some
advantages and disadvantages of the different methods for trajectory analysis are given. Also
recommendations for further research are presented.

8.1 Conclusion

As said in the introduction the goal of this project is to study the suitability of Markov chains for
trajectory analysis. More specifically, the research question is whether modeling of target trajecto-
ries using Markov chains can be used to distinguish a number of trajectories that are encountered
in real-life situations within a radar environment. Where the focus lies on distinguishing a weave,
consisting of straight lines and curves, from other trajectories that also consist of straight lines
and curves. The proposed methods need to be robust for variations in trajectories. Also the clas-
sification of the type of trajectory the object is following must take place while tracking the the
object.

At the end of our research we are able to track and classify different trajectories. Our method
models all possible target trajectories as combinations of sub-trajectories trough a hierarchical state
diagram. We use the two discrete variables mode and submode to identify the possible trajectories
and possible sub-trajectories respectively. The transitions between the different modes and different
submodes are governed by first-order Markov chains. These Markov chains are incorporated in a
particle filter. Due to the stochastic aspect of these Markov chains our method is robust against
some variations in the trajectories.

First we looked at the viability of our method by performing simulations using simulated
radar measurements created by ourselves. These simulations gave us insight in the working of
the different aspects of our method. Next we used GPS data loggings from Thales to investigate
the performance of our method using GPS measurements. Eventually we determined the final
settings of our method by performing simulations using radar measurements which were created
by converting the GPS data loggings into radar measurements. The settings we determined are
general in the sense that we do not have to re-establish these settings for different trajectories.

To automatically classify a trajectory as being a weave or a non-weave trajectory we have built
a detector. Our focus on distinguishing a weave trajectory comes from the fact that this type of
trajectory might be performed during an attack. The settings for the detector are determined by
performing many simulations using different trajectories. Again the settings we determined are
general in the sense that we do not have to re-establish these settings for different trajectories.
The results look promising and demonstrate the feasibility of automatic weave detection.

8.2 Discussion

For determining the settings of our method we performed many simulations. We do not claim
that these settings are optimal in the sense that we get the smallest possible errors and largest
probability of detection. We do however state that we have found settings such that the results look
promising and demonstrate the feasibility of automatic weave detection. Also we have found general
settings which we do not have to re-establish for different trajectories. Due to time constraints
we did not focus on optimizing the settings such that the errors were minimized etc. Also due to
these time constraints we did not perform a detailed analysis of the detector, including an analysis
of the false and missed detection and the impact of them.

Our research was carried out at Thales. Here we only had a limited number of real data loggings
which we could use for our research. Therefore we could only investigate the performance of our
method on a limited number of trajectories. So the robustness of our method regarding variations
in trajectories is investigated, but only using this limited number of trajectories.
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A last thing to note is that perhaps strictly speaking we did not use a first-order Markov chain
which governs the transitions of the submode. For determining the entries of the submode transition
probability matrix we make use of variables which keep track of the distance traveled in the current
segment, namely 0y and 0. These variables contain a form of history of the particle. Although
the transition probabilities only depend on the current state, since d; and 6, are contained in the
state vector, they do implicitly depend on some form of history. Therefore strictly speaking we
can not state that the submode transitions are governed by a first-order Markov chain, but these
transitions do have a Markovian property. We did however state that the submode transitions
are governed by a first order Markov chain since we feel like explaining this technicality earlier on
would only confuse the reader.

Advantages and disadvantages of the different methods for trajectory analysis

In section 7 we introduced some other methods for trajectory analysis. We will now look at some
advantages and disadvantages of these methods.

One motivation behind using stochastic context-free grammar models as for the arcs and rect-
angles in the given example is that such trajectories cannot be exclusively generated by Markov
models. This implies that a Markov chain can generate a sample path that is an instance of a
shape with some finite probability. However, it cannot do so with probability 1 unless the state
space is extended artificially to the length of the trajectory. ! In other words different targets can
follow the same type of trajectory but at a different speed or scale. The recursive self-embedding
property of a stochastic context-free grammar imparts scale-invariance to the trajectory analysis
task. A grammar is able to generate all sizes of trajectories satisfying that certain shape. Therefore
it is better able to cope with this scale-invariance in comparison to Markov models.

A disadvantage of using stochastic context-free grammars is that for the methods we found
in the literature the shapes of the trajectories were orientation-dependent. So they were scale-
invariant but orientation or rotation-dependent e.g. a upward facing arc or a line trajectory in
the radial direction of Orad. So it seems like different languages with corresponding grammars are
needed for different orientations of the same shape. Perhaps once a grammar for a certain shape
or trajectory is constructed it can easily be rewritten to a different orientation. But no details on
this were given in the articles we found.

Although it is stated in [13] that a hierarchical hidden Markov model is a simpler version
of stochastic context-free grammar, we find that [15] disputes this statement. There is a huge
explosion in the number of parameters for a hierarchical hidden Markov model with respect to a
stochastic context-free grammar. A HHMM needs a initial distribution, all the internal hidden
states must have a transition distribution and also an emission distribution for each hidden state
which produces the output alphabet is required. The complexity of a HHMM is quadratic in the
length of the observation but it has an exponentially larger number of parameters. When we look
at the results shown in [15], we see that the HHMM parser requires a longer run-time compared
to a parser for the stochastic context-free grammar.

Also as stated before we can represent every hierarchical Hidden Markov model as a ‘normal’
hidden Markov model. Therefore hierarchical hidden Markov models are also not scale-invariant.
Making it a less favorable method over stochastic context-free grammars when different scales of
shapes are being considered.

8.3 Recommendations for further research

Our research was carried out at Thales. Here we only had a limited number of real data loggings
which we could use for our research and from a naval standpoint we focused on distinguishing a
weave from other trajectories. We recommend further research on the performance of our method
when more trajectories are being considered. Also research using more real data is recommended
to further investigate our method’s tracking and classification performance.

We recommend performing a detailed analysis of the detector regarding the false and missed
detection probability and the impact of them.

The dynamical models used in the different modes are exactly the same. Therefore we see a
alternation between fraction of particles in the modes straight and weave in the classification plots

LA formal proof of this assertion can be constructed using the pumping lemma for regular grammars.
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when the object follows a weave trajectory. Perhaps it is possible to use different dynamical models
in the modes straight and weave such that the classification becomes more clear.

In our research we stated that we can better overestimate the values of 9,4, and 6,4, rather
than underestimating these values. Therefore we chose this values such that all segments of weave
trajectories we encountered were smaller than these variables. We also concluded that better
estimations of 9,4, and 6,,,, reduced the errors of the position and velocity estimates and increased
the classification performance. Therefore we recommend research on the possibility of implementing
some form of automatic learning of the magnitudes of §,,4, and 0,,4.. Since when it is possible to
better estimate these parameters automatically for each weave trajectory which is encountered it
will increase the method’s tracking and classification performance.

If it is possible to implement the automatic learning of the variables 8,4, and 0,4, the method
will be more robust for variations of the different trajectories. This robustness is probably also
reached when a stochastic context-free grammar approach is used. As stated before a stochastic
context-free grammar model is scale-invariant. It models the shape of the trajectory such that any
scale of that trajectory can be generated. Therefore we recommend further research into the use
of stochastic context-free grammar to see if this kind of method is more robust for variations of
the different trajectories.

When the use of a stochastic context-free grammar is investigated, we recommend to also
investigate the possibility of incorporating the models for the different trajectories into the tracking
application. In our method we make use of a joint tracking and classification application. The
models for the different trajectories are incorporated in the tracking application of our method.
Where in the methods using stochastic context-free grammar we have seen so far the models for the
different trajectories are separated from the tracking application. Therefore only a feedback loop
from the detector using the stochastic context-free grammar models back to the tracking application
is perhaps possible but a joint tracking and classification approach can not be achieved. Also the
dependency of the different models on the orientation of the trajectories need to be investigated
further when a stochastic context-free grammar approach is used.
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Abbreviations & symbols

ACT-model
AF (k)
bi
CM-model
dy

Ok
5max
F(i)

k

My
m=1
m =2
m=3
m=4
MC-run
n

N
NCV-model
Pesy,
Pscy,

P1

b2

IL,,
l_[srn;c
Tk

Smy
sm=1
sm =2
sm =3
sm=4
Oq
Tay s,
Tay,
a-aT,k
Oan
T

T

Ok
om,am
Vk

Vg

Uy

Wk

Wk

T

Yy

augmented coordinated turn model

averaged fraction of particles in the mode weave at time k
bearing at time k

curvilinear motion model

Doppler velocity at time &

already traveled length of the current straight segment at time k
average length of a straight segment of a weave

fraction of particles in the mode weave at time i

time index

discrete variable mode at time k

straight line

left curve

right curve

weave

Monte-Carlo run

power of the function in the min-method

window length of final detector

nearly constant velocity model

probability of a transition from a submode curve to a submode straight at time &
probability of a transition from a submode straight to a submode curve at time &
probability to remain in the current submode in the if-else-method
probability to make a transition to another submode in the if-else-method
mode transition probability matrix

submode transition probability matrix at time k

range at time k

discrete variable submode at time k

curve left

straight after curve left

curve right

straight after curve right

process noise parameter for angular velocity

process noise parameter in x-direction at time k

process noise parameter in y-direction at time k

process noise parameter in tangential direction at time k

process noise parameter in normal x-direction at time k
sampling time

threshold for weave detection

already traveled angle of the current curve at time &

average angle of a curve segment of a weave

measurement noise at time k

velocity in x-direction

velocity in y-direction

process noise at time k

angular velocity at time &

x-position

y-position
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A. Extra results using simulated
radar measurements

In this section we give some graphical results used to come to the preliminary results explained in
section 3.

For all results in this appendix we performed 100 Monte-Carlo runs in which we generated the
measurement noise separately for each run and 6,500 particles were used per run. The measure-
ments were created to make the object follow a weave trajectory like figure 3.1a. The object starts
at = 200m and y = 200m and has initial velocities of v, = 1m/s and v, = 1m/s. The shown
results are averages over all runs.

Initial position

Different initial positions of the object result in different errors. If the object is too close to the
radar the error increases due to the fact that the initial bearing angle can lie in a large interval.
When the object is too far from the radar the error also increases due to the reduced performance
of the radar itself. Average errors in position and velocity for different initial z- and y-position, or
50, and s0, respectively, are shown in figure A.1.
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Figure A.1: Errors of initial position comparison for a weave trajectory
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We indeed see a larger position error when the object is too close or too far away as is the
case for s0, = s0, = 10m and s0, = s0, = 5000m respectively. The error of the position for
50, = s0, = 200m is smaller than the other cases.

The velocity error is smaller when the object is closer to the radar. Also we see some peaks in
the velocity errors. These peaks come from the object following a curve in the weave trajectory.
The velocity is harder to estimate when the object is performing a curve, therefore we see an
increase in the velocity errors in these curves.

In the case of s0, = s0, = 10m we see that the position error is larger in the z-direction than
in the y-direction. This comes from the fact that due to a large interval of initial bearing angles
the different runs are widely distributed in the z-direction around the true trajectory. Therefore
the position error is larger in x-direction.

Measurement noise

A radar has some specifics which give an indication of the radars performance. We model these
specifics by the measurement noise. When the radar has a better performance we expect to see
smaller errors.

We performed simulations where we used various magnitudes of measurement noise. Two of
these simulation outcomes are shown in figure A.2.
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Figure A.2: Errors of measurement noise comparison for a weave trajectory

As expected we see smaller errors when no measurement noise is used in comparison to the
case in which we do use measurement noise of a 'normal’ magnitude.

Sampling time

The sampling time is a feature of the radar on which we normally have no influence. But to see
if our method can cope with different sampling times we performed simulations in which we used
different sampling times.

We expect to see a larger error in the position when a longer sampling time is used. This as an
effect of the increased influence of the process noise on the output of our method. The outcomes
for simulations with a sampling time of 1 and 3 seconds are shown in figure A.3.

When we look at these outcomes we indeed see a larger position error when a longer sampling
time is used. But this error does not ’explode’ so it looks like our method can cope with various
sampling times.
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Figure A.3: Errors of sampling time comparison for a weave trajectory

Mode transition probability matrix

During the first part of our research we defined the mode transition probability matrix, II,,, in
a different way compared to the defined II,, in section 2.3.1. First we defined II,, such that the

transitions shown in figure A.4 were possible.

Figure A.4: Schematic representation of possible mode transitions used in early research

It is the case that the entries of II,, do affect the outcome of our method directly since more
particles are forced into certain modes due to these entries. We performed simulations using
different mode transition probability matrices to investigate the effect of these changes in entries
of I1,,,. But since we used a significantly other II,, in our later research we omit further outcomes
of these simulations in this appendix.

Submode transition probability matrix

To determine the probabilities in the submode transition probability matrix we used two different
method; the min-method and the if-else-method. We performed many simulations in which we
used different settings for both methods to see which setting gave the best outcomes. For the
min-method we varied n and used values between 1 and 25. For the if-else-method we varied p;
between 0.01 and 0.075 and py between 0.925 and 0.99. Also we varied the values of 0,4, and
Omaz and chose different values around the true value of these parameters. We compared the
best outcomes of both methods. The results of the best outcomes of both methods are shown in
figures A.5 and A.6.

If we look at these results we see that both methods give almost the same classification. The
fraction of particles in the different modes is comparable between both methods. But we see that
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Figure A.5: Classifications for a weave trajectory using different methods
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Figure A.6: Errors for a weave trajectory using different methods

error in position is smaller when we use the if-else-method. Therefore for now we prefer the

if-else-method, but we need to compare both methods again when real measurements are used in

our

method.

Our research focuses on distinguishing a weave from other trajectories. So to see how our
method performs when other trajectories are used which are not a weave we have created a straight-
curve-straight trajectory as shown in figure 3.1b. We again compared the if-else-method with the
min-method and the results are shown in figure A.7.

When we look at the results of figure A.7 we see that the magnitude of the errors for both
methods is similar just as the classification of both methods. We also see that both methods have
a high fraction of particles in the mode curve right when the object follows a curve. But we also
see a high fraction of particles in the mode weave when this curve is followed for a longer period
of time, so this looks like an undesirable result. On the other hand we can clearly distinguish the
classification in figure A.7 of the classification in figure A.5. So also on this aspect our method
looks viable.
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Figure A.7: Errors and classification for a straight-curve-straight trajectory using different methods

The determination of the probabilities in the min-method and the if-else-method makes use
of the variables 0,4, and 6,,,, which characterize the average weave trajectory. To see how we
should choose these variables we performed simulations in which we varied the values of d,,,,, and
9mam~

It turned out that a better estimation of 6,,4, and 0,,4. led to a better classification of a weave
trajectory. This is an expected result since it is likely that the classification is better when we have
a better knowledge on how the weave trajectory should look like.

To investigate the difference in classification outcomes between the if-else-method and the min-
method we looked at the actual length of the straight and curve segments of a weave trajectory
corresponding to the used measurements. Let the actual length of the straight segment be §;,.,c and
the actual angle of the curve segment be 60y,.,.. We used these variables in our estimations of d,,44
and 0,4, which we then used in different simulations to investigate the difference in classification.
The results of some simulations are shown in figure A.8.

We see that we can better ’overestimate’ 0,4, and 0,4, than 'underestimate’ these variables.
When these variables are too small, our method forces particles to make a transition from the
current submode to another submode. This is so since the probability of making a transition out
of the current submode to an other submode becomes large when the length of the straight and
curve segments defined by 0,4, and 6,4, is reached. So our method feels like the segments of the
measurements are too long to be a weave and therefore a worse classification is made. The errors
of the simulations of figure A.8 are of the same magnitude and therefore omitted here.
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B. Extra results using GPS
measurements

In this section we give some extra results used while finetuning our method as is further explained
in section 4. The trajectories we used are shown in figure B.1. Also more results using the final
settings of section 4.3 in combination with GPS measurements are given.
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Figure B.1: Different trajectories obtained from GPS data loggings

B.1 Submode transition probability matrix

The submode transition probability matrix provides the information about the transitions between
the different submodes of the weave. We investigated two methods for determining the transition
probabilities in Ilg,,; the if-else-method and the min-method. To investigate if one method is
favorable over the other method we performed simulations using the different trajectories of fig-
ure B.1 as true trajectories. For these simulations we used 10,000 particles and performed 10
Monte-Carlo runs. For trajectories 1 and 6 the measurement noise was the same for all runs. For
trajectories 2, 3, 4 and 5 the measurement noise was generated separately each run.!. The shown
results are averages over all runs.

In figures B.2 and B.3 the results of the simulations in which trajectory 2 is used as the true
trajectory are shown. For both simulations we used 0,4, = 500m and 6,,,, = wrad. For the
simulation of figure B.2 we used the if-else-method and for the simulation of figure B.3 we used
the min-method for determining the entries of Il,,, . For the if-else-method we used p; = 0.05 and
p2 = 0.95. For the min-method we used n = 25.

We see that the errors in figure B.2 and B.3 are of the same magnitude. This is also not
surprising since we use the same dynamical models in all (sub)modes so the tracking performance

IThis difference in measurement noise generation is due to the format in which the measurements were available
at Thales

57 THALES



Trajectory Analysis

Ayerage position errar

Ahsolute error [m]

400
Time [s]
Awerage velocity error

600

Fraction

Ahbsolute error [m/fs]

i : db o i i T
400 S0 BOD OO 800
Time [s] Time [s]

(a) Errors (b) Classification

Figure B.2: Errors and classification using the if-else method and trajectory 2 as true trajectory
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Figure B.3: Errors and classification using the min-method and trajectory 2 as true trajectory

should be equal in all (sub)modes.

When we look at the classification plots we clearly see that the min-method performs worse
than the if-else-method. When the min-method is used, as is the case in figure B.3, the fraction of
particles in the mode weave stays small. Where in figure B.2 when the if-else-method is used, we
see that the fraction of particles in the mode weave is significantly larger. Therefore we find the
if-else-method more favorable since this method has a better classification performance.

In figure B.2 we used the ‘overestimated’ values for 6,4, and 6,44, namely 0,4, = 500m and
Omar = mrad. We also performed simulations using trajectory 2 as true trajectory using better
estimates of 8,4, and 60,,4.. The simulation outcomes when 0,,4,, = 125m and 0,,00 = Srad in
combination with the if-else-method is used are shown in figure B.4.

When we look at figure B.4 we see that the errors are of the same magnitude as the errors in
figure B.2 for which we used the overestimated values for 6,4, and 0,,4,. Again this comes from
the fact that we use the same dynamical models in all (sub)modes so the tracking performance
should be equal. But when we look at the classification plot of figure B.4 we clearly see a larger
fraction of particles in the mode weave. So we see that when we use a better estimate of 8,4, and
Omaz We get a better classification performance. This conclusion also holds when we use the other
trajectories of figure B.1 as the true trajectories.
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Figure B.4: Errors and classification using better estimates for 0,4, and 0,44

B.2 Results using final settings

Using the final settings from section 4.3 we performed simulations to investigate the classification
ability of our method using different trajectories in combination with GPS measurements. The
different trajectories we used for the true trajectories in these simulation are shown in figure B.1.
For each simulation we used 10,000 particles and performed 10 Monte-Carlo runs. For trajectories
1 and 6 the measurement noise was the same for all runs. For trajectories 2, 3, 4 and 5 the
measurement noise was generated separately each run. The shown results are averages over all
runs.

Results using trajectory 3 as true trajectory

In figure B.5 we see the errors and classification plot for which trajectory 3 is used as true trajectory.
The object starts by going straight for some time, then it start to follow a weave trajectory.
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Figure B.5: Errors and classification using final settings and trajectory 3 as true trajectory

We see that the fraction of particles in the mode straight is high while the object follows
a straight line trajectory. When the object starts to follow a weave trajectory we see that the
fraction of particles in the mode weave does become a bit larger around 150 but not significantly.
This is due to the fact that the object makes very sharp turns. It changes direction very fast
making it hard for our method to pick up that the object is in fact performing a turn. In the
used dynamical models a turn is a smooth curve in which the direction of the object’s movement
gradually changes. We see peaks of the fraction of particles in the modes left curve and right curve
only for 1 or 2 time steps. After these time steps the object again follows a straight trajectory.
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Since we use the same dynamical models in the different modes and more particles are forced
into the mode straight we see a larger fraction of the particles in the mode straight during these
straight segments. This in combination with the fast direction changes by the object and modeling
assumption that a curve is smooth results in a small fraction of particles in the mode weave,
thereby giving a bad classification.

Results using trajectory 4 as true trajectory

In figure B.6 we see the errors and classification plot for which trajectory 4 is used as true trajectory.
The object moves in a weave-kind trajectory towards the origin.
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Figure B.6: Errors and classification using final settings and trajectory 4 as true trajectory

In the classification plot we see peaks of fractions of particles in the mode weave at the start
of the trajectory. After approximately time step 60 we only see peaks of fractions of particles in
the modes left curve and right curve alternating with peaks in of the fraction of particles in the
mode straight. Just as when trajectory 3 was used as true trajectory we see that for some turns
which the object makes it changes direction very fast and the curves are not smooth. Therefore our
method is not able to ‘pick up’ the weave trajectory as good as we aim for. Also the shape of the
end of the trajectory does not look that good like a weave anymore as the start of the trajectory,
so the absence of peaks of the fraction of particles in the mode weave is explainable.

Results using trajectory 5 as true trajectory

In figure B.7 we see the errors and classification plot for which trajectory 5 is used as true trajectory.
The object starts by going straight for some time, then it makes two right turns and gradually
starts a weave trajectory.

In the classification plot we see that the fraction of particles in the mode weave does gets larger
when the object follows a weave trajectory for some time. But this classification is less clear in
comparison to the classification in figure 4.7 in which a weave trajectory is also followed at some
time intervals.
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Figure B.7: Errors and classification using final settings and trajectory 5 as true trajectory

Results using trajectory 6 as true trajectory

In figure B.8 we see the errors and classification plot for which trajectory 6 is used as true trajectory.
The object moves in a straight line trajectory then makes a left turn, then it goes straight again
and eventually lies still in the water.
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Figure B.8: Errors and classification using final settings and trajectory 6 as true trajectory

When we look at the classification plot we do see a peak in the fraction of particles in the mode
left curve when the object if performing a left turn. We also see a small peak of the fraction of
particles in the mode weave around time step 300. This peak originates from the movements the
object makes when the object tries to lie still in the water. But overall the fraction of particles in
the mode weave remains small thereby making this a good classification result since the object is
indeed not following a weave trajectory.
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C. Extra results using radar measurements

C. Extra results using radar
measurements

In this section we give some extra results using the final settings of section 4.3 when radar mea-
surements are used.

Using the final settings from section 4.3 we performed simulations to investigate the classi-
fication ability of our method using different trajectories while using radar measurements. The
different trajectories we used for the true trajectories in these simulation are shown in figure B.1.
We converted these trajectories to radar measurements. For each simulation we used 10,000 parti-
cles and performed 10 Monte-Carlo runs. For trajectories 1 and 6 the measurement noise was the
same for all runs. For trajectories 2, 3, 4 and 5 the measurement noise was generated separately
each run.!. The shown results are averages over all runs.

Results using trajectory 3 as true trajectory

In figure C.1 we see the errors and classification plot for which trajectory 3 is used as true trajectory.
The object starts by going straight for some time, then it starts to follow a weave trajectory.
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Figure C.1: Errors and classification using final settings and trajectory 3 as true trajectory

We see that the fraction of particles in the mode straight is high while the object follows
a straight line trajectory. When the object starts to follow a weave trajectory we see that the
fraction of particles in the mode weave does become larger but not significantly. This peak is
larger and lasts longer in comparison to the same peak in the classification plot of figure B.5. This
is explained by the fact that the classification using radar measurements is slower and less reactive
than the classification using GPS measurements. Once our method in combination with radar
measurements gives a higher probability to a certain mode is will maintain this higher probability
for a longer time. When we use our method in combination with GPS measurements it does not
maintain these high probabilities as long, it reacts faster.

Results using trajectory 4 as true trajectory

In figure C.2 we see the errors and classification plot for which trajectory 4 is used as true trajectory.
The object moves in a weave-kind trajectory towards the radar.

IThis difference in measurement noise generation is due to the format in which the measurements were available
at Thales

63 THALES




Trajectory Analysis

Average position error Awerage fraction of the particles in different modes| — = — Straight
TSR T e ] = —Left curve

: : Right curve
...................... B —e —Weave

Absolute error [m]

Time [s]
Awerage velocity emor

Fraction

Absolute error [m/s]

Tirme [s]

Time [s]

(a) Errors (b) Classification

Figure C.2: Errors and classification using final settings and trajectory 4 as true trajectory

When we look at the classification plot of figure C.2 we again see the less reactive classification
when radar measurements are used. Just like the classification plot of figure B.6 we see an increase
in the fraction of particles in the mode weave but this increase start later. Then this higher fraction
only gradually decreases but when a turn is performed by the object this fraction increases again. So
due to the less reactive classification a higher fraction of particles in the mode weave is maintained
in comparison to when GPS measurements are used.

Results using trajectory 5 as true trajectory

In figure C.3 we see the errors and classification plot for which trajectory 5 is used as true trajectory.
The object starts by going straight for some time, then it makes two right turns and gradually
starts a weave trajectory.
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Figure C.3: Errors and classification using final settings and trajectory 5 as true trajectory

As expected we see larger errors in comparison with the errors in figure B.7 where GPS mea-
surements were used.

The classification plot is comparable to the classification plot of figure B.7. Only the increase
in fraction of particles in the mode weave starts later on and this fraction is smaller. It looks like
the classification using radar measurements is slower and less reactive than the classification using
GPS measurements.
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Results using trajectory 6 as true trajectory

In figure C.4 we see the errors and classification plot for which trajectory 6 is used as true trajectory.
The object moves in a straight line trajectory then makes a left turn, then it goes straight again
and eventually lies still in the water.
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Figure C.4: Errors and classification using final settings and trajectory 6 as true trajectory

We see that the errors in figure C.4 are larger than the errors in the figures C.1 to C.3. This
comes from the fact that the trajectories used in those simulations lie closer to the radar, which
result in smaller errors.

When we look at the classification plot we do see a peak in the fraction of particles in the mode
weave. This is actually undesired since the object only performs one turn and we do not want to
classify this as a weave trajectory. But on the other hand we can distinguish the classification plot
of figure C.4 of those in the figures C.1 to C.3. So a different classification can be made.

We also see an increase in the fraction of particles in the mode weave from time step 300 till
the end. This increase originates from the movements the object makes when the object tries to
lie still in the water.
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D. Extra results of the detector

D. Extra results of the detector

In this section we give some extra results using the final detector as explained in section 6.

For the simulations presented in this section we have used 100,000 particles and performed only
1 Monte-Carlo run. In real life we also only have ’one run’ to make our classification. Since we only
have one run we have increased the number of particles to get a better estimation of the probability
density functions. Also during our investigation it turned out that our method performs well in
general. Therefore multiple MC-runs are not needed anymore. So we perform only 1 MC-run with
a large number of particles for the simulations using the detector.

Results for trajectory 3

In figure D.1 we see the classified trajectory and detector output for which trajectory 2 is used as
true trajectory. The object starts by going straight for some time, then it start to follow a weave
trajectory.
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Figure D.1: Trajectory 3 with detector output and classification

In figure D.1 we see that the detector only classifies this trajectory as a weave trajectory for a
short period of time. This is due to the fact that the object makes very sharp turns. It changes
direction very fast making it hard for our method to pick up that the object is in fact performing a
turn. In the used dynamical models a turn is a smooth curve in which the direction of the object’s
movement gradually changes. Also since we use the same dynamical models in the different modes
and more particles are forced into the mode straight due to the entries of II,, we see a larger
fraction of the particles in the mode straight during the straight segments of the weave trajectory.
This in combination with the fast direction changes by the object and modeling assumption that
a curve is smooth results in a small fraction of particles in the mode weave, making it hard for our
detector to classify this trajectory correctly.

Results for trajectory 4

In figure D.2 we see the classified trajectory and detector output for which trajectory 4 is used as
true trajectory. The object moves in a weave-kind trajectory towards the origin.
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Figure D.2: Trajectory 4 with detector output and classification

When we look at the detector output we do see that the classification as a weave trajectory is
made. But just as when trajectory 3 was used as true trajectory we see that for some turns which
the object makes it changes direction very fast. Therefore our method is not able to ‘pick up’ the
weave trajectory as good as we aim for. The last part of the trajectory is classified as being a
weave trajectory although the shape of this part of the trajectory does not look that good like a
weave anymore. But as explained in section 6.3.3 we take this bad classification after a weave is
followed for granted since the radar operator already decided on which actions to take.

Results for trajectory 5

In figure D.3 we see the classified trajectory and detector output for which trajectory 1 is used as
true trajectory. The object starts by going straight for some time, then it makes two right turns
and gradually starts a weave trajectory.
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Figure D.3: Trajectory 5 with detector output and classification

When we look at the detector output we see that the detector classifies this trajectory as a
weave trajectory from time step 175. This is at a point where the object already follows a weave
trajectory for a longer time but at the start of this weave trajectory it still is ‘narrow’. After some
time the weave trajectory becomes ‘wider’ and the detector indeed classifies this trajectory as a
weave trajectory from that point on.
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Results for trajectory 6

In figure D.4 we see the classified trajectory and detector output for which trajectory 6 is used as
true trajectory. The object moves in a straight line trajectory then makes a left turn, then it goes
straight again and eventually lies still in the water.
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Figure D.4: Trajectory 6 with detector output and classification

When we look at the detector output we see that this trajectory is classified as a non-weave
trajectory which is indeed the case.
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Experiences at Thales

Experiences at Thales

My internship was carried out at the company Thales in Hengelo. In this chapter I will tell
something about my experiences at Thales and about the company itself.

My experiences

When I knew it was time for me to find an internship position I scheduled a meeting with my
chairman. During this meeting we talked about the things I was looking for in an internship
position and my preferences regarding the location of the position etc. After this meeting my
chairman came up with several companies also including Thales. After reading into the different
companies I chose to contact Thales for a possible internship position. I was invited to come to
Thales and talk about the possibilities. At the end of this meeting we came up with an assignment
which we all found suitable for the internship position, so my internship could begin.

Every morning I took my bike for a ride of approximately 25 minutes to get to Thales in
Hengelo. On my first day I immideately had my picture taken for the security badge which gave
me acces to the buildings. We got a small tour through some buildings and we went into the big
radar tower at the backside of the facility. My desk was located in a room with 15 other people.
They work in the same division of the company. On the work floor there was a calm atmosphere
so everybody could concentrate on their work.

A typical workday for me started at 08.30h and ended at 17.00h. Most of the days I had lunch
with Peter who started his internship at the same time as me.We then first went for a match of
table tennis and then eat our lunch. On the workdays I did different things. Sometimes I had to
program in Matlab, other days I was reading new information or I was working on my report. So
there were several things to do on one day. Every week I either had a meeting with my supervisor
to discuss my progress or a meeting with Peter, his supervisor and my supervisor to keep track of
what we were both doing and see if we could help each other out. However if I had a problem I
could just walk up to my supervisor and ask him for help.

At the end of the first week one of the younger employees of the division came to Peter and me
and asked if we wanted to have a drink with some other younger employees of the division. They
came up with the idea to have a drink every month with the younger employees of the division.
We went to those drinks a couple of times and it was a nice way to meet these employees in an
informal way.

During my internship, Thales was busy remodeling its facilities. Two completely new buildings
were build of which one was the new office building, which even had a Starbucks bar inside it.
We moved into this new building during the tenth week of my internship. In the new building
nobody has its own desk anymore. You can sit at different desks in a certain area of the building,
this is called ‘flexwerken’. I did not have much trouble adjusting to the new situation, but I can
imagine that some people who already had their own desk for 20 years were less enthusiastic about
this new way of working. However I did have trouble with my computer after we moved. This
because suddenly I had no licenense anymore to work with Matlab. Luckily this problem was
quickly solved, but the next problem became clear. I also had no license for a specific toolbox, so
I still could not use Matlab the first couple of days in the new building. A couple days later this
problem was also solved and I could finish my internship with my internship report.

Looking back at my internship period I am glad I chose Thales. It gave me insight in the
structure and way of working at a company as large as Thales. At Thales Hengelo the facilities are
up to date especially in the new office building. This enables the workers to do their jobs without
being frustrated due to the limitations of old equipment. Also the atmosphere among co-workers is
friendly and nice. All in all I would certainly recommend an internship position at Thales Hengelo.
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About Thales

Thales Nederland B.V. was founded in 1922 as N.V. Hazemeyers Fabriek van Signaalapparaten.
Trough the years it was called Hollands Signaalapparaten, Thomson CSF Signaal and since 2000 it
is known as Thales Nederland. Thales Nederland is part of the Thales Group which is a worldwide
organization. The company has about 2,000 employees working at the branches in Hengelo, Huizen,
Delft and Eindhoven. Thales Nederland specializes in designing and producing professional elec-
tronics for defence and security applications, such as radar and communication systems. Moreover,
Thales Nederland acts as a local point of contact for the complete portfolio of the Thales Group.
Thales Nederland works in the fields of naval systems, land defence, the civil market (e.g. public
transportation and national security), cryogenics and cyber security. In 2010 Thales Nederland
generated about 600 million euro worth of sales, 80% of which is export.?

IFor more information see: https://www.thalesgroup.com/en/netherlands/about-us
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