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1. Introduction

The most natural computational models of the brain are networks of spiking neurons.
Models of individual neurons in such networks range from very detailed, biophysically real-
istic multi-compartment models (e.g. [20,21]) to purely phenomenological spiking models
(e.g. [13,18,19]). The drawback of these network models is that the very high dimension-
ality of parameter and state space makes them analytically untraceable and inefficient for
numerical simulations.
The human brain contains roughly 100 billion (1011) neurons, each making up to 1000 con-
nections to other neurons [23]. As a result, the number of neurons and synapses in even a
very small patch of brain tissue is immense. A popular approach to circumvent the prob-
lem mentioned above therefore is to take the continuum limit of a neural network in which
individual spikes are replaced by a spiking rate and space is continuous. These so-called
neural fields are based on the seminal work of Wilson and Cowan [24,25], Amari [1,2] and
Nunez [16] in the 1970’s and are formulated as nonlinear integral-differential equations.
One modification of these original models which has received considerable attention has
been the incorporation of delays [6, 12, 17]. Delays in neural networks arise due to the
finite propagation velocities of action potentials along the axons, dendritic processing and
synaptic mechanisms [5].

In this thesis we look at delayed neural fields of the following type
�
∂

∂t
+ αi
�
ui(r, t) =

p�

j=1

�

Ω

Wij(r, r�)Sj
�
uj(r�, t− τij(r, r�))

�
dr� (1.1)

for i = 1, . . . , p.
Equation (1.1) models p ≥ 1 different populations of neurons distributed over the bounded,
connected and open domain Ω ⊂ Rn, n = 1, 2, 3. The variable ui(r, t) denotes the synaptic
activity of population i at position r ∈ Ω, time t and exponential decay rate αi. The right
hand side of (1.1) represents the synaptic input, with Wij(r, r�) denoting the connection
strength between population j at location r� and population i at location r. The firing
rate of population i at position r and time t is given by Si(ui(r, t)) and the propagation
delays τij(r, r�) measure the time it takes for a signal sent by a type-j neuron located at
position r� to reach a type-i neuron located at position r.
Let τm denote the maximal delay arising in (1.1).

τm = sup
r,r�∈Ω

τ(r, r�) (1.2)

Therefore, to solve (1.1) for t ≥ 0, we have to prescribe an initial condition ϕ on the
interval −τm ≤ t ≤ 0.

u(x, t) = ϕ(x, t) for t ∈ [−τm, 0] (1.3)
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This thesis consists of two parts. In part I we look at an example of (1.1) in the most
simple case p = n = 1. Using a discretization as in [9] and numerical bifurcation analysis,
bifurcation curves are computed in section 3. A codimension two point in the discretiz-
ation of (1.1) is located, where a pitchfork and a Hopf bifurcation coincide. In section 4
normal form theory is used to classify the pitchfork-Hopf bifurcation. The classification is
confirmed by explicitly computing the normal form coefficients of the full model in section
5. In [22] the authors show how delayed neural fields of the form (1.1) can be cast as
abstract delay differential equations. Analytic expressions for the normal form coefficients
of codimension one and two bifurcations can be derived under the assumption that the
firing rate function is given by a finite linear combination of exponentials. Their method is
illustrated by the example of a double Hopf bifurcation in the same model as is considered
in part I of this thesis.

Part II of this thesis is about the relation of the delayed neural field equation (1.1) to
spiking neuron models. In general, neural fields are no reductions of large neural networks
but more heuristic. Therefore, there is no direct relation between parameters in the
network and the mean field model and the relation between variables in the mean field
and physiologically measured quantities is unclear.
In part II we derive equation (1.1) as the deterministic spatial continuum limit of a network
of spiking neurons with random connections. The underlying neuron model is a slight
modification of the Rulkov model [18, 19] and given in section 6. It can replicate a wide
variety of spiking patterns. However, the mean field reduction given in section 7 is only
possible for non-bursting neurons. The parameter relationship is clear and simulations
show that the accordance between the network and the mean field is very good. In
section 8 the delayed mean field model (1.1) is altered to also incorporate spike-frequency
adaptation. Neural fields which take into account spike-frequency adaptation were earlier
studied in [7,14]. In our case this modification directly follows from the underlying spiking
neuron model and is therefore straightforward to implement.

As a final introductory remark I want to mention that thesis is not as complete as I
would like it to be. While working two different completely different tasks was fruitful,
educational and most of all a lot of fun, it always gave me an excuse to attack a new
problem instead of writing a solved one down nice and neatly. This came back to roost in
the end, when I once more experienced the truth of the idiom ’the devil is in the details’.
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Part I.

A Pitchfork-Hopf bifurcation in a

neural field model with propagation

delays
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2. Preliminaries

In this part, we look at a single population model on a one-dimensional spacial domain
Ω with homogeneous and isotropic connectivity. The finite propagation speed of action
potentials leads to a transmission delay and due to synaptic processes there is an additional
fixed, ’intrinsic’ delay τ0. Space and time are scaled such that Ω = (−1, 1) and the
propagation speed is 1. This yields

�
∂

∂t
+ α
�
u(x, t) =

1�

−1

w(x− y)S (u(y, t− τ(x− y))) dy (2.1)

with
τ(d) = τ0 + |d| (2.2)

We choose the connectivity function w(d) as a difference of exponentials

w(d) = gee−be|d| − gie−bi|d| (2.3)

with ge, gi, be, bi > 0.
This effectively models a mixed population with local excitation (inhibition) and lateral
inhibition (excitation) for ge > gi, be > bi (respectively ge < gi, be < bi). See part II for a
motivation of this type of connectivity.
The firing rate function S(x) is given by an odd sigmoid with steepness parameter κ > 0.

S(x) = 1
1 + e−κx −

1
2 (2.4)

Since S(0) = 0, we here assume that the background activity has been subtracted so that u
represents the deviation from background and (2.1) admits the trivial steady state u = 0,
which we from now on will call background state.

2.1. Z2 symmetries

Equation (2.1) is invariant to the symmetry transformations T1 and T2 with respect to the
spatial variable defined by

T1v(x) = v(−x) (2.5)
T2v(x) = −v(x) (2.6)

The second symmetry holds since S is odd. Note that the fixed-point subspace X+ of T1
is given by all even functions while T1 is the central reflection on the subspace X− given
by all odd functions.

X
+ = {v | v(x) = v(−x)} (2.7)
X
− = {v | v(x) = −v(−x)} (2.8)
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Since the fixed-point subspace of T3 = T1T2 is given by X− we can conclude that both
X

+ and X− are invariant subspaces of (2.1).
From Theorems 7.7 and 7.8 in [15] follows that solutions of (2.1) emerging from a bifurc-
ation of the background state are either in X+ or in X−.
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3. Numerical bifurcation analysis

3.1. Discretization

In [9] is explained how equations of the type (1.1) can be solved numerically. A few minor
corrections are given in [22]. In the case of (2.1) the spatial domain Ω is discretized into
m subintervals of equal length h = 2

m , leading to a system of m+ 1 equations with m+ 1
fixed delays, given by

d
dtui(t) = −αui(t) + h

m+1�

j=1
ajw (|i− j|h)S (uj(t− τ0 − |i− j|h)) (3.1)

for i = 1, . . . ,m+ 1 and

aj =






1
2 if j ∈ {1,m+ 1}

1 otherwise

The finite-dimensional discretization (3.1) can be solved with dde23, a function written in
Matlab and analysed with DDE-Biftool [8], a numerical bifurcation package for Matlab.

In the following we use a discretization of m = 50 subintervals and fix the parameters
α = 1 and connectivity w(r) = 30e−5r− 15e−r (see figure 3.1). Free parameters are κ, the
steepness of the firing rate function, and the fixed delay τ0.
Since parameter τ0 only influences the delays in (2.1), only the stability but neither the
position (shape) nor the existence of stationary solutions depend on τ0.

d

w
(d

)

−2 −1 .5 −1 −0 .5 0 0 .5 1 1 .5 2

−5

0

5

10

15

Figure 3.1: ’Wizard hat’ connectivity function w(d).

3.2. Pitchfork bifurcation of the background state

Let us first fix τ0 = 1 and consider the steepness κ of the firing rate function as the
bifurcation parameter. Since S�(0) = κ

4 the background state is stable if κ is small enough
and becomes unstable beyond some critical value κc. Symmetry of the system suggests
that this bifurcation can be of pitchfork type. Indeed, a supercritical pitchfork bifurcation
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occurs at the parameter values shown in table 3.1. For κ > κc symmetry related stable
stationary bump solutions exist. The bifurcation takes place in the even subsystem so the
emerging stationary solutions are elements of X+. A bifurcation diagram and an example
of such a bump solution are shown in figure 3.2.

Table 3.1: Parameter values corresponding to a pitchfork bifurcation of the background state in
the discretized system (m = 50).

parameter α ge gi be bi τ0 κ

value 1 30 15 5 1 1 0.7740

κ

A
m
p
li
tu

d
e

0 .75 0 .80 0 .85
−2

−1

0

1

2

Space

A
m
p
li
tu

d
e

−1 −0 .5 0 0 .5 1

−0 .5

0

0 .5

1

Figure 3.2: Left: Bifurcation diagram corresponding to the supercritical pitchfork bifurcation
of the background state. Solid line corresponds to stable solutions, dotted line to unstable ones.
Amplitude is given as the height of the bump at position x = 0. Right: Stationary bump solution
for κ = 0.8 beyond the pitchfork bifurcation.

3.3. Hopf bifurcations

Hopf bifurcations play an important role in the study of neural field equations since they
are the origin of oscillations, which correspond to brain waves and rhythms. Until now we
have seen two types of stable solutions, the trivial background state and the stationary
bumps emerging from a pitchfork bifurcation. Both these attractors can lose their stability
due to a Hopf bifurcation if the intrinsic delay τ0 is increased. Both these Hopf bifurcations
lead to symmetric oscillations around the background state, see figure 3.4. The bifurcation
curves are plotted in figure 3.3.
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H0

0 . 74 0 . 75 0 . 76 0 . 77 0 . 78 0 . 79 0 . 80 0 . 81

2 . 3

2 . 5

2 . 7

2 . 9

3 . 1

3 . 3

3 . 5

κ

τ
0

Figure 3.3: Bifurcation diagram. P : Pitchfork bifurcation of the background
state. H0: Hopf bifurcation of the background state. Hb: Hopf bifurcation of bump
solutions.

Figure 3.4: Simulations beyond the Hopf bifurcations of the background state and stationary
bump solution. Top and bottom correspond to parameter values (κ = 0.76, τ0 = 5) and (κ =
0.8, τ0 = 5) respectively. Initial conditions are chosen close to the stationary states.
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3.4. Pitchfork-Hopf bifurcation

As is apparent from figure 3.3 the bifurcation curves of the background state cross at a
pitchfork-Hopf bifurcation. The parameter values corresponding to this critical point are
given in table 3.2.

Table 3.2: Parameter values corresponding to a pitchfork-Hopf bifurcation of the background
state in the discretized system (m = 50).

parameter α ge gi be bi τ0 κ

value 1 30 15 5 1 2.8068 0.7740

−0 . 75 −0 . 5 −0 . 25 0
−3

0

3

!(λ)

"
(λ

)

Figure 3.5: Spectrum at the critical point given in table 3.2. The pair of purely
imaginary critical eigenvalues is given by λ = ±0.6809i.
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4. The normal form

In [11,15] the normal form of the pitchfork-Hopf bifurcation is given. In polar coordinates
it reads 





ṙ = r(µ1 + p11r
2 + p12z

2) +O(|r, z|5)
ż = z(µ2 + p21r

2 + p22z
2) +O(|r, z|5)

θ̇ = ω +O(|r, z|2)

(4.1)

where µ1 is the Hopf and µ2 the pitchfork parameter. The first two equations in (4.1) are
independent of the third one, which describes rotations in the plane z = 0. Truncating
higher order terms, we can therefore restrict to the planar amplitude system





ṙ = r(µ1 + p11r

2 + p12z
2)

ż = z(µ2 + p21r
2 + p22z

2)
(4.2)

where we assume that pij �= 0 for i, j ∈ {1, 2} and p11p22 − p12p21 �= 0.
Since both the Hopf bifurcation and the pitchfork bifurcation of the background state are
supercritical, we can conclude that p11 < 0 and p22 < 0 in our case.
The number of parameters in (4.2) can be reduced by rescaling the variables. Setting
r̂ = √−p11r, ẑ = √−p22z and dropping the hats leads to





ṙ = r(µ1 − r

2
− bz

2)
ż = z(µ2 − cr

2
− z

2)
(4.3)

where
b = p12
p22
, c = p21

p11
. (4.4)

System (4.3) is symmetric in both r and z. Since r denotes a radius, solutions (r, z) and
(−r, z) of (4.3) coincide, so we can restrict to r ≥ 0.
Following [11], the unfolding (4.2) can be classified into twelve topologically different cases.
Since we already fixed the signs of p11 and p22, six of those cases remain, see table 4.1.

Table 4.1: Different unfoldings of (4.3).

Case Ia Ib II III IVa IVb
b + + + − − −

c + + − + − −

1− bc + − (+) (+) + −

In [15], the combined unfoldings listed in table 4.1 are called the ’simple’ case’, since (4.2)
can not have periodic orbits for p11p22 > 0.
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4.1. Existence and bifurcation of fixed points

Let us now focus on the equilibria of the amplitude equations (4.3). It is clear that the
trivial fixed point (0, 0) exists for all values of µ1, µ2 and is linearly stable if both µ1 < 0
and µ2 < 0 and linearly unstable if either µ1 > 0 or µ2 > 0. Non-trivial fixed points of
(4.3) can be classified in three types as shown in table 4.2 where also the corresponding
solutions of the mean field equation (2.1) are given.

Table 4.2: Solution correspondence.

Amplitude Solution Mean field Solution
trivial fixed point (0, 0) background state

mode one fixed point (r̄, 0) oscillation around the background state
mode two fixed point (0, z̄) stationary solution

mixed mode fixed point (r̄, z̄) oscillation around a non-trivial state

For µ1 > 0 there exists a mode one fixed point given by

E1 = (√µ1, 0) (4.5)

Linearization around this equilibrium yields eigenvalues

λ1 = −2µ1

λ2 = µ2 − cµ1

Since we observe stable oscillations around the background state for κ > κc in our mean
field model (see figure 3.4), we can conclude that c > 0.
Equilibrium E1 bifurcates on the curve

T1 =
�

(µ1, µ2) | µ1 = 1
c
µ2 and µ1 > 0

�
(4.6)

For c > 0 the fixed point E1 is an attractor if µ1 >
1
cµ2 and a saddle if µ1 <

1
cµ2.

For µ2 > 0 there exists a pair of mode two fixed points given by

E2,3 = (0,±√µ2) (4.7)

These equilibria correspond to the bump solutions in our mean field model. Linearization
around these fixed points leads to eigenvalues

λ1 = µ1 − bµ2

λ2 = −2µ2

Therefore the bifurcation curve of the equilibria E2,3 is given by

T2 = {(µ1, µ2) | µ1 = bµ2 and µ2 > 0} (4.8)
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The fixed points E2,3 are stable as long as µ1 < bµ2. From figure 3.3 we can therefore
deduce that b > 0 in our case.

Mixed mode equilibria of (4.3) are given by

E4,5 =




�
µ1 − bµ2

1− bc ,±
�
µ2 − cµ1

1− bc



 (4.9)

with bifurcation curves (4.6) and (4.8). At these curves the mixed mode fixed points
coincide with a pure mode equilibrium. If 1 − bc > 0, the mixed mode fixed points (4.9)
are stable, and if 1 − bc < 0 they are unstable. Since the Hopf bifurcation of the bump
solutions is subcritical, we can conclude that 1 − bc < 0. Therefore, we are in case Ib
of [11] or, using the classification of [15], in ’simple’ case I. The characteristic of this case
is a bistable region in which a stationary solution and a periodic solution coexist.
In figure 3.3 this region is located beneath the Hopf bifurcation curve of the bump solu-
tions. A simulation in this region illustrating the bistability is shown in figure 4.1. Initial
condition are given by

u(x, t) = � cos(πx) (4.10a)
u(x, t) = � (4.10b)

for � = 0.01 and t ∈ [−(τ0 + 2), 0].

Figure 4.1: Bistability for (κ = 0.81,τ0 = 2.9). Top and bottom correspond to initial conditions
(4.10a) and (4.10b) respectively.
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4.2. Bifurcation sets and phase portraits

Figure 4.2 shows the bifurcation sets and phase portraits of unfolding Ib.

µ 1

µ 2

1

2 3 4

5

6

µ 1 = b µ 2

µ 1 =
1
cµ 2

1

r

z
2

r

z
3

r

z

4

r

z
5

r

z
6

r

z

Figure 4.2: Case Ib.
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5. Analytic results

In the recent paper [22], the authors explain how neural fields of the type (1.1) can be
cast as abstract delay differential equations. Under the assumption that the firing rate
function is a finite linear combination of exponentials, they derive analytic formulas for
the location of the eigenvalues, the eigenfunctions and critical normal form coefficients.
This enables us to verify our numerical findings in section 3 and the classification of the
pitchfork-Hopf bifurcation in section 4 by numerically solving these analytic expressions.
We start by calculating the critical codimension-two point point of the full system (2.1),
given in table 5.1.

Table 5.1: Parameters corresponding to a pitchfork-Hopf bifurcation of the background state in
the full system (2.1).

parameter α ge gi be bi τ0 κ

value 1 30 15 5 1 2.6122 0.7791

Comparing these findings to the values in table 3.2 shows that the error in the discretiza-
tion with m = 50 is much larger than in the example given in [22]. This can be explained
by our choice of the connectivity (2.3). The greater decay translates into a bigger error in
the discretized system. Nevertheless, the agreement of the critical eigenvalues and eigen-
funtions is very good, as illustrated in figures 5.1 and 5.2. The stationary bump solutions
are well approximated by the eigenfunction φ1 corresponding to the zero eigenvalue, while
the period and shape of the oscillation around the background state in figure 4.1 is well
approximated by the critical eigenvalue λ = 0.7062i and eigenfunction φ2.
We conclude this section with the normal form coefficients. They are given by

�
p11 p12
p21 p22

�

=
�
−0.0197 −0.1371
−0.0423 −0.1134

�

(5.1)

We indeed have p11 < 0, p22 < 0, b = p12
p22
≈ 1.21 > 0, c = p21

p11
≈ 2.15 > 0 and therefore

bc > 1, which verifies our findings in section 4.
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Figure 5.1: Modulus and argument of eigenfunctions φ corresponding to critical
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Figure 5.2: Close-up of figure 4.1, bottom.
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Part II.

Relation to spiking neuron models
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6. A spiking neuron network

6.1. Spiking neuron model

In the Rulkov model [18, 19], neurons are point-like elements with two state variables,
the membrane potential v and a recovery variable r with no direct biological resemblance
(Rulkov denotes these variables with x and y respectively). The model is purely phe-
nomenological but can replicate all kinds of spiking behaviour of real biological neurons
and since it is discrete in time, it has high computational efficiency.
In this thesis we use a modified version of the Rulkov map. In our case the dependence of
the recovery variable on the membrane potential is implicit instead of explicit, making the
map harder to analyse but better suitable for a mean field approximation. The modified
model is given by the following map

vn+1 = fα (vn, vn−1, σ + rn + βIn) (6.1a)
rn+1 = rn + µ (−rn + (1− β)In − ρsn) (6.1b)

with fα a piecewise continuous function defined as

fα(vn, vn−1, y) =






α

1− vn
+ y if vn ≤ 0

α+ y if 0 < vn < α+ y and vn−1 ≤ 0

−1 otherwise

(6.2)

Figure 6.1 shows an illustration of this function.
The parameter σ determines the activity in the absence of any input (which is equivalent
to constant input by a change of variables) and ρ sets the influence of a single spike on
the recovery variable r with time scale parameter µ < 1. External input (e.g. synaptic
currents) is modelled through variable In and the parameter β determines how this input
is applied to the map. The dependence of (6.1b) on vn is due to the indicator variable sn
defined by

sn =





1 if the neuron spiked at iteration n

0 otherwise
(6.3)

From (6.2) follows that the spiking condition in (6.3) is satisfied when

(vn ≥ α+ σ + rn + βIn > 0) ∨ (vn > 0 ∧ vn−1 > 0) (6.4)

The dependence of fα on vn−1 forces the map to always iterate its trajectory from the
middle interval to the rightmost one. This assures that the duration of a spike is always
exactly one iteration. Without this dependence, the map could stay in the middle interval
for several iterations if the input is monotonically increasing. After one iteration at the
middle interval and one iteration at the right interval the map stays at least one iteration in
the left interval. Therefore, the maximal firing rate of a neuron is once in three iterations.
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Fixed points and periodic trajectories

A neuron is quiescent if its membrane potential is at (or converges to) a fixed point whereas
spiking corresponds to a periodic trajectory.
For constant input the dependence of fα on vn−1 can be ignored. If we assume for the
moment that rn is constant we can analyse the one-dimensional map vn+1 = fα(vn, y).
An example is shown in figure 6.1. For y < 1 − 2

√
α there exists a stable fixed point vs

and an unstable fixed point vu given by

vs = y + 1
2 −

1
2

�
(y − 1)2 − 4α (6.5a)

vu = y + 1
2 + 1

2

�
(y − 1)2 − 4α (6.5b)

At y = 1 − 2
√
α the two fixed point coincide at a saddle-node bifurcation and disappear

for y > 1− 2
√
α.

A periodic trajectory exists if there are no fixed points or if the unstable fixed point (6.5b)
lies to the left of −1 (see figure 6.1). Since the point v = −1 is part of every periodic
trajectory, there can’t exist more then one periodic orbit for every value of y. A stable
fixed point and a periodic orbit can only coexist for α > 4. The map vn+1 = fα(vn, y)
then is bistable for

y ∈

�
−(1 + α2 ), 1− 2

√
α

�
(6.6)

−3 −3 −1 0 1 2 3
−3

−2

−1

0

1

2

3

v n

v
n
+
1

Figure 6.1: Illustration of
fα(vn, y) (thick blue line) for
α = 6 and y = −3.93 with
stable fixed point (green dot),
unstable fixed point (red dot)
and stable periodic trajectory
(dashed green line).
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Spiking dynamics

It follows that for α ≤ 4 and no input a neuron is quiescent for σ ≤ 1−2
√
α and spiking for

σ > 1− 2
√
α. We now show how a few typical types of spiking dynamics of real biological

neurons can be replicated with the modified Rulkov model (6.1).

• Fast spiking cells are characterized by the fact that they fire spike trains with prac-
tically no spike-frequency adaptation. This can be achieved by choosing a rather
large value for µ. In this case the influence of a single spike on the recovery variable
r decays very fast, therefore the value of rn is dominated by the timing of the last
spike and the influence of older spikes can be neglected (see figure 6.2A). Since the
time scales of (6.1a) and (6.1b) are similar the value of β has no influence on the
qualitative dynamics in this case. Because of the lack of adaptation, the spiking rate
of a fast spiking neuron can be very well approximated by a function of the current
input I.

• Spike-frequency adaptation can be modeled with µ� 1. The recovery variable then
acts as a slow time scale, so it takes a while until rn fully responds to a change in
input. The level of adaptation can be controlled with β. An example is shown in
figure 6.2B.

• Bursting is only possible if (6.1a) can be bistable, which is the case for α > 4. This is
illustrated by the example in figure 6.2C. A burst is initiated when the slow variable
rn reaches its maximal value. At that point the stable fixed point has disappeared so
the cell starts spiking. This spiking leads to a decrease of rn which slows down the
spiking frequency. When rn has reached its minimum, the unstable fixed point has
moved through −1 which terminates the periodic orbit and therefore the spiking.
The membrane potential vn now converges to the stable fixed point and since the
spiking has stopped, the slow variable starts increasing again. A new periodic orbit
appears, but because its membrane potential is close to the stable fixed point the cell
doesn’t start spiking until the fixed point disappears and a new burst is initiated.
The model can mimic tonic bursting (chattering) as well as intrinsic bursting (figure
6.2D).

• Rebound spikes/bursts are induced by a hyperpolarizing current which is suddenly
switched off. Through this mechanism, action potentials can be triggered by inhib-
itory input. In the model this is only possible for β > 1. In that case the recovery
variable builds up while the cell gets hyperpolarized. Examples are shown in figure
6.3E and figure 6.3F.
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Figure 6.2: Response of quiescent neurons to excitatory input. Parameter values (α, σ, β, µ, ρ)
given by A: (3.8,−2.95, 1, 0.4, 0.3); B: (3.8,−2.95, 1, 0.001, 2); C: (5,−3.5, 0.1, 0.002, 8); D:
(4.2,−3.1, 0.4, 0.002, 15);
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Figure 6.3: Response of quiescent neurons to inhibitory input. Parameter values (α, σ, β, µ, ρ)
given by E: (3.8,−2.95, 1.5, 0.001, 2); F: (5,−3.5, 1.5, 0.002, 8)

6.2. Synaptic currents

At a synapse, the arrival of a presynaptic action potential results into the release of
neurotransmitter, which in turn cause ion channels on the postsynaptic side to open. This
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leads to a conductance change of the postsynaptic membrane and therefore induces an
ohmic current. For simplicity we assume that a neurons spends most of its time close to
rest, so that we can approximate the membrane potential by a constant and effectively
model the arrival of a spike as generating a synaptic current rather then a conductance
change [4].
Since our neurons are modeled as point-like elements all internal properties such as the
dendritic tree are ignored. We assume that postsynaptic currents decay exponentially
and that the decay is dominated by the postsynaptic membrane, which is the case if the
synapses are fast. Under these assumptions, the shape of an isolated postsynaptic current
only depends on the postsynaptic neuron.
In a network consisting of N neurons let τij denote the time it takes for a presynaptic spike
of neuron j to reach the postsynaptic neuron i. Assuming that the synaptic responses sum
linearly, the total synaptic current u(i)

n to neuron i is given by the difference equation

u
(i)
n+1 = γiu(i)

n +
N�

j=1
wijs

(j)
n+1−τij (6.7)

with 0 < γi < 1 given by the membrane time constant of neuron i, wij the connection
weight from neuron j to neuron i and s(i)n as defined in (6.3) and (6.4). Note that the
delays τij are given in iterations of the map, so they are non-negative integers.

Remark Under the above assumptions, the total synaptic current ui(t) to neuron i is, in
continuous time, given by

ui(t) =
N�

j=1

�

m

wije
−νi(t−Tmj −τij)Θ(t− Tmj − τij) (6.8)

with {Tmj , m ∈ Z} the spiking times of neuron j, Θ(x) the Heaviside step function and
time scaled such that one unit of time corresponds to one iteration of the Rulkov map.
Using

Θ(x+ 1) = Θ(x) + ϕ(x) with ϕ(x) =





1 if x ∈ [−1, 0)

0 else
(6.9)

equation (6.8) can be rewritten as

ui(t+ 1) = e−νiui(t) +
N�

j=1

�

m

wije
−νi(t+1−Tmj −τij)ϕ(t− Tmj − τij) (6.10)

The second sum in (6.10) is only nonzero if ∃ T ∈ {Tmj , m ∈ Z} with

t− τij < T ≤ t+ 1− τij (6.11)

Since in our network the spiking times Tmj and delays τij are integers equation (6.10)
reduces to (6.7).
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6.3. Connectivity

Using notation as in [3], we consider a multilayer network consisting of M different pop-
ulations. Suppose the neurons are labeled by i ∈ Pk, k = 1, . . . ,M and |Pk| = Nk.
Each population is placed on the one-, two- or three-dimensional spatial domain Ω.

We assume that the connection probability pij and delay τij between neuron i ∈ Pk and
neuron j ∈ Pl only depends on k and l and their distance dij and have the form

pij = e−bkldij (6.12)

τij = akl +
dij

ckl
(6.13)

with conduction speeds ckl and ’intrinsic’ delays akl. Since the delays are given in iterations
of the map, all arising delays τij are rounded to the nearest integer.
If a connection exists, the connection weight wij only depends on k and j and is normalized
by the maximal number of incoming connections of the same type.

wij = Wkl
Nl

(6.14)

Within one population all neurons share the parameters α, β, µ, ρ and γ. To assure that he
neurons spike asynchronously the values of σ are drawn from some random distribution.
This basically means that the neurons in the network receive random (but constant)
’background input’. Why the assumption of asynchronous spiking is essential in the mean
field reduction is explained in section 7.
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7. From network to mean field

The reduction from a spiking neuron network to a single mean field equation is done in two
steps. In the first step the connection between the neurons in the network are averaged,
leading to a new network with deterministic all-to-all connectivity. The second step is
the crucial step: a short-time temporal averaging converts individual spikes to spiking
rates. In this step all information contained in the exact timing of spikes is lost. This
so-called ’problem of neural coding’ is a subject of ongoing debate [10]. It is here where
the asumption of asynchronous spiking becomes necessary, because the conversion to rates
’destroys’ correlations in spike timing.

7.1. Averaging connectivity

Let us again look at two neurons i ∈ Pk and j ∈ Pl. For large Nk, k = 1, . . . ,M we
can approximate the connectivity by an all-to-all connectivity with ’expected weights’ w̄ij
given by

w̄ij = wijpij = e−bkldijWkl
Nl

(7.1)

To make things concrete, lets consider a two-layer network consisting of a excitatory (E)
and a inhibitory (I) population, both equidistantly placed on on the one-dimensional
spatial domain Ω = [−1, 1]. We take NE = NI = N , so the distance between adjacent
cells of the same type is given by h = 2

N−1 . Assuming that delays only depend on distance
the synaptic currents (6.7) can be written as

u
(E,i)
n+1 = γEu(E,i)

n + 1
N

N�

j=1
wEE(|i− j|h)s(E,j)n−τ(|i−j|h) − wEI(|i− j|h)s

(I,j)
n−τ(|i−j|h) (7.2a)

u
(I,i)
n+1 = γIu(I,i)

n + 1
N

N�

j=1
wIE(|i− j|h)s(E,j)n−τ(|i−j|h) − wII(|i− j|h)s

(I,j)
n−τ(|i−j|h) (7.2b)

with connectivity functions

wXY (d) =WXY e−bXY d with X,Y ∈ {E, I} (7.3)

and delays
τ(d) = a+ d

c
(7.4)

If we choose γE = γI = γ and assume that the connection functions are independent of
the postsynaptic neuron type, that is

wEE(d) = wIE(d) = wE(d) (7.5a)
wEI(d) = wII(d) = wI(d) (7.5b)
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we can take u(E,i)
n = u(I,i)

n and (7.2) reduces to

u
(i)
n+1 = γu(i)

n + 1
N

N�

j=1
wE(|i− j|h)s(E,j)n−τ(|i−j|h) − wI(|i− j|h)s

(I,j)
n−τ(|i−j|h) (7.6)

To make a last simplification, we make the artificial assumption that neurons from the
two populations are pairwise identical, that is αE = αI , βE = βI , µE = µI , ρE = ρI
and σE,i = σI,i for all i = 1, . . . , N . Since both populations receive the same synaptic
input and their ’inner properties’ are identical there holds s(E,i)n = s(I,i)n for all n, i and the
synaptic current is given by

u
(i)
n+1 = γu(i)

n + 1
N

N�

j=1
w(|i− j|h)s(j)n−τ(|i−j|h) (7.7)

with
w(d) = wE(d)− wI(d) =WEe−bEd −WIe−bId (7.8)

Equation (7.7) effectively models a mixed population of excitatory and inhibitory neurons
with similar dynamical properties.

7.2. From spikes to rates

Until now, all expressions for the synaptic currents were event based, since synaptic cur-
rents are induced by spikes of neurons. If we average these equations over some short time
interval, we can approximate the ’spiking variable’ sn ∈ {0, 1} by the spiking rate F .
As we saw before, for α ≤ 4 (no bursting) and µ rather large, spike-frequency adaptation
can be neglected (see figure 6.2A). For fixed α, µ, ρ and constant input I the spiking rate
F of a neuron then is a (piecewise constant) function of σ+I and can easily be determined
numerically.
In our network the values of σ are drawn from a random distribution with some probability
density function g. The ’expected firing rate’ F̄ of a neuron in the network is then given
by

F̄ (I) =
∞�

−∞

g(s)F (s+ I)ds (7.9)

Example We choose α = 3.8, µ = 0.4, ρ = 0.25 and let σ be a random variable given by

σ = 1− 2
√
α+ Z (7.10)

with Z ∼ N(0, 1). The rate functions F and F̄ are computed numerically and shown in
figure 7.1. The ’expected firing rate’ F̄ can be very well approximated by a function of
the form

S(x) = Smax
1 + e−κ(x−θ)

(7.11)

which is also illustrated in figure 7.1.
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√
α + I) for α = 3.8,

µ = 0.4 and ρ = 0.25 (blue
line), F̄ (I) for σ as given in
(7.10) (green line) and S(I)
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3 , κ = 1.6 and
θ = 0.44 (dashed red line).

Substituting the approximated expected firing rate S for s in equation (7.7) leads to

u
(i)
n+1 = γu(i)

n + 1
N

N�

j=1
w(|i− j|h)S

�
u

(j)
n−τ(|i−j|h)

�
(7.12)

We have here assumed that the synaptic currents ui are slowly varying compared to the
spiking dynamics. By interpreting the sum in (7.12) as a Riemann sum we rewrite (7.12)
as

un+1(ih) = γun(ih) + N − 1
2N

N�

j=1
hw(|i− j|h)S

�
un−τ(|i−j|h)(jh)

�
(7.13)

which for N →∞ converges to

un+1(x) = γun(x) + 1
2

1�

−1

w(|x− y|)S
�
un−τ(|x−y|)(y)

�
dy (7.14)

This in turn can be seen as the forward Euler of

∂

∂t
u(x, t) = −ϑu(x, t) + 1

2

1�

−1

w(|x− y|)S (u(y, t− τ(|i− j|))) dy (7.15)

with ϑ = 1− γ.

We conclude this section with three examples of different spatial-temporal patterns gen-
erated by two-layer neuron networks with random connections, their averaged single-layer
counterparts (7.7) and the mean field reduction (7.15).
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In all examples we fix the (neuron) parameters α = 3.8, β = 1, µ = 0.4, ρ = 0.25 and
γ = 0.9. The values of σ are given by

σ = 1− 2
√
α+ 1

2Z (7.16)

where Z is drawn from N(0, 1).
For the firing rate in mean field we use equation (7.11) with Smax = 1

3 , κ = 1.8 and
θ = 0.37. The connectivity and delay functions are varied.
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7.3. Example 1: A stationary 2-bump

Figure (7.2) shows the result of simulations with the ’wizard hat’ connectivity and delay
function given by

w(d) = 20e−5d
− 10e−2d (7.17)

τ(d) = 40 + 10d (7.18)

We observe a stationary solution with two active bumps at the borders of the domain
which is very well reproduced by the mean field solution.

Figure 7.2: Top: One run of a network with random connections (only excitatory
population). Middle: One run of the mixed network with averaged connectivity (7.7).
Bottom: Solution of mean field equation (7.15).
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7.4. Example 2: A travelling wave

In this example we use the same delay (7.18) but invert the connectivity.

w(d) = 10e−2d
− 20e−5d (7.19)

This ’inverted wizard hat’ connectivity leads to a travelling wave as is shown in figure 7.3.
Again the agreement with the mean field reduction is very good.

Figure 7.3: Top: One run of a network with random connections (only excitatory
population). Middle: One run of the mixed network with averaged connectivity (7.7).
Bottom: Solution of mean field equation (7.15).
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7.5. Example 3: A standing wave

The traveling waves of example 2 turn into standing waves if we slow down the conduction
speed.

τ(d) = 40 + 50d (7.20)

Figure 8.1 again shows a very good agreement of the mean field reduction.

Figure 7.4: Top: One run of a network with random connections (only excitatory
population). Middle: One run of the mixed network with averaged connectivity (7.7).
Bottom: Solution of mean field equation (7.15).
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8. Adding spike-frequency adaptation

In section 7 we restricted to cells without spike-frequency adaptation. It is now straight-
forward to implement more general cases where the recovery variable r can be slow.
We again assume that bursting is not possible (α ≤ 4). As we showed in section 6 the
map (6.2) then has a periodic trajectory if and only if

y > 1− 2
√
α (8.1)

From (6.1) follows that the spiking rate of a Rulkov neuron is a function of σ + r + βI.
For every value of y = σ+ r+βI satisfying (8.1) we can compute the period of limit cycle
which gives us the spiking rate of the neuron. For other values of y the spiking rate is
zero.
In the same way as in section 7 we can approximate the expected firing rate S(r+ I) and
substitute this function for sn in (6.1b) and (7.7). The mean field approximation of the
Rulkov network with spike-frequency adaptation is then given by

∂

∂t
u(x, t) = −ϑu(x, t) + 1

2

1�

−1

w(|x− y|)S
�
r
�
y, t− τ(|x− y|)

�
+ βu

�
y, t− τ(|x− y|)

��
dy

(8.2a)
∂

∂t
r(x, t) = µ

�
(1− β)u(x, t)− r(x, t)− ρS

�
r(x, t) + βu(x, t)

��
(8.2b)

8.1. Example 4: A moving bump

We conclude with a last example illustrating equation (8.2). Parameter values of the
recovery variable are given by µ = 0.001 and ρ = 20 respectively. The connectivity is
chosen as

w(d) = 30e−5d
− 15e−2d (8.3)

and other parameters are the same as in example 1 in section 7. Neurons with these
parameters show a high level of spike-frequency adaptation. Figure 7.4 shows a simulation
of the network and the corresponding solution of (8.2). We observe that spike-frequency
adaptation leads to a ’moving bump’ solution. This can be explained as follows: At a
bump of activity the value of r slowly decreases. Since this suppresses the activity the
bump starts to wander to regions where r is higher. The timescale at which this happens is
set by the recovery variable and therefore the period is much larger than in the oscillations
previously observed in examples 2 and 3.
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Figure 8.1: Top: One run of the mixed network with averaged connectivity (7.7).
Bottom: Solution of the modified mean field equation (8.2).
The first plots shows the synaptic currents, the second plots the recovery variables r.
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9. Discussion

In the second part of this thesis we have demonstrated how a particular spiking neuron
network can be reduced to a mean field equation. This opens the door for numerical
and analytical studies which would not have been possible for the original spiking neuron
network. An example of such a study is given in the first part of this thesis.
Simulations show that the agreement of the mean field reduction with the spiking neuron
network is very good, while the parameter correspondence is clear.
The crucial step in the reduction is the translation from individual spikes to spiking rates,
and it is here where problems arise. While the spiking neuron model can replicate a wide
variety of biologically realistic spiking patterns, the reduction is only valid for non-bursting
neurons, which drastically reduces the cases in which the reduction can be used.
Another problem is the way the firing rate function is approximated. This is done ’by
hand’, which is ambiguous and therefore not very scientific.
We conclude with an issue indicated in section 7, the ’problem of neural coding’. Obviously,
all information contained in the exact timing of individual spikes is lost when making the
transition to rate models. Whether or not this information is essential to describe brain
activity is still a topic of ongoing debate, but more than that, this gives another restriction
on our spiking neuron network: we have to assume that spike timings are uncorrelated.
Reductions of networks violating this last assumption may however still capture useful
information. This would be an interesting topic for further research.
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