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Abstract

LTI systems subject to hysteresis are investigated, especially the case where the hys-
teretic effect lies between controller and plant. Difficulties of stabilizability of this
particular class of systems are explored. Then controller design is considered, where
two different control strategies are investigated; a fixed sign controller and a bang-
bang controller. Theorems are stated to check fixed sign controllability and fixed sign
stabilizablility. Stability properties, practical-Ω-stability and quasi-stability of the
systems with these controllers are investigated. Furthermore, a bang-bang controller
is explored, and finally a switched controller is presented which combines the best of
both strategies.
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Chapter 1

Introduction to Control

The theory of controlling dynamical systems has a long history. Automated control of
dynamical systems becomes more and more important, even more with the develop-
ments of robotics. Many applications are developed because of the natural laziness of
humans, and desire for comfort. One can think of house thermostats, cruise control,
automatic gear transmission, segways, etc. Automatic control is also important be-
cause a human being can not control manually everywhere, where control is needed,
one can think of satellite movement corrections to keep a satellite in its orbit. Also, a
human is often not capable to control the system fast and precisely enough, one can
think of balancing a multiple inverted pendulum or a robot on stairs, or an automated
system is much faster, cheaper, more predictable and hopefully more reliable then a
human being. For examples of this last case one can think of stock market, assembly
lines, etc.

Automatized control or not, in most of the cases a dynamical system generates output,
which could be measured and (possibly) compared with a reference value. This is
called feedback control. As it can be seen in Figure 1.1, the difference between
reference and measurement is sent to a controller and will be used to design an input
for the system.

Many dynamical systems have beautiful behavior and even more beautiful control
mechanisms, but only when no disturbances, measuring errors, saturation or hystere-
sis occurs. It is important to design stablizers which can also handle these distortions,
to obtain robustness in the system. Bosgra et al. [3] wrote about robustness of con-
trollers when system suffers from perturbations. A nice report about stabilization of
systems, subject to measurement saturation is written by Hilhorst [7].

Reference Controller System

Disturbances

u

Measurements

e y

−

ym

Figure 1.1: A dynamical system, which output y is measured as ym, and possibly compared with
a reference value, to feed the controller for an appropriate input u.
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Here, we will handle the control of systems subject to hysteresis. First, a brief in-
troduction to dynamical systems and control is given. Then hysteresis is introduced,
with various ways of representing hysteretic behavior. On the basis of an example,
the difficulties of hysteresis are sketched. With that example in mind, some suggested
solutions are given. Later on, the practical challenges will be generalized.

1.1 Basic definitions

It is desirable to analyse objects or situations in their environment to understand
phenomena in their behavior. Mathematical modelling of these objects or situations
reduces them to variables which describe their state. Dynamic interaction in their
states and passing of time have an important role in the evolution of these variables.
This arouses our curiosity on how to describe what we see and, even more, how to
control the process to obtain desirable behavior. Therefore, we have to define exactly
what a dynamical system is.

Definition 1.1 (Dynamical system [16, 17]). A dynamical system Σ is a triplet
Σ = (T,W,B) where T ⊆ R and B ⊆ {w : T→W}.

Here, T denotes the time axis, which in the continuous case is often equal to R+.
W describes the signal space, i.e. all values which the signals can adopt. B is the
behavior of the system. This is the collection of all trajectories which can be adopt
by the system, due to constrains. This is illustrated in the next example.

Example 1.1 (Train driver): A train driver wants to describe the behavior of his train which
has a mass of m kilogram. The machinist lets the engine provide a force of F (t) Newton at
time t, and the user manual of the train shows that the air and rolling resistance are related
linearly to the velocity of the locomotive with a constant factor b. Therefore, he can describe
the dynamics of the train with

m
d2

dt2
x(t) + b

d

dt
x(t) = F (t), (1.1)

with x(t) the distance which is a function of time. In this case, T = R+, and W = R2. Its
behavior B can be represented as

B :={(F, x) : R+ → R2 | m d2

dt2
x(t) + b

d

dt
x(t) = F (t), x(0) = 0}. (1.2)

Although the behavior B is uniquely defined, it can be represented by easy or diffi-
cult equations with several parameters, as long as it ‘projects’ the time to the force
and distance: {(F, x) : T → W}. In the case of the train driver, an other correct
representation of the behavior is

B := {(F, x) : R+ → R2 | x(t) = c1 +

t∫
0

F (τ)

b

(
1− e−

b
m

(t−τ)
)
dτ, for certain c1 ∈ R}.

(1.3)

The reader should verify that this expression represents the same behavior as given
in the example. Because the behavior of the system is the important issue, and not
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the way of representing it, this is called a behavioral approach [17].

Two important properties of dynamical systems are linearity and time-invariance.

Definition 1.2 (Linearity [17]). A system Σ = (T,W,B) is linear if

w ∈ B implies λw ∈ B ∀λ ∈ R, and (1.4)

w1, w2 ∈ B implies w1 + w2 ∈ B. (1.5)

Definition 1.3 (Time-invariance [7, 17]). A system Σ = (T,W,B) is time-
invariant if for all τ ∈ T holds

w ∈ B implies στw ∈ B (1.6)

where στ denotes the shift operator στw(t) = w(t− τ).

Looking to our example of the train driver, we see that this system is linear and
time-invariant.
A common way to describe a linear, time-invariant (LTI) dynamical system is the
state-space representation: {

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1.7)

where u(t) ∈ Rm denotes the input at time t, y(t) ∈ Rp the output and where
x(t) ∈ Rn describes the state at time t. The matrices A ∈ Rn×n, B ∈ Rn×m and
C ∈ Rp×n are all given. Further, ẋ denotes the derivative of x with respect to time.
The straightforward solution of this system is

x(t) = eA(t−t0)x(t0) +

t∫
t0

eA(t−τ)Bu(τ) dτ (1.8)

y(t) = Cx(t) = CeA(t−t0)x(t0) +

t∫
t0

CeA(t−τ)Bu(τ) dτ. (1.9)

Mechanical systems like mass-damper-spring systems and electrical circuits with in-
ductors, resistors and capacitors can be modelled as LTI systems; although their
physical appearances are different, their mathematical representation is similar.

Example 1.2 (Train representation): Our train driver decides that the applied force provided
by the engine is the input and the travelled distance is the output of his LTI system. He wants
to represents the trains behavior as a state-space model and he wisely defines the state vector xxx
as [x(t), ẋ(t)]T . After a crash course in linear algebra, he found that the following state-space
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equation represents his LTI system: ẋ̇ẋx(t) =

[
0 1

0 − b
m

]
xxx(t) +

[
0
1
m

]
u(t)

y(t) =
[
1 0

]
xxx(t)

, (1.10)

which he based on the differential equation (1.1).

To make a start with the analysis of stability, we need a definition of an equilibrium
point.

Definition 1.4 (Equilibrium point [9]). Consider the system ẋ = f(x). A point x̄
is an equilibrium point if f(x̄) = 0.

This definition tells us that if x = x̄, then ẋ = 0, which implies that x remains in this
equilibrium for further time. So in the case that the system reaches an equilibrium,
the system remains in this equilibrium forever, when it is not exposed to any kind of
disturbance.

As stated by Khalil [9], the coordinates of the equilibrium point can be shifted towards
arbitrary coordinates by changing the system variables, without losing its characteris-
tic behavior. Therefore, we can assume without loss of generality that the equilibrium
x̄ lies in the origin x = 0.

The behavior around an equilibrium plays a crucial role. We want to investigate
the characteristics of equilibrium points, which is essential in analysis of dynamical
systems. Consider a system in its equilibrium and suppose a small distortion is given.
A major question in the analysis of systems is: ‘Does the system tend away due to the
distortion, or does it nicely return to its equilibrium, or will it keep moving around
the equilibrium, without returning or leaving?’ To make this more formal, we need a
definition of stability. The following definitions are used.

Definition 1.5 (Stability [9]). The equilibrium point x̄ of a system ẋ = f(x) is

(i) stable, if for each ε > 0, there is a δ > 0 such that

‖x(0)‖ < δ implies ‖x(t)‖ < ε, for all t ≥ 0 (1.11)

(ii) unstable, if not stable.

(iii) asymptotically stable, if x̄ is stable and δ can be chosen such that

‖x(0)‖ < δ implies lim
t→∞

x(t) = 0 (1.12)

(iv) globally asymptotically stable, if it is stable and

lim
t→∞

x(t) = 0 (1.13)

for all initial conditions.
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Definition 1.6 (Attractivity [17]). The equilibrium point x = 0 of a system ẋ =
f(x) is an attractor if there exist an ε > 0 such that

‖x(0)‖ < ε implies lim
t→∞

x(t) = 0 (1.14)

Remark that a stable attractor is an asymptotical stable equilibrium point. To il-
lustrate the difference between attractors and stability, we give the the following
example.

Example 1.3 (Unstable attractor): Consider the following non-linear dynamical system,
written in polar coordinates: {

ṙ = 1− r
θ̇ = sin2(θ/2)

(1.15)

Clearly, the only equilibrium point is x̄ = (1, 0). A sketch of this situation is given in Figure 1.2.
By first observation, we see that the first expression of this system ensures that a distortion
of modulus is compensated. The system will be sent back to the unit circle. However, the
second expression results in the fact that a small distortion directs the system to an angle of
the next multiple of 2π, no matter how small this distortion is chosen. In all cases where the
disturbance is above the x-axis, the system goes around, to approach the equilibrium point
from below. Therefore, the equilibrium point is an unstable attractor.

0 1

r = 1
Bε(x̄)

Figure 1.2: A plane which shows the behavior of the system (1.15). Two initial conditions
are chosen, unequal to the equilibrium point. The trajectory does not always remain inside the
ε-neighbourhood around the equilibrium, therefore it is not stable. It is, however, an attractor,
since all trajectories approach the equilibrium when time goes to infinity.

Sometimes, as in the previous example, the trajectory is converging to a certain
region. To make distinction between this type of systems and unstable ones, which
does not have that kind of behavior, we need an extension of the definition of stability.
After this extension we are able to describe stability of certain regions.

Definition 1.7 (Invariant set). A set of states M of a system ẋ = f(x) is called an
invariant set of the system if for all x0 ∈M and for all t ≥ 0, x(t) ∈M .
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Based on ideas of Khalil [9], we define an ε-neighbourhood of the area M by

Mε = {x ∈ Rn | dist(x,M) < ε} (1.16)

where dist(x,M) is a function to describe the minimal distance from x to a point in
M :

dist(x,M) = inf
y∈M
‖x− y‖. (1.17)

According to the ideas behind stability for equilibrium points, one can state similar
definitions of stability of sets:

Definition 1.8 (Stability of an invariant set [9]). An invariant set M of a system
ẋ = f(x) is

(i) stable if for each ε > 0 there is a δ > 0 such that

x(0) ∈Mδ implies x(t) ∈Mε, for all t ≥ 0 (1.18)

(ii) asymptotically stable if it is stable and δ > 0 can be chosen such that

x(0) ∈Mδ implies lim
t→∞

dist(x(t),M) = 0 (1.19)

Remark that if we reduce this set M to an equilibrium point x̄, this definition is equal
to Definition 1.5.

Example 1.4 (Asymptotically stable invariant set): Consider the dynamical system (1.15)
of Example 1.3, defined in the domain R2 \ 0. We define M as the annular region {x ∈ R2 |
r = 1}. This is an invariant set, since ṙ = 0 for all x ∈M . Given ε > 0, we choose δ = ε and
see that all solutions in Mδ will remain in Mε. Therefore M is stable. Moreover, we have

lim
t→∞

dist(x(t),M) = 0, (1.20)

no matter how large δ is chosen. Therefore, this invariant set M is asymptotically stable.

Many tools for analysis of systems are based on LTI systems, for example the analysis
of stability of equilibria. The first step of analysis of non-linear systems is there-
fore linearization. This linearization is a good approximation of the system in the
neighbourhood of its equilibrium, because the higher order terms are very small in
comparison to the first order term. Furthermore, we have the advantage that the
typical stability characteristics are not lost when linearization is applied. The proof
is not stated here, but for a formalization we refer to Khalil [9]. We have to keep
in mind that linearization has some major limitations. Since a linearized system ap-
proximates only the neighbourhood of an equilibrium point, only local behavior can
be estimated. Unfortunately nothing can be said about the system when it behaves
far away from the chosen equilibrium point, let alone about the global behavior.

To test the stability of equilibria, Lyapunovs first method is a usable method for linear
or linearized systems, written as ẋ = Ax. For this method, we need the definition of
semisimple eigenvalues.
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Definition 1.9 (Semisimple eigenvalue [7, 17]). Let A ∈ Rn×n and let λ be an
eigenvalue of A. An eigenvalue is semisimple if the dimension of the null-space

Null(λI −A) := {v ∈ Rn | (λI −A)v = 0} (1.21)

is equal to the multiplicity of λ as a root of the characteristic polynomial of A.

Theorem 1.10 (Lyapunovs first method for stability [9, 17]). Consider an autonomous
LTI system ẋ = Ax. This system is

(i) asymptotically stable if and only if all eigenvalues of A have negative real part.

(ii) stable if and only if for all eigenvalues of A holds either Re(λ) < 0, or Re(λ) = 0
and λ is semisimple.

(iii) unstable if A has an eigenvalue with positive real part and/or a non semisimple
eigenvalue with zero real part.

For an intuitive idea behind this theorem, suppose t ∈ T = R+. We see with equation
(1.9), (remark that u(t) = 0), that eAt must be bounded to obtain a stable system.
By construction of the matrix exponential eAt, this is only the case when eigenvalues
of A are negative. This is stated intuitively, and compared with the scalar case of
eat, which is only bounded for all t > 0 when a < 0. For a formal proof we refer to
Khalil [9, p. 130], and Polderman and Willems [17, p. 243].

The behavior of the non-linear system is nearly equal to the behavior of its lineariza-
tion, when the system is in the neighbourhood of its equilibrium point. This fact is
the idea behind the first method of Lyapunov: When the function is sufficient smooth,
the behavior of the linearization is a proper approximation of the non-linear system
in the neighbourhood of the equilibrium point.

The key idea of the second method of Lyapunov is based on an energy function: if
there is some dissipation of energy (e.g. due to friction), then the signals of a system
will converge to zero. For example, if one passively releases a yo-yo, then after
a while there is no movement nor height (mechanical energy) any more, since the
energy dissipates due to friction. The only way to keep a yo-yo in motion is actively
playing with it, which will add energy to the system of the yo-yoing yo-yo. However,
this second method of Lyapunov is not used in the investigation of hysteresis in this
thesis, and therefore it is omitted here.

It is desirable to have a system where the controller is able to steer the behavior in a
desired position. Otherwise, one could just look, do nothing and see that the system
behaves as it is determined to do, without the possibility to intervene. This steering
is called controllability, and the following definition is used.

Definition 1.11 (Controllability [17]). Consider a time invariant system Σ =
(T,W,B). Then Σ is controllable if for any two trajectories w1, w2 ∈ B there
exist a t1 ≥ 0 and a third trajectory w ∈ B such that

w(t) =

{
w1(t) t ≤ 0
w2(t− t1) t ≥ t1

. (1.22)
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Close to this definition are the terms of null controllability and reachability. Null
controllability is the weaker situation, where the trajectory w2 is replaced by the
equilibrium signal. A system is null controllable if starting from an arbitrary trajec-
tory w1 the system can be steered in the equilibrium (in finite time). Reachability
is almost analogue, but then w1 is replaced by the equilibrium. Thus a system is
reachable if each trajectory w2 can be reached from its equilibrium position. Precise
definitions are omitted, since they are analogue to the definition of controllability.

Remark that if and only if a system is both reachable and null controllable, then it
is fully controllable. This follows directly from the definitions of these properties.

In the above definition, trajectories w of the system are mentioned. An equivalent
property of systems is state controllability. This describes the possibility to steer any
state x1 to another arbitrary state x2 within finite time. The equivalence is proven
in [16, 17]. In this report the term controllability is used for both properties.

Theorem 1.12 (Controllability of LTI systems [17]). A system defined by equation (1.7)
is controllable if and only if the controllability matrix

C =
[
B AB A2B · · · An−1B

]
(1.23)

has full row rank.

Example 1.5 (Controllable train): The train driver read an article about train accidents.a

It makes him worried and he wants to know if his train-system is stable and controllable.
Therefore, he calculates the eigenvalues of the A matrix in his self-made equation (1.10) in
Example 1.2:

Eig

([
0 1

0 − b
m

])
→ λ1 = 0, λ2 = − b

m
. (1.24)

Concerned because of the non-negative value of λ1 which has a multiplicity of one, he starts
to calculate the null-space:

Null

([
0 −1

0 b
m

])
=

[
1
0

]
. (1.25)

So the dimension of the nullspace is one. Now he knows that this non-negative eigenvalue is
semisimple, and although his system is not asymptotically stable, it is still stable according to
Theorem 1.10. Also, he calculates the controllability matrix

C =
[
B AB

]
=

[
0 1

m
1
m

−b
m2

]
, (1.26)

with matrices A and B taken from equation (1.10). The train driver sees that the rank of this
matrix equals two. Reassured, he concludes that his train is fully controllable.

aU.F. Malt et al., The effect of major railway accidents on the psychological health of train
drivers, Journal of Psychosomatic Research, 37(8):793 - 805, 1993

Following the definition of controllability, Definition 1.11, remark that all trajectories
must stay in the defined behavior. In our example, the behavior of the train is
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prescribed to remain on the railway. So if the train driver complains about lack of
controllability because he is not able to jump off of the rails with his locomotive, it
has nothing to do with the mathematical controllability according to our definition.

If a system is not controllable, it could still be possible to steer to a constant trajectory,
e.g. an equilibrium point. If this is possible, the system is called stabilizable. This is
formalized by the following definition.

Definition 1.13 (Stabilizability [17]). Consider a time invariant system Σ =
(T,W,B). Then Σ is stabilizable if for every trajectory w ∈ B, there exist
a trajectory w1 ∈ B with the property

w1(t) = w(t) for t ≤ 0 and lim
t→∞

w1(t) = 0. (1.27)

A test to check whether a system is stabilizable will be stated in the next section, in
Theorem 1.14 where feedback control is mentioned.

1.2 Basic controller design

To get feeling for some elementary control theory, we consider an extensive example.
This example will be extended in the next chapters. This section will show how a
design of a controller is made.

Example 1.6 (Inverted pendulum): Consider an inverted pendulum with point mass m, and
rod length l. Assume that this pendulum is positioned in a fixed pivot position subject to some
damping, proportional to the angular velocity with factor b. According to rotational dynamics,
the moment of inertia of this pendulum will be I = ml2. Let there be a controller, which
can apply a torque τ on this pivot position. An illustration is given in Figure 1.3. Some basic
mechanics (see Resnick et al. [20]) learns that the following differential equation can be derived:

I
d2θ(t)

dt2
= mgl sin(θ(t))− bdθ(t)

dt
+ τ(t) (1.28)

which can be rewritten as

d2θ(t)

dt2
=
g

l
sin(θ(t))− b

I

dθ(t)

dt
+
τ(t)

I
(1.29)

with g the gravitational constant. From now on, for the sake of brevity, θ̇ and θ̈ will denote
the first and second derivative of θ with respect to time.
Linearizing this system in it equilibrium point θ̄ = 0 (standing position), and writing it in the
state-space notation (as in equation (1.7)), gives ẋ(t) =

[
0 1
g
l − b

I

]
x(t) +

[
0
1
I

]
u(t)

y(t) =
[
1 0

]
x(t)

(1.30)

where x(t) ∈ R2 contains the state variables angular displacement θ(t) and angular velocity
θ̇(t) and u(t) ∈ R contain the input variable torque τ(t). Assume that in this model the
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l

m

θ

b
τc

Figure 1.3: An inverted pendulum with point mass m and rod length l in a fixed pivot position,
with friction coefficient b. To stabilize, a torque τ is applied on the pivot.

position of the pendulum is measured. Therefore, y(t) ∈ R equals the first element of x(t),
the angular displacement. This justifies the output equation.

Remark that if this system is uncontrolled, i.e. if u(t) = 0, it will be unstable in the equilibrium
point θ̄ = 0. This is quite intuitive with use of Definition 1.5: if there is a distortion δ > 0 from

this equilibrium, the orbit of θ(t) will be unbounded. So, for any specific boundary ε > 0, there
is no initial condition δ > 0 for which the pendulum will not eventually pass that boundary ε.
With use of the eigenvalues λi, found by the solution of the characteristic polynomial

det

([
λ −1

− gl λ+ b
I

])
= λ

(
λ+

b

I

)
− g

l
= λ2 +

bλ

I
− g

l
= 0, (1.31)

we see that they do not both have negative real part. This can be concluded according to the
Routh test [17] and because g > 0, l > 0 and I > 0. Therefore, according to Theorem 1.10,
our intuition is confirmed that this system is unstable.

1.2.1 Feedback control

Working with a system as given in Figure 1.1, we see that the output of the system
is led back. This output contains crucial information and can be used when a desired
output must be reached by controlling. This way of control is called feedback control.
Looking to the feedback loop, as depicted in Figure 1.4a and the output equation of
(1.7), we see that u = Ke = K(r − y). When r = 0, the input can be rewritten as
u = −Ky = −KCx. Because then the input completely depends on the output (and
thus on the state of the system), the state equation of (1.7) can be reduced to

ẋ(t) = Ax(t)−BKCx(t) = (A−BKC)x(t). (1.32)

Since ẋ(t) now only depends on x(t), the rewritten equation (1.32) becomes an au-
tonomous system for which stability can be checked by the eigenvalues of (A−BKC)
and Theorem 1.10. This system can be drawn as Figure 1.4b. In literature ([3, 17, 16]),
general LTI systems with feedback are written as ẋ = Ax+Bu with u = Nx, where
the eigenvalues of (A+BN) play a crucial role in stabilizability.

The following theorem can be used for design of this state feedback controllers, this
is discussed in more detail in Chapter 3.

10
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(a) plant (P ) with separate controller (K)

L
er y

y
−

(b) controller and plant combined in
one system (L)

Figure 1.4: Schematic view of controller design with a feedback loop.

Theorem 1.14 (Stabilizability [17, 16]). Consider a system ẋ = Ax+Bu, with feedback
control u = Nx. This system is stabilizable if N can be chosen such that all the
eigenvalues λk of (A + BN) lie in the open left half complex plane, i.e. for all such
λk holds

Re(λk) < 0. (1.33)

Example 1.6 (continued): We want to design a stabilizing controller K for our inverted
pendulum system, as described before. The pendulum must be standing up, so the reference
value will be r = 0. Suppose the controller depends linearly on the position of the pendulum,
and the chosen gain will be k, then

A− kBC =

[
0 1
g
l − b

I

]
− k

[
0
1
I

] [
1 0

]
=

[
0 1

g
l −

k
I − b

I

]
. (1.34)

According to Theorem 1.10(i), we know that if we want to obtain a system which is asymp-
totically stable, the real values of the eigenvalues of equation (1.34) must be strictly negative.
To achieve this with a controller gain of ks, the characteristic polynomial

det

([
λ −1

− gl + ks
I λ+ b

I

])
= λ

(
λ+

b

I

)
− g

l
− ks

I
= λ2 +

b

I
λ− g

l
− ks

I
(1.35)

must have strictly negative solutions, and similar to equation (1.31) and the Routh test we see

ks
I
− g

l
> 0, ks >

gI

l
, ks > mgl, (1.36)

which is in words quite intuitive; the control torque must be necessarily higher than the torque
due to gravity to obtain a stable system.

1.2.2 Damping

Consider the following system, written as ordinary differential equation and also as a
state-space respresentation:

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = 0, ẋ̇ẋx(t) =

[
0 1
−ω2

0 −2ζω0

]
xxx(t). (1.37)
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Definition 1.15 (Damping [16]). The system (1.37) is

(i) Overdamped, (ζ > 1): The system returns to its equilibrium without oscil-
lating. Larger values of the damping ratio return to the equilibrium slower.

(ii) Critically damped, (ζ = 1): The system returns with the minimum amount
of damping to its equilibrium point, without oscillating.

(iii) Underdamped, (0 < ζ < 1): The system oscillates (with ω < ω0) with the
amplitude gradually decreasing to zero.

(iv) Undamped, (ζ = 0): The system oscillates at its natural frequency (ω0).

Example 1.6 (continued): We want to design a controller which makes the system (1.30)
critically damped. Therefore, we consider equation (1.34) and search for a k, such that ζ = 1
in equation (1.37). Looking at these equations, we see that

− b
I

= −2ω0 and

(
g

l
− kc

I

)
= ω2

0 . (1.38)

Solving these equations gives(
− b
I

)2
= −4

(
g

l
− kc

I

)
→ kc = mgl +

b2

4I
. (1.39)

When kc becomes even more larger, the system will be underdamped, according to
Definition 1.15. While the amplitude is still decreasing to zero, it will not decrease
monotonically; the system oscillates. In our case, the applied torque is linearly related
to the pendulum-position. Oscillation of the system means that the controller also
oscillates; the direction of the application of a torque will change. If the pendulum is
securely fixed into its pivot, then this switching is no problem, but when there is a
kind of slackness in the pivot position, then this switching behavior will play a more
important role. Controlling such a dynamic system then becomes a more complex
problem. To handle this, we take a closer look on hysteresis, which will be done in
Chapter 2.
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Chapter 2

Introduction to Hysteresis

The phenomenon hysteresis is a broad subject which has branches in physics, chem-
istry, mechanics and economics. Mathematical generalizations were made in the 70’s
by Krasnoselskii et al. [11]. To introduce the problems which arise due to hysteresis,
the phenomenon is described and an example will be explored. This simplified exam-
ple will be used to handle problems, which could be a solution of more complicated
situations.

2.1 The phenomenon of hysteresis

Hysteresis is the effect that a system not only depends on its current state, but also
on its past. The word is derived from Ìstèrhsic, an ancient Greek word meaning
“deficiency” or “lagging behind”. That is because of the character of the relation
between input and output; with a regular system, an input has direct influence on
the state, while a hysteretic system can have some delay between input and state, but
even more: it depends on the past of the input how the output behaves. Two general
types of hysteresis can be described [13]: relay hysteresis and active hysteresis.

2.1.1 Relay hysteresis

Relay hysteresis can be described by an input u(t) which gives an output yL(t) when
u(t) is below a certain threshold α, and yH(t) when it is above another threshold β,
with α < β. Between those thresholds, the system will maintain the value of the last
threshold that is attained, so it is indeed “lagging behind”. Remark that there is only
switching at the thresholds and nowhere else. Therefore this type of hysteresis is also
called passive hysteresis. Based on Mayergoyz [15] and Rasskazov et al. [19], we can
represent this behavior formally with the following equations, restricted to t ≥ t0:

y(t) = Hα,β[t0, y0, u(t)] =



y0, if α < u(τ) < β, for all τ ∈ [t0, t]

yH(t), if there exists t1 ∈ [t0, t] such that
u(t1) ≥ β and u(τ) > α for all τ ∈ [t1, t]

yL(t), if there exists t1 ∈ [t0, t] such that
u(t1) ≤ α and u(τ) < β for all τ ∈ [t1, t]

(2.1)
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yL

yH

u

y

α β0

1

(a) A non-ideal elementary relay
Rα,β , or hysteron, with only two
places where switching is possible.

u

y

0

1

α βγδ

(b) A hysteresis loop of active hysteresis.
It allows behavior inside the hysteretic re-
gion.

Figure 2.1: Two types of hysteresis: relay or passive (Fig. 2.1a) and active (Fig. 2.1b) hysteresis.

where y(t) is the output function with y0 ∈ {yL(t0), yH(t0)} as the initial output,
u(t) is the input function and Hα,β[t0, y0, ·] describes the relay. In most cases and
also in this report, yL(t) and yH(t) do not depend on time, therefore they can be
denoted as yL and yH . However, the output depends on time, because the function
will attain other values at certain switch times. Between these switch-times, the
output is constant. The values α and β are the points where the relay will switch:
at α the relay will switch from ‘high’ to ‘low’, at β the relay will switch from ‘low’
to ‘high’. Investigation shows that if u(t) ≤ α, the output is always y(t) = yL and
u(t) ≥ β implies y(t) = yH . The natural assumption is made that α < β. Figure 2.1a
shows an example of an elementary (non-ideal) relay function R[u(t)], with yL = 0
and yH = 1. Krasnoselskii and Pokrovskii called this basic hysteretic operator a
hysteron [11]. This function can easily be shifted, scaled, stretched and rotated, to
achieve every desired relay hysteretic function.

This type of hysteresis is used in favor of controlling systems which have switching
behavior. It is often undesirable to have chattering in the control, think for example
of a central heating, which must be switched on and off. It is not desirable to switch
extremely fast between these states. Automatic gear transmission uses also relay
hysteresis. For example, take an automatic gear box that shift gear up at 50 km/h,
and shift gear down at 40 km/h. Imagine what happens if this gear box will shift
both up and down at 45 km/h, and that speed is exactly the desired speed of the car.
Then it will shift gear frequently, due to irregularities. However, in this thesis we only
discuss continuous states, where relay hysteresis is often an undesirable phenomenon.

2.1.2 Active hysteresis

In contrast to relay hysteresis, active hysteresis allows behavior inside the hysteretic
region. Figure 2.1b is an illustration of active hysteresis, in the situation that input u
increases to γ, then decreases to δ and increases afterwards. Therefore, this behavior
is essentially different to relay hysteresis, and has a richer transition state. There are
several mathematical models to describe this kind of behavior. Two of them will be
pointed out here, based on Macki et al. [13], in which a more extended overview can
be found. We encourage the reader to look at that whole paper.
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Example 2.1 (Controlling temperature): A train
driver wants to model the control of the tempera-
ture T in the boiler of his steam locomotive. When
the temperature is below α = 90, he starts to in-
sert extra coals. The temperature evolves accord-
ing Ṫ = − T

20 + 8. When the temperature reaches
β = 130, the train driver stops with inserting coal.
The temperature decreases then with Ṫ = − T

20 . The
initial temperature is y0 = 50, so he can describe this
temperature behavior with

Ṫ = − T
20

+H[90,130](0, y0, T ), (2.2)

with yL = 8, yH = 0. (2.3)

When he only wants to use elementary relay hysterons
R, he can write this as

Ṫ = − T
20

+ 8
(
1−R[90,130](T )

)
. (2.4)

Remark that this system is non-linear, due to the hys-
teron.

t

T

0

β

α

50

100

150

Figure 2.2: Behavior of the tem-
perature of the boiler, as explained
in Example 2.1. When the thresh-
olds α and β are reached from above
and below respectively, the hysteron
H switches. When the hysteron
is switched off, the temperature in-
creases, while the temperature de-
creases when it is on.

Duhem model The Duhem model of hysteresis is based on the fact that the be-
havior of the system only changes its character when the input changes direction.
This relation is given by the following differential equation:

ẏ(t) = fI(y, u)u̇+(t) + fD(y, u)u̇−(t) (2.5)

with u̇+(t) = max[0, u̇(t)], u̇−(t) = min[0, u̇(t)] and where fI and fD are the functions
for the increasing and the decreasing input respectively. A slightly different, often
used representation of the same behavior could be

ẏ(t) =

{
fD(y, u)u̇(t) for u̇(t) ≤ 0

fI(y, u)u̇(t) for u̇(t) ≥ 0
. (2.6)

Preisach model Probably the most used model of active hysteresis is the Preisach
model. This model is developed by Preisach, to describe the hysteretic behavior of
magnetization of a coil core of an FeNi-alloy [18]. In fact, this model is an infinite
sum of relay functions according to

y(t) =

∫∫
µ(α, β)Rα,β[u(t)] dα dβ, (2.7)

where µ(α, β) is a non-negative weight function, also called Preisach measure. This
weight function usually has compact support in the (α, β)-plane [13]. The Rα,β[u(t)]
is an elementary hysteron with switches at α and β. The idea of the summation of
elementary hysterons with given weight and given relay intervals is given in Figure 2.3.
This summation gives the flexibility to model a lot types of hysteresis. To show how
this model describes a system, we give a modified example of a mechanical play, based
on [5, 11, 13].
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Rα1,β1

Rα2,β2

Rα3,β3

+
=⇒

1

N

N∑
i=1

Rαi,βi

(a) Three hysterons summated, N = 3.

R
R
R

. .
.

. .
.

R

2s

+
=⇒

∞∫
−∞

Rx−s,x+sdx

(b) Integration of (relay) hysterons creates ac-
tive hysteretic behavior.

Figure 2.3: Summation of elementary relays is the idea behind active hysteresis in a Preisach
model. In this sketch, all hysterons have equal weight.

Wagon Loc.

u(t)y(t)

s s

(a) Slackness in coupling between loco-
motive and wagon, as described in the
example.

u(t)

y(t)

−s
s

y(t) = u(t) + s

y(t) = u(t)− s

(b) Relation between the position of the locomotive
u(t) as input, and the position of the rail wagon
y(t) as output, with given slackness 2s.

Figure 2.4: Schematic view of behavior of slackness in a coupling, according to Example 2.2.

Example 2.2 (Train shunting): The train driver has to shunt a rail wagon. On the shunting
school he has learned that there is some slackness in the coupling of the locomotive and the
wagon, see Figure 2.4a. Suppose that this slackness is 2s, and the position of the locomotive
is the input u(t). Furthermore, suppose that the wagon has low mass, and a lot of friction with
the tracks (the unexperienced train driver forgot to take off the handbrake). The driver knows
that if he simply moves the locomotive forward, the position of the wagon y(t) is eventually
given by y(t) = u(t) − s, until he stops. But when he reverses the locomotive, it does not
affect the wagon directly. After a locomotive displacement of −2s from the reversing point,
the wagon starts to move, according to ẏ = u̇ and its position is given by y(t) = u(t) + s. He
draws this relation in a figure and calls it Figure 2.4b.
The relation between input and output is given in terms of elementary relay hysterons, as
defined in Figure 2.1a, using the superposition principle of equation (2.7). We know that
all our relays have equal weights (dx) and constant width (2s), and therefore if we take the
elementary hysterons

Rα,β [u(t)] =

 −1 if u < α,
1 if u > β,
unchanged if β < u < α,

(2.8)
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then the operator is given by

y(t) = Ps[u](t) =
1

2

∞∫
−∞

(
Rx−s,x+s[u(t)]

)
dx, (2.9)

with the initial values of the ambiguous hysterons (thus, where −s < x < s) attain either +1
or −1, such that they describe properly the initial output.

In the previous example, we see that the weight and intervals of the hysterons remains
constant, but in general, this is not the the case. Then it is necessary to integrate
over two variables, which also shown up in expression (2.7).
Looking at this previous example, this hysteretic operator P can also be given by

y(t) = Ps[u, y0](t) = min
(
u(t) + s,max(u(t)− s, y(ti)

)
, (2.10)

where the ti are times, such that 0 < t1 < t2 < . . . < tn and u(t) is monotonically
increasing or decreasing on [ti, t]. In fact, the ti’s are switching times; it are the
moments at which the input changes direction.
The two Examples 2.1 and 2.2 show that relay hysteresis and active hysteresis are
essentially different. The behavior of a system with relay hysteresis is restricted to
the two possible outcomes, B = { {u, y} | y ∈ {yL, yH} }. There the behavior of
the system switches instantanously from one to another state. A system with active
hysteresis can freely exist on the whole diagonal band, B = { {u, y} | y ∈ [u−s, u+s]}.
The last example can also be represented with a Duhem model, because the switching
behavior depends on the input direction. If we define the functions fD and fI , used
in equation (2.6), as fD(u, y) = 1 + sgn(y− (u+s)) and fI(u, y) = 1− sgn(y− (u−s)),
we get

ẏ(t) =

{
[1 + sgn(y − (u+s))]u̇(t) for u̇(t) ≤ 0

[1− sgn(y − (u−s))]u̇(t) for u̇(t) ≥ 0
, (2.11)

where sgn(·) is defined as

sgn(x) =


−1 for x < 0

0 for x = 0

1 for x > 0

. (2.12)

2.2 Hybrid dynamical systems

Based on Heemels and De Schutter [6], we can model a system subject to hysteresis in
a third way, namely as a hybrid dynamical system. The idea behind hybrid dynamical
systems is that a system will remain in a node, and behave according to certain
dynamics as long as the invariants of that particular node are hold. If this invariant
becomes false, the system will switch towards a connected node. Before it switches
to an other node, it has to fulfil the requirements of a guard to this node. Before the
system enters the new node, an optional reset is applied to the state variables.

Both relay and active hysteresis can easily be modelled by automatons, with invari-
ants, guards and resets. A sketch is given in Figure 2.5. This specific scheme models

17



active hysteresis. However, relay hysteresis can be modelled with the same philoso-
phy. Then the transition state is removed, and the left and right bound are directly
linked to each other.

Left bound
The system be-
haves according
to the dynamics
associated with
the left bound.

Invariants
Dynamics

Transition
state

Right bound
The system be-
haves according
to the dynamics
associated with
the right bound.

Invariants
Dynamics

1 2 3 4

5678

Figure 2.5: Several states of hysteresis, used in hybrid system modelling. The odd numbers refer
to guards, the even numbers refer to resets.

Example 2.2 (continued): Recall the example of the train shunting problem. The dynamics
of the states which represent the bounds are given by: ẏ = u̇. The dynamics of the transition
state are ẏ = 0. Furthermore: Invariants of the left and right bound will be respectively
u̇ ≤ 0 and u̇ ≥ 0. The guards (1) and (5) are given by u̇ > 0 and u̇ < 0. The invariant of
the transition state will be u − s < y < u + s, with the corresponding guards (3) and (7):
y = u − s and y = u + s respectively. All resets are optional in this case. They will only be
used when this system is implemented and some numerical problems occur.
Remark that switching only occurs when an invariant of a node is not fulfilled any more. If
the system is in the left node and u̇ > 0, it switches towards the transition state. When
short thereafter u̇ ≥ 0, the system remains in the transition state. It only switches back when
y = u+ s.

2.3 Hysteretic dynamical system

In this section, we model a hysteretic system, and point out what the difficulties
are in controlling such a system. Thereafter we modify our pendulum, described in
Example 1.6, such that it illustrates the problems rising due to hysteresis.

A general hysteretic dynamical system can be modelled by the scheme given in Fig-

Reference Controller H System

Disturbances

u ve y

−

y

Figure 2.6: A dynamical system, c.f. Figure 1.1 but with a hysteretic element H. The output
of this element feeds the system block, the element on which we have set the goal to control it
properly.
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ure 2.6. Variables e, u, v and y are used as sketched in this figure. In this report,
measurement errors are neglected, while disturbances in the system are taken into
account. Of course, the hysteretic element can also be situated inside the feedback
loop, or (similar) directly after the system. This implies that the measurements are
lacking behind the true values of the output of the system. We will only discuss the
case where the hysteretic element is between controller and system, as it is sketched
in the figure.
In all cases, we assume that the system itself contains regular linear dynamics. A non-
linear situation can be described, but it will always be linearized. Thus the system
block can be described by {

ẋ(t) = Ax(t) +Bv(t)

y(t) = Cx(t)
(2.13)

with v as input variable and y as output variable, as explained in Chapter 1.
In the simple case, the controller is a static function of the error e, the difference be-
tween reference value and output of the system. However, the model can be extended
such that the controller contains dynamics. This will be explored in the next chapter.

Due to the character of hysteresis, the hysteretic function v = H(u) does contain
dynamics, since the temporary past of the input u plays a role in the output v. This
element can be described in a Duhem or Preisach representation. However, the whole
system can also be modelled according to a hybrid dynamical system. This is all
illustrated with an example.

Example 2.3 (Slackness in inverted pendulum): We continue with Example 1.6, but mod-
ify it such that it illustrates the problems of controlling hysteretic systems. Suppose that the
pendulum is mounted in a disk with a (small) slackness of 2ϕ, as depicted in Figure 2.7. The
angle of the pendulum becomes θp and suppose its inertia is Ip. Investigation of the physics of
this model shows that the equilibria of the pendulum will still be θ̄p = 0 and θ̄p = π. Further,
we neglect (1) the gravitational influence on the disk τg,d. This is admissible, because of the
assumed (2) small size of ϕ. A small size of ϕ implies Id ≈ 1

2MR2 and a small shift of center
of mass, lcm ≈ 0. Moreover, this value can be neglected in comparison to the radius of the
disk, R, and therefore

τg,d =
Mgzlcm
Id

(2)
≈ gzlcm

1
2R

2

(1)
≈ 0. (2.14)

Neglecting this gravitational influence causes that all positions of the disk are equilibria. How-
ever, since the disk and pendulum are connected to each other, upwards equilibria are all
positions where θp = 0 and −ϕ < θd < ϕ. From now on, we denote this continuum of equi-
librium points as Ω, which is in words nothing else then the system in rest, with the pendulum
standing up and the disk within the range of the slackness.
According to classical mechanics, the following linearized equations hold:

Ipθ̈p = mgzlθp − τn (2.15)

Idθ̈d = −bθ̇d + τn + τc, (2.16)

where τn is the normal torque created by the force of the disk acting on the pendulum. The
variable τc is the torque which is performed by an external input, to make it possible to control
the system. Notice that the system block of this model remains a dynamical system, c.f.
Example 1.6. We assume that (3) the system will be coupled most of the time. Therefore,
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2ϕ

b

Id

l

m

θp

τc

(a) Modification of Figure 1.3: The pendulum
is mounted on a disk with inertia Id

ϕ

θp

θd

cm

R

lcm

(b) Detailed view of the position of
angles and the center of mass (cm)

Figure 2.7: The pendulum and the pivot, with a slackness 2ϕ.

although the pendulum is frictionless mounted in the disk, it can be still modelled with the

damping constant, as in equation 1.30. The state-space equation of the pendulum becomes

θ̇p(t) =

[
0 1
gz
l

−b
Ip

]
θp(t) +

[
0
1
Ip

]
v(t). (2.17)

The disk has also dynamics. Suppose it has an inertia of Id and a friction linearly depending
on the velocity with coefficient of b, then the state-space equation becomes

θ̇d(t) =

[
0 1

0 −b
Id

]
θd(t) +

[
0
1
Id

]
u(t). (2.18)

The normal torque acts on the pendulum if and only if the angular difference of the position
of the disk and the pendulum is equal to the slackness, |θp − θd| = ϕ. When the pendulum
behaves inside the slackness, |θp − θd| < ϕ, no external forces but the gravitational force will
act on the pendulum. It will behave autonomous, until the angular difference will be ϕ again.
We model this gap between disk and pendulum as g(t) = θd(t) − θp(t). This gap behaves
dynamical, and it must certainly be taken into account. Observations reveal that if g = −ϕ, g
will be non-decreasing and moreover only increasing when the input is smaller than zero. For
g = ϕ the opposite holds, because of symmetry. When the state is in between these values,
the evolution of g depends on the input. Further, we assume (4) that Id is small compared
to Ip. This causes that the disk moves quicker than the pendulum, when certain control is
applied. The evolution of the gap depends on the velocities of disk and pendulum. Since the
disk moves quicker than the pendulum, we can assume (5) that the velocity of the pendulum
has negligible influences on the rate of change of the gap.
With these assumptions we state

ġ = θ̇d − θ̇p
(5)
≈ θ̇d, Idg̈

(5)
≈ Idθ̈d = −bθ̇d − u

(4)
≈ 0. (2.19)
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When the gap is already ±ϕ, the gap remains constant, unless the input is in the direction of
the gap, so we describe this hysteretic element as follows

v = H(u) =


u if g = −ϕ
0 if −ϕ < g < ϕ

u if g = ϕ

with ġ =


max(0, ub ) if g = −ϕ
u
b if − ϕ < g < ϕ

min(0, ub ) if g = ϕ

(2.20)

where g is the state variable of the hysteresis, which serves as memory.
Remark that

ġ =


max(0, u) if g = −ϕb
u if − ϕb < g < ϕb

min(0, u) if g = ϕb

(2.21)

is another representation of the same input-output behavior. Although the internal state be-
haves different, the switches are still similar.
This example is simulated with Matlab, with a normal, underdamped controller, as described
in the previous chapter. The values for the parameters are given in Table 2.9. A plot of the
state of the pendulum is given in Figure 2.8. We see two types of behavior. (I) The approach
of the equilibrium as a curved line, due to the controller which depend on the position of the
pendulum. In this situation the pendulum is coupled to the disk, and H(u) = u. (II) The
uncoupled pendulum, as a straight line. In this situation, the pendulum is inside the hysteresis,
and H(u) = 0. Therefore, the pendulum behaves as a free fall.
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Figure 2.8: Simulation of an inverted pendulum with slackness in the pivot position. An under-
damped feedback controller is used. Left: the position (blue) and velocity (green) of the pendulum,
as function of the time. Right: The phase plot (red) of the pendulum. The equilibrium (black) is
shown at (0, 0).

Duhem model Looking atthe normal torque τn as input of the pendulum, the
behavior changes its character when this input changes sign. Therefore, τn should be
the output v of the hysteresis. The input of this element is given by the controller,
as sketched in Figure 2.6.

Duhem modelling uses the change of direction, by using the derivatives of input and
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Table 2.9: Physical constants of the example.

m = 0.5 Mass of pendulum Ip = ml2 Inertia of pendulum
l = 0.8 Length of pendulum ϕ = π/16 Slackness of disk

gz = 9.81 Gravitational constant [θ0, θ̇0] = [0.3, 0.2] Initial value of the state
b = 2 Damping constant g0 = −ϕ Initial value of the gap

output, respectively u̇ and v̇. If we take the regular input u instead of its derivative,
the behavior of the system can be described, while this small modification preserves
the Duhem concept. The mapping of the hysteresis from input to output can be given
by

v =

{ [
1− sgn(

∫
u/b+ gi + ϕ)

]
u, if u ≤ 0[

1− sgn(
∫
u/b− gi − ϕ)

]
u, if u ≥ 0

(2.22)

The variable gi is the state of the hysteresis, at the i-th switch point. This is not
known but regularly gi = ϕ if the above described function switch towards the u ≤ 0-
part. Vice versa, gi = −ϕ if the function switch towards the u ≥ 0-part. Further,∫
u/b is the integral of the input u from ti to t. Here, ti is the time of the i-th

switch point. This description is not directly corresponding to the template which is
given previously. However, instead of variable and its derivative, this function uses a
variable and its integral. The philosophy of Duhem modelling is kept.

Because it is assured that g ∈ [−ϕ,ϕ], the output v must be an element of {0, u}.
The fact that there are two possible outcomes triggers to model this phenomenon also
with relay hysterons.

Hybrid model The way of modelling the problem in the previous example is more
or less the hybrid dynamical system philosophy, classified as a piecewise affine system.
However, it should be noticed that ġ is orthogonal to v. They can not both be non-
zero. This notion is used within the class of linear complementarity systems, and the
system can be modelled as 

ẋ(t) = Ax(t) +Bv(t)

y(t) = Cx(t)

ġ(t) = u(t)− v(t)

(2.23)

ġ(t) ⊥ v(t) (2.24)

Relay model Because the system has three states, the system can be modelled
with multiple relay hysterons. Again, τn will be the output of the model. This
model can be made by combining two relay hysterons. We describe the two hysterons
following the precise definition. First we define the outcomes: it must be zero when
the pendulum and the disk are uncoupled, and otherwise it should be equal to the
input. Also the switch points are given: when the gap g reaches ϕ or −ϕ, the model
must switch from 0 to u. When the supplied torque u(t) changes sign, the model
switches from u to 0. This leads to the following description, where the hysterons are
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already combined.

v(t) = H[t0, v0, g(t), u] =



v0, if −ϕ < g(τ) < ϕ, for all τ ∈ [t0, t]

u, if there exists t1 ∈ [t0, t] such that
g(t1) ≥ ϕ and u(τ) > 0 for all τ ∈ [t1, t]

0, if there exists t1 ∈ [t0, t] such that
u(t1) = 0 and −ϕ < g(τ) < ϕ for all τ ∈ [t1, t]

u, if there exists t1 ∈ [t0, t] such that
g(t1) ≤ −ϕ and u(τ) < 0 for all τ ∈ [t1, t]

(2.25)

Remark that the range of this relay function is given by {0, u} instead of the regular
{0, 1}. However, it can be written as a regular relay, which can be eventually mul-
tiplied by u. Only the initial condition v0 must be redefined when the function is
rewritten.

Figure 2.10 gives the relation between input u(t) and output v(t) of the hysteretic
element. In the example, the input u(t) is the torque which is supplied by the con-
troller. The output v(t) will be the normal torque, the torque of the disk which act
on the pendulum.

u(t)

v(t)

g(t1) = ϕ

g(t1) = −ϕ

Figure 2.10: Sketch of the relation between input and output of the hysteretic element.

Again we see that the state g of the hysteresis is a variable, and necessary to model
this phenomenon. Since the derivative ġ in equation (2.21) is defined by terms of u,
it is possible to describe the switching time t1 as an integral in terms of u.

g(t1) =
1

b

t1∫
t0

u(τ)dτ = ±ϕ, with g(t0) = ∓ϕ (2.26)

However, in all cases the recent past of the input must be taken into account when
the hysteron is modelled. This ‘lagging’ has strong influences on the behavior of the
system when feedback control is applied. This is what we will investigate in the next
chapter.
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2.4 Controllability of a hysteretic system

In the first chapter, a definition of controllability is given. If we consider the system{
ẋ(t) = Ax(t) +BH[u(t)]

y(t) = Cx(t)
(2.27)

we can apply the given test in Theorem 1.12. If the controllability matrix

C =
[
B AB A2B · · · An−1B

]
(2.28)

has no full row rank, certainly the system is not controllable, so this condition is
necessary. However, since the input of the system is not always directly the input
which is supplied by the controller, the sufficiency should be questioned.
Therefore, a closer look at the hysteron must be taken. Questions about this control-
lability are passed on to the next chapter. First the assumptions which are made are
noticed.

2.5 General assumptions

In this section, the assumptions which are made in this assignment are summed up.
It was already mentioned in the previous section, that the hysteretic element occurs
between controller and the system. Also, disturbances occur only in the state of the
system, not in the hysteron states or in the output of the controller. In line with the
previous assumption, also no measurements errors are taken into account. Further,
the system itself is linear, such that its dynamics can be written as an LTI system.
Many types of hysteresis can occur. Each hysteretic function has a certain number of
possible states. In addition, each state has a specific mapping from input to output.
Finally, for each state, transitions to other states are defined. If we should describe
all the different types of hysteresis, and thereby design a controller for the general
case, this would take ages. Therefore we restrict ourselves to a specific category of
hysteresis that meets the following requirements:

States The hysteretic function H in this report, has always three states, S1, S2 and
S3. From states S1 and S3, the hysteresis could possible switch to state S2, as drawn
in the sketch of Figure 2.5. From S2 both other states are reachable. The state S2 is
thereby, in all cases a transition state.

Mapping The states S1 and S3 both have a mapping in such way that the output
is linearly proportional to the input. This results in the fact that if the input is
unbounded, the output also is. This excludes saturation. The other restriction to our
hysteretic function is that the output of state S2 is always zero.

Transitions The transition state is relatively small, although (trivially) not empty.
When S2 is empty, hysteresis is possible, but it acts as a piecewise function where the
input always propagates to the output. Furthermore, we assume that the moment
that a transition takes place, depends on the input of the hysteretic function. This
can be a highly non-linear relation, but may not be restricted or limited by a certain
time. It also may not depend on time.
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With these restrictions, the hysteretic function can in general be described as

H(u) =


αu if g ∈ S1

0 if g ∈ S2

βu if g ∈ S3

(2.29)

where g behaves as a dynamic variable according to

ġ = fi(u) if g ∈ Si for i = 1, 2, 3. (2.30)

These assumptions are made to make sure that the hysteretic region of a system
exists, but only has a local influence on the behavior. The example of the inverted
pendulum is a realization of this kind of hysteresis, but in general, mechanical systems
with a certain slackness in a joint can be described by this type of hysteresis. That
slackness is represented by the transition state, while the normal behavior of the
system is described by the input propagating states.
Other systems, like the example of temperature controlling, have only two states.
Although this kind of hysteresis is interesting for control design, that type will not
be discussed in this assignment.

At last, an assumption is made with respect to the input of the system. In all cases,
this will be a scalar. In the real world, this input could be a force, a torque, a voltage,
etc. All cases where the input is multi dimensional are not taken into account. The
definition of preserving sign is then easy to explain: If the input is once positive, it
remain positive and if it is negative, it stays negative. With this assumption, the
dimensions of the input matrices are also fixed: B ∈ Rn×1, N ∈ R1×n.

2.6 Explicit trajectory

In this last section of this chapter, a brief analytical description of a general trajectory
is given. After this generalization, the trajectory is investigated of Example 2.3. To
ease the calculations, the time t is reset to zero after a switch-action.
Since the system has two different kinds of behavior, coupled (g ∈ {S1, S3}) and
uncoupled (g ∈ S2), we can determine how the behavior will evolve piecewise. By
assumption, we see that in S2 the system can be rewritten as

ẋ(t) = Ax(t), (2.31)

with initial conditions θ0, and thus a straightforward solution of

x(t) = eAtx0. (2.32)

Assume that at time t1, the hysteron will switch, and the final values are x1 = eAt1x0.
Remark that this are also the initial values for the system when governed by the
coupled equation. We can work this out by assuming a feedback control of u = Nx.
The coupled system (g ∈ {S1, S3}) can then be written as

ẋ(t) = Ax(t) +Bu(t) = (A+BN)x(t), (2.33)

with initial conditions x1, and thus a straightforward solution of

x(t) = e(A+BN)t−t1x1. (2.34)
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In general, when ti is the i-th switch time of the hysteron, and n is a counter of
switches which already occurs at time t, and Mi is the matrix which defines the
behavior of the system between the switch times ti+1 and ti, we can describe the
trajectory

x(t) = eMn(t−tn)eMn−1(tn−tn−1) · · · eM1(t2−t1)eM0(t1−t0)x0 (2.35)

= eMn(t−tn)
( n−1∏
i=0

eMi(ti+1−ti)
)
x0 (2.36)

This fact will be used when analysing some controllers in the next chapter. Before we
switch to this chapter, we illustrate how this explicit trajectory can be worked out.

Example 2.4 (Trajectory of inverted pendulum): In this example we illustrate how the tra-
jectory can be described. In the end, this is used to determine the switch times of the system.
First, we write the system, starting in S2 in a state space representation:

θ̇(t) =

[
0 1
gz
l

−b
Ip

]
θ(t). (2.37)

To solve this ordinary differential equation, we use the eigenvalues of the matrix, calculated in
Example 1.6, and see that λ1 6= λ2. This gives:

θ(t) = c1eλ1t + c2eλ2t (2.38)

where c1 and c2 can be solved using the initial values θ0 and θ̇0:

θ0 = c1 + c2, θ̇0 = λ1c1 + λ2c2 =⇒ (2.39)

c1 =
−λ2θ0 + θ̇0
λ1 − λ2

, c2 =
λ1θ0 − θ̇0
λ1 − λ2

. (2.40)

Due to symmetry, we can assume that g0 = g(0) = −ϕ, and then the time t1, at which the
hysteron switches, can be written as the solution of

g(t1) = ϕ. (2.41)

This implies

2ϕ = g(t1)− g(0) =

t1∫
0

ġ(τ)dτ =

t1∫
0

1

b
u(τ)dτ (2.42)

=

t1∫
0

kc
b

(
c1eλ1τ + c2eλ2τ

)
dτ =

kcc1
bλ1

eλ1τ +
kcc2
bλ2

eλ2τ

∣∣∣∣τ=t1
τ=0

(2.43)

Due to unstability of the system under S2, we know that at least one eigenvalue has Re(λi) > 0.
If we take the largest eigenvalue, and neglect the other one, we are still able to find an upper
bound T for the switch time t1, since if we choose T such that

2ϕ =
kcci
bλi

(
eλiT − 1

)
(2.44)

1 +
2ϕbλi
kcci

= eλiT (2.45)

log
(

1 +
2ϕbλi
kcci

)/
λi = T, (2.46)
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we certainly know that t1 < T . In the worst case, it costs T time to switch to S1 or S3. This
fact is used, and we assume that the system behaves like equation (2.37) until time T . We
denote θ1 and θ̇1 as final conditions of the environment where S2 is governing, and take this
as initial conditions of the system which rules when g ∈ {S1, S3}. This second behavior can
be represented as:

θ̇(t) =

[
0 1

gz
l −

kc
Ip

−b
Ip

]
θ(t). (2.47)

This system can be solved, analogue to the previous one, resulting in

θ(t) = c3eκt + c4te
κt (2.48)

with κ the eigenvalue of (A + BN) with multiplicity of 2, because of the critically damped
controller. Initial values are given by θ1 and θ̇1. So analogue to equations (2.39)-(2.40), we
see

θ1 = c3, θ̇1 = κc3 + c4 =⇒ (2.49)

c3 = θ1, c4 = θ̇1 − κθ1. (2.50)

Remark that θ(t) and θ̇(t) have same sign and that θ(t) will reach its maximum at t2 when
θ̇(t2) = 0. Setting θ̇(t2) = 0, gives

c3κeκt2 + c4eκt2 + c4κt2eκt2 = 0 (2.51)(
c3κ+ c4 + c4κt2

)
eκt2 = 0 (2.52)

c3κ+ c4 + c4κt2 = 0 (2.53)

c1κ+ c2
−c2κ

= t2, (2.54)

since eκt2 6= 0 for all t2 > 0 and κ.
These both time instances, T and t2 can be used to find a boundary in the behavior of the
system. This boundary will be used in the next chapter.
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Chapter 3

Controller design

In the previous chapter we investigated some hysteretic concepts, and introduced an
extensive example. In Chapter 1 we stabilized a regular system with a linear feedback
controller, which depended on the output of the system. However, this is not sufficient
when a system suffers from hysteresis, so other controllers must be designed. The aim
of this chapter is to design a controller which stabilizes a hysteretic system. Further,
proper design of a controller depends on the goals that must be met by the system.
It is often a trade-off between speed and precision.

In this chapter, both types of controllers will be designed: first a constant low gain
controller, which acts rather slow but has high accuracy. Also a high gain controller
will be made. Simulations with a mixture of both controllers, a switched controller,
are also done. This switching is quite normal in daily life. For example, think of
opening a door with a key: the first movement of the arm, to move the key from the
pocket to the neighbourhood of the key hole is quite fast and inprecise, but when
the key comes near the keyhole, the speed of the arm decreases and the movement
becomes more accurate. This idea will be worked out at the end of this chapter.

3.1 Fixed sign controllability

In this section a controller is designed, according to the strategy of ignoring the
hysteresis. Actually, the results are subject to hysteresis, nothing can be done about
it. But with a proper controller design we can circumvent the troubles. We assumed
already that each hysteresis has three states, and our plan is to design a controller
such that the hysteresis variable remains in the state where it starts. Further more,
we saw in the Duhem model that the dynamics of the system switches at certain
points. This switch in the piecewise function of the generalized model occurs when
the sign of the input changes. Therefore we define a specific kind of controllability,
based on Definition 1.11, and the notion that controllability is equivalent to state-
controllability.
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Definition 3.1 (Fixed sign controllability). Consider a time invariant system Σ,
governed by ẋ = f(x, u). Then Σ is called fixed sign controllable if for any
two states x1(t), x2(t) ∈ Rn there exist a t1 > 0 and a third state x ∈ Rn where

x(t) =

{
x1(t) t ≤ 0
x2(t− t1) t ≥ t1

(3.1)

and where the input u(t) preserves sign for all 0 ≤ t ≤ t1.

Remark that the sign of the input should be chosen after the trajectories are given.
So, every time that the states x1 and x2 are redefined, the sign may be chosen again.

To get a feeling with fixed sign controllability, we first give some examples. Thereafter,
we dive into discrete LTI systems and look at the system while time steps are taken.

Example 3.1 (Train driver): As a last example, consider the train drivers system of Exam-
ple 1.1. This system is not fixed sign controllable. To illustrate this, take two states x1(t)
and x2(t), where the states are given by the positions x1 < x2 and velocities ẋ1 = ẋ2 = 0.
Both states are in the behavior of the system. When the objective is to steer from state x1
to x2, one should choose a controller which increase the velocity. However, it is not possible
to decrease the velocity any more, and although the train has some friction, the train can not
stop at x2. So this system is not fixed sign controllable.

Example 3.2 (Controlling temperature with gas incineration): Reconsider the control-
ling of the temperature of a boiler in Example 2.1, but now with a gas burner. There it
is possible to control the temperature by burning gas, which drives up the temperature. Theo-
retically, ’unburning gas’ will lower the temperature. Hence, if we take gas incineration as the
input of our system, we can steer from any state x1 to arbitrary state x2, with the following
simple strategy: burn (extra) gas if x1 < x2, and ’unburn gas’ if x1 > x2. Doing this until the
state x2 is reached. Everything that happens after x2 is reached, does not matter any more.
Therefore, this system is fixed sign controllable.

Note that unburning gas is rather unrealistic. In real life, only non-negative input is
possible. This small modification is defined as positive controllability. For literature
about positive controllability we refer to Klamka [10].

Example 3.3 (Position of a swing): Consider a swing, which can be controlled by pushing
(u ≥ 0) and pulling (u ≤ 0). This system is still controllable when only input of one particular
sign is allowed. Suppose the case that only pushing is allowed, the swing is approaching ẋ < 0,
and the goal is to let it approach faster. Since pulling the swing is not allowed, one should
wait until the swing moves away (ẋ > 0) and push the swing to increase the speed. Then it
swings back, and approaches with a higher speed, which was desired. So, although it takes
some extra time to swing the swing in the desired state, each other trajectory is still reachable
in a certain time t1 > 0. Remark that the behavior space B is reduced, since all trajectories
where the swing is in a stationary position with x < 0 need a constant input with u < 0, which
therefore leads to non-allowed behavior.

30



B

AB

−B

−AB
v⊥

v

Figure 3.1: Two vectors, B and AB, covering convex cones. The red area is reachable with a
positive combination of these vectors, the blue area is reachable with a negative combination. A
separating line is given by the set v⊥.

We want to investigate this fixed sign controllability of LTI systems. Therefore, we
look at the following discrete LTI system

x(k) = Ax(k − 1) +Bu(k − 1) = A2x(k − 2) +ABu(k − 2) +Bu(k − 1) (3.2)

= Anx(k − n) +
n∑
i=1

An−iBu(k − i) (3.3)

Consider two arbitrary states x0, x1 ∈ Rn, which must be connected to each other by
an input u(i) with i = 0, 1, 2, . . .. If this is possible for all x0 and x1, the system is
state controllable. Take for example x0 = Akx(0) and x1 = x(k). We see that full
control is possible in k steps, if and only if the vectors AiB (for i = 0, 1, . . . , k−1) span
the whole Rn, since it is then possible to choose a linear combination of u(i), such
that

∑k
i=1A

k−iBu(k − i) can be chosen freely. This influence of u(i) on the system

will bring the system from x0 to x1, since
∑k

i=1A
k−iBu(k − i) = x(k) − Akx(0),

according to equation (3.3). The lowest k, where AiB, i = 0 . . . k already spans the
whole Rn, says that there are at least k steps needed to assure controllability.

This result follows the same philosophy as in the continuous case, described in Theo-
rem 1.12 on page 8, where the controllability matrix C =

[
B AB A2B · · · AnB

]
has to have full row rank.

However, Definition 3.1 concerns fixed sign controllability, and not regular controlla-
bility, which is mentioned above. With fixed sign controllability, u(i) must preserve
sign, and therefore only positive or only negative combinations of the vectors AiB
may be chosen, which make it less trivial to cover the whole space Rn. In Figure 3.1,
it is easy to see that the vectors B and AB span the whole R2. However, the positive
combinations together with the negative combinations do clearly not cover the whole
space. The positive cone, which is formed by a convex combination of the vectors
AiB must at least cover a half-plane, to assure that the whole space is covered by
both negative and positive cone. This idea will be extrapolated to the n-dimensional
space and formally proved in the following theorem. First a lemma is stated, from S.
Boyd and L. Vandenberghe in Convex Optimization, section 2.5:
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Lemma 3.2 (Separating hyperplane [4]). Suppose C and D are two convex sets that do
not intersect, i.e., C ∩D = ∅. Then there exist a 6= 0 and b such that

aTx ≤ b for all x ∈ C, and aTx ≥ b for all x ∈ D. (3.4)

The hyperplane {x | aTx = b} is called a separating hyperplane for the sets C and
D.

Remark that if C and D are convex cones with vertex at zero, then C ∩ D = {0}.
The lemma then still holds, since 0 is the only element of the intersection [4, p. 50].
The separating hyperplane then separates the sets through the origin, {x | aTx = 0}.

Theorem 3.3 (Discrete fixed sign controllability). Consider a discrete LTI system in the
state space representation

x(k + 1) = Ax(k) +Bu(k). (3.5)

This system is fixed sign controllable in n steps if and only if there exists no v such
that

vTB > 0 (3.6)

vTAB > 0 (3.7)

vTA2B > 0 (3.8)

...

vTAnB > 0 (3.9)

holds.
Proof: First part: FSC ⇒ @v.
By contradiction; suppose such v exists, while the system is fixed sign controllable.
Because of the linearity of the system, we choose x0 as the origin, without loss of
generality. If we then choose x1 lying on the separating hyperplane, defined by that
particular v⊥ which is assumed to be existing, it is clearly not possible to write x1 as
a convex combination of [B,AB,A2B, . . . , AnB]. This implies that it is not possible
to steer from state x0 to an arbitrary x1, which should be, since the system is fixed
sign controllable. Therefore, a contradiction appears, and such v could not exist.

Second part: @v ⇒ FSC. State that such v does not exist, and assume that the system
is not fixed sign controllable. No fixed sign controllability means that the Rn is not
covered by the cones. So there is an x1, such that x1 is neither a convex combination of
[B,AB,A2B, . . . , AnB], nor a convex combination of [−B,−AB,−A2B, . . . ,−AnB].
From now on, we name the positive convex cone C and the negative convex cone D.
Since C and D are closed, there exists an open ball Bε(x1) such that Bε(x1) 6∈ {C,D}.
We define the convex cone X, based on the set Bε(x1). Then C ∩ X = {0} and
D ∩ X = {0}. Geometrically speaking, x1 is located outside the convex cones. By
Lemma 3.2, there exists a separating hyperplane, which separates X and C, passing
through the origin. Since D is the opposite of C, D lies in the same half space of
X. But then each vector v⊥ ∈ X is a separating hyperplane of C and D. However,
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we assumed that no v was allowed to exist, so a contradiction with the preposition

is made. Therefore, whenever a v does not exist, the system should be fixed sign
controllable. �

In the above theorem, n is finite. This is necessary, since controllability demands that
any state could be steered to an other arbitrary state in finite time. We use this the-
orem to extract some properties of the A-matrix, to assure fixed sign controllability.
Therefore, first a lemma is stated, and thereafter a theorem about the eigenvalues of
A.

Lemma 3.4 (Fixed sign controllability implies controllability). Consider a system Σ. If
Σ is fixed sign controllable, then it is also controllable.
Proof: This follows from the definitions. �

Theorem 3.5 (Eigenvalues of discrete fixed sign controllable system). The system (3.5)
is fixed sign controllable if and only if it is controllable and A does not have eigenvalues
on the positive real axis.
Proof: First part: FSC ⇒ @λ on positive real axis & controllable.
Lemma 3.4 shows the controllability. With use of Theorem 3.3, we already knew that
there could not exist v such that all equations (3.6)-(3.9) hold, with n finite.
To prove the part of the eigenvalues, we want to construct a contradiction by supposing
the opposite: We can not find v with an eigenvalue λ on the positive real axis.
Let us take x as a corresponding left eigenvector of the eigenvalue λ, so xTA = λxT .
Proof by induction: We assume that xTAiB > 0. The inductive step is to prove that
xTAi+1B > 0. With use of the left eigenvectors, we see that

xTA = λxT (3.10)

xTAi+1B = xTAAiB = λxTAiB (3.11)

and therefore we see that

xTAiB︸ ︷︷ ︸
>0

⇒ λxTAiB︸ ︷︷ ︸
>0

⇒ xTAi+1B︸ ︷︷ ︸
>0

(3.12)

since λ > 0. The basis step consists of proving that xA0B = xB > 0. We can take
this for granted in general. In case this is not true, we could take −xB > 0. Then the
induction step also holds, so −xAiB > 0 for all i, with a given positive eigenvalue,
λ > 0. An equality sign (xB = 0) is not allowed, since the system is controllable,
which implies full row rank of C.
If we choose this particular eigenvector x = v, we found v, which was forbidden.
So, with fixed sign controllability it is not allowed to have a positive eigenvalue, there-
fore, all eigenvalues must be negative.

Second part: @λ on positive real axis & controllable ⇒ FSC.
To prove this part, we want to construct again a contradiction by supposing the op-
posite: We state that no eigenvalues lie on the positive real axis and assume that
the system is not fixed sign controllable. Then there exist v, such that all equations
(3.6)-(3.9) hold, with n bounded.
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Let us take that particular v, which implicates that vTB > 0. We know that all left
eigenvectors of A, with inclusion of the generalized eigenvectors, span the Rn, so v
can be written as a linear combination of these eigenvectors:

vT = c1x1 + c2x2 + . . .+ cnxn. (3.13)

Each regular eigenvector y0 ∈ {x1, x2, . . . , xn} has a corresponding eigenvalue λ, such
that y0A

k = λky0. If λ has a multiplicity, a generalized eigenvector y1 also shows
up, such that y1A

k = kλky1. Higher multiplicities gives more generalized eigenvalues,
and with a multiplicity of m holds

ym−1A
k = km−1λkym−1. (3.14)

This fact is used to show that there is at least one dominant eigenvalue. Since the
corresponding eigenvalue is not on the positive real axis, angle(λ) 6= 0 holds. Written
in polar coordinates, we can state that angle(λk) = k · angle(λ). For sure, there is an
i such that Re(λk) < 0. Then we choose this λ, and, with this particular k:

vTAk ≈ ym−1A
k = km−1λkym−1 ≈ km−1λivT . (3.15)

If we right multiply with B and take i sufficiently large and such that λik < 0, we see
that

vTAiB︸ ︷︷ ︸
<0

= km−1 λk︸︷︷︸
<0

vTB︸︷︷︸
>0

(3.16)

which is in contradiction with the fact that all equations (3.6)-(3.9) must hold.
Suppose there are n different dominant eigenvalues {xk1 , . . . , xkn}, with trivially same
multiplicity m. Then, with sufficient high k:

vTAk ≈ (xk1 + xk2 + . . .+ xkn)Ak = km
(
λik1xk1 + λik1xk1 + . . . λiknxkn

)
(3.17)

≈ km(λik1 + λik2 + . . .+ λikn)vT . (3.18)

Since no λk lies on the positive real axis, there is an ik, such that λikk has negative
real part. Furthermore, there is a least common multiple i of all ik’s, such that λik
has negative real part for all λk’s. Then if we take this i, we see that

vTAiB︸ ︷︷ ︸
<0

= (λik1 + λik2 + . . .+ λikn)︸ ︷︷ ︸
<0

vTB︸︷︷︸
>0

(3.19)

which contradicts the preposition.
We conclude the proof by stating that vTAiB can never be zero, because of the full
row rank of C. So if all λ < 0, there can not exist a separating plane defined by v,
and thus by Theorem 3.3, the system must be fixed sign controllable. �

In the continuous case, we can use the same philosophy. Returning to the straight-
forward solution of a system, equation (1.9), we remark that at time t1 the effect of
the input at time τ , u(τ), is directly proportional, to a factor eA(t1−τ)B. Now we
are able to define a convex cone, similar to the discrete case. Each input affects the
output with the given factor, and therefore linear combinations of these factors may
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be freely chosen, to steer from x0 to x1. Therefore, the convex cone is defined as the
continuum of eAτB with τ ∈ [0, t1]. Analogue to the discrete case, we state that there
is a separating plane defined by v if and only if the system is not fixed sign control-
lable. This is used to formulate a test to check whether the system ẋ = Ax + Bu is
fixed sign controllable or not.
To pave the way for the proof of the theorem, the following lemmas are formulated.

Lemma 3.6 (Eigenvalues of exponential matrices). Suppose the eigenvalues of the ma-
trix A are λk, k = {1, . . . ,m}. Then the eigenvectors of the exponential matrix eAt

are eλkt, k = {1, . . . ,m}.
Proof: Suppose v is the corresponding eigenvector of the eigenvalue λk, then Av =
λkv. By definition,

eAtv =

( ∞∑
n=0

tnAn

n!

)
v =

∞∑
n=0

tnAnv

n!
=
∞∑
n=0

tnλnkv

n!
= eλktv (3.20)

which implies that eλkt is an eigenvalue of eAt. �

Lemma 3.7 (Matrix decomposition [17]). Each matrix A ∈ Rn×n may be transformed
according

S−1AS = J (3.21)

with S non-singular, and where J a Jordan matrix, consisting of Jordan blocks Jk,

J = diag(J1, J2, . . . , JN ), Jk =


λk 1

0
. . .

. . .

λk 1
λk

 . (3.22)

We see that

eAt = SeJtS−1, eJt = diag(eJ1t, . . . , eJN t). (3.23)

Theorem 3.8 (Eigenvalues of continuous fixed sign controllable systems). Consider a
continuous time system

ẋ = Ax+Bu. (3.24)

This system is fixed sign controllable if and only if it is controllable and all eigen-
values λk, k = {1, . . . ,m} have non-zero imaginary part.
Proof: First part: FSC ⇒ All λ have non zero imaginary part & controllable.
We state that a system is fixed sign controllable. By Lemma 3.4 this system is also
regular controllable. We also know that the whole Rn is spanned by [eAtB], because
of regular controllability. Furthermore, since u(t) preserves sign, at least a half plane
is spanned by [eAtB], so there can not be a separating plane v such that vT eAtB > 0,
for all t.
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To construct a contradiction, suppose there is at least one strict real eigenvalue λ.

With use of Lemma 3.6, we see that eig(eAt) = eλkt. Further, we take the correspond-
ing left eigenvector xT , which is, such that

xT eAt = eλtxT , for all t. (3.25)

Right multiplication with B gives

xT eAtB = eλtxTB, for all t. (3.26)

By the assumption that λ is strictly real, we see that eλt > 0 for all t. Analogue to
the discrete case, equation (3.12), we see that if xTB > 0, then

xT eAtB > 0, for all t. (3.27)

The other case, xTB < 0 will keep equation (3.27) negative, for all t. The case xTB =
0 will keep the equation zero, but this is not valid, because of regular controllability.
So by choosing this x as v, a separating plane is created. This is in contradiction with
our starting position. Hence, fixed sign controllability implies imaginary eigenvalues.

Second part: All λ have non zero imaginary part & controllable ⇒ FSC.
We state that all λ have non-zero imaginary part. We want to construct a contradic-
tion, so we state that there is a separating plane v such that vT eAtB > 0. Further,
analogue to the discrete case, vT can be approximated by a linear combination of
dominant (generalized) left eigenvectors of eAt, and (together with Lemma 3.6)

vT eAt ≈ tm
(
c1x1eAt + c2x2eAt + . . .+ cnxneAt

)
(3.28)

= tm
(
c1eλ1tx1 + c2eλ2tx2 + . . .+ cneλntxn

)
. (3.29)

Since the separating plane must hold for all t ∈ R+, and for all eigenvalues we assumed
λ = a+ iω with ω 6= 0, we zoom in to the eigenvalues with largest real value a.
Suppose there is just one unique eigenvalue with the largest value of a, which has an
imaginary part of iω. After a long time, this eigenvalue will dominate, since

eλt = e(a+iω)t = eat
(

cos(ωt) + i sin(ωt)
)
, (3.30)

and if another eigenvalue has lower real value, suppose b < a, then

lim
t→∞

ebt

eat
= 0. (3.31)

Since there is a vT eAtB > 0, we know that vT eA(t+π/ω) < 0, which contradicts the
preposition.
Suppose there are n different eigenvalues with the same largest real value a. Then the
imaginary parts must differ; iω1 6= iω2 6= iωn.

eat
(

cos(ω1t) + cos(ω2t) + . . .+ cos(ωnt)
)
. (3.32)

Now it is necessary (and sufficient) to show that cos(ω1t) + cos(ω2t) + . . .+ cos(ωnt)
is positive for all t, to assure the assumed separating plane v, since eat > 0 for all t.
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By Bohr [2], we know that the sum of a finite number of continuous periodic functions
with arbitrary periods is almost periodic. Also, every almost periodic function is
bounded and continuous. Furthermore, for every almost periodic function there exist
a mean value. For each trigonometric function, this mean value is zero. Therefore,
the mean of the sum is also zero.
Further, by reasoning that the mean is zero and the function is bounded, one can state
that for each k = 1, . . . , n the integral is bounded, i.e. there exists Mk such that for
all T

T∫
0

cos(ωkt)dt < Mk (3.33)

holds, and therefore there exists alsoan M such that

T∫
0

n∑
k=1

cos(ωkt)dt < M. (3.34)

Hence, if this function is indeed positive for all t, expression (3.34) can not hold

any more, since
∫ T

0 f(t)dt ≥ Tε is unbounded if T → ∞. If this function is non-
negative, it must always be zero, which is not allowed. At this point a contradiction
appears. Therefore the function can not be non-negative, which results in the fact that
no separating hyperplane can exist. �

We saw already that controllability is equivalent to null-controllability and reachabil-
ity. This is, however, not the case for fixed sign controllability.

Theorem 3.9 (Fixed sign controllability implies fixed sign reachability, null controllability).

Consider a system Σ. If Σ is fixed sign controllable, it is also fixed sign reachable
and fixed sign null controllable.
Proof: Because Σ is fixed sign controllable, we can steer from state x1 to x2 using an
input u with constant sign. Therefore, we can choose x1 as the equilibrium, and steer
to x2 using an input u with constant sign. By definition, this is fixed sign reachable.
We can also choose x2 as the equilibrium, and steer from any initial condition towards
it, using an input u with constant sign. Therefore the system is also fixed sign null-
controllable. �

Vice versa, this statement will does hold always. Suppose a system is fixed sign null
controllable and fixed sign reachable. Because of fixed sign null controllability, the
system can be steered from x1 to x0, with an input which does not change sign.
Because of fixed sign reachability, the system can be steered from x0 to x2, with an
input which does also not change sign. These two inputs do not change sign, but this
sign can differ from the sign which is used to steer to the origin x0.

3.2 Fixed sign stabilizability

In the previous section, we discussed the aspects of fixed sign controllability. This
section will handle the notion of stabilizability. This is a slightly weaker property then
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controllability First the definition will be given, after that some theorems are given
and proved, to check wether a system is stabilizable or not. Again, the assumption
that the input u is a scalar is also in this section applied.

Definition 3.10 (Fixed sign stabilizable). Consider a time invariant system Σ gov-
erned by ẋ = f(x, u). Then Σ is called fixed sign stabilizable if for every state
x1 ∈ Rn, there exist a state x0 ∈ Rn with the property

x0(t) = x1(t) for t ≤ 0 and lim
t→∞

x1(t) = 0. (3.35)

where u(t) preserves sign for all t > 0.

To check whether a system is fixed sign stabilizable, the following test can be done.
Remark that the trajectories w in Definition 1.13 on page 9 are interchanged with
the states x in previous definition. This will also be used in the following theorem.
This is allowed due to the fact that stabilizability equals state stabilizability, similar
to the fact that controllability equals state controllability.

Theorem 3.11 (Fixed sign stabilizable). Consider a system ẋ = Ax+Bu, with feedback
control u = Nx. This system is fixed sign stabilizable if N can be chosen such that
all the eigenvalues λk = eig(A+ BN) lies on the negative real axis. That is that for
all λk the following holds:

Im(λk) = 0, Re(λk) < 0. (3.36)

Proof: It was already clear that there must be an N , such that Re(λk) < 0 holds, oth-
erwise, regular stability is already not guaranteed. This fact is given in Theorem 1.14
on page 11.
We know due to Lemma 3.7 that x(t) = e(A+BN)tx0 = SeJtS−1x0. First we assume
that all eigenvalues have multiplicity of one, so x(t) = SeΛtS−1x0. Hence all state
variables will behave in the long run as a linear combination of eλkt.
Remark that cie

λit will preserve sign, when Im(λk) = 0. Furthermore, looking to two
terms, we see that if λi > λj, then eλit > eλjt for all t. Even more, eventually there
is a t1, such that

cie
λit > cje

λjt for all t > t1 and ci, cj ∈ R. (3.37)

So cie
λit + cje

λjt will switch sign at most 1 time (at time t1). Furthermore, since
u = Nx, with N ∈ R1×n, x ∈ Rn×1, the input will be defined as:

u(t) =

n∑
i=1

mi

( n∑
k=1

ci,ke
λkt

)
(3.38)

=

n∑
k=1

γke
λkt (3.39)

with γk =
∑n

i=1mici,k.
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Similar to the previous reasoning, we can state in general that the feedback Nx(t)
switches at most n − 1 times, when Λ = diag(λ1 . . . λn). The number of switches
depends on the initial conditions.

It is for sure that the largest eigenvalue (λi), with the largest multiplicity (mi) will
dominate the input, since the corresponding term

γit
mi−1eλit (3.40)

is eventually larger then all other terms. This term preserve sign by itself, since λ is
real. Only when λi has a non zero imaginary part, then sign switching is still possible
when t� 0.

Although the feedback is switching sign, the control can be fixed sign by u(t) =
max(Nx(t), 0) or u(t) = min(Nx(t), 0).
Suppose the system will not switch at all, then it is clear. Suppose it will switch once,
it will switch, also with control u = 0. After this switch, the input will be fixed sign.
Further reasoning: when the system will switch twice, then the u = Nx, and it will
switch sign definetely. After this switch, u = 0, so it will switch even faster than with
u = Nx, and after this switch it will behave as normal.

Example 3.4 (Simple inverted pendulum): We look again to the example of the simple
inverted pendulum, Example 1.6 on page 9. Eigenvalues of the matrix A − BkC are already
discussed, and we saw that if k is large enough to stabilize, but not too large to assure that the
system will not oscillate, so Im(eig) = 0, then the system is critically or overdamped damped.
Precisely, if we choose k such that

mgl < k < mgl + b2/4I and N =
[
−k 0

]
, (3.41)

then we see that A+ BN has all eigenvalues on the negative real axis. Therefore the system
is fixed sign stabilizable, according to Theorem 3.11.

We saw already in Chapter 2 that a system, subject to hysteresis is governed by
another expression when the input changes sign, see equation (??). With a fixed sign
controller, no input sign switching can occur at all, therefore only one expression rules
the system. This fact will make the controlling far easier.
A critically or overdamped linear feedback controller is often a specific realization of
a fixed sign stabilizing system, or can be adapted to be such a fixed sign controller,
since the switching is finite. The desired trajectory must be reached without oscil-
lations, since oscillations often causes switching of input. In case that the system
must be steered towards its equilibrium, then fixed sign stability is enough to prevent
oscillations caused by the hysteresis. It should be mentioned that the certain stabi-
lizing strategy with parameter matrix N ∈ R1×n which fulfil the requirement for a
system of being fixed sign stabilizable, is not always direct the strategy to obtain the
particular fixed sign stabilizability. This has to do with the initial values. This will
be shown in the next example with simulation.

Example 3.5 (Critically damped): A Matlab-simulation of the inverted pendulum of Ex-
ample 2.3 is made with a critical damped linear feedback controller. The autonomous system
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behaves according to

ẋ(t) = Ax(t) +BH(Nx(t)), with N =
[
−kc 0

]
. (3.42)

Due to symmetry of the hysteron, i.e. the outcomes under S1 is equal to the outcomes under
S3 and the transitions are symmetric, the system can be rewritten as

ẋ(t) = Ax(t) +BNĤ(x(t)) (3.43)

The modified hysteron, based on equation (2.20) can be described as

v = Ĥ(x) =


x if g = −ϕbkc
0 if − ϕb

kc
< g < ϕb

kc

x if g = ϕb
kc

with ġ =


max(0, x) if g = −ϕbkc
x if − ϕb

kc
< g < ϕb

kc

min(0, x) if g = ϕb
kc

(3.44)

The same physical constants are used, given in Table 2.9. The initial conditions are [θ0, θ̇0] =
[0.01,−0.05] and g0 = −ϕ. In Figure 3.2 the results are given. Originally one change of sign
of the input occurs, in the beginning of the simulation, due to the initial conditions. This can
be evaded, by setting the input on zero for the first while. After a certain t1, the input can
be switch on, and then is would not switch sign anymore. In the figure, one swing occurs at
t ≈ 5. After that, the system nicely converges to the equilibrium.
We denote the two sets which maps v → u as set S1 and S3, and the set which maps v → 0
as set S2.
When the system is governed by the expressions of set S2, we know that the equilibrium of
the system of Example 2.3 is unstable. As a consequence, the state variable of the hysteron g
grows without bounds, since ġ = u = Nθp. Furthermore, we have seen in the example that
S2 is bounded, since this particular unstable dynamics only hold when |g| < ϕ. Therefore, the
state of the hysteron will leave S2 in finite time, when a distortion of δ > 0 is applied on the
system in equilibrium.
The dynamics of the sets S1 and S3 are also well known. Inside S1, the system behaves
simply as a LTI system. Because we know that this inverted pendulum is fixed sign stabilizable
(as explained in Example 3.4), we can choose the controller either u = max(0, Nx) or u =
min(0, Nx), depending on the initial conditions. Trivially these controllers do not change sign.
Then the hysteron state variable g will remain constant, since ġ = 0. So by definition, the
hysteron state is in its equilibrium.

In the previous example, we know that H has two possible outcomes, {u, 0}. In
general, we can say more about this way of controlling. We assumed that S2 is
bounded, and relatively small, but moreover that then the outcomes of the hysteretic
function equals zero. Hence, assumed that the autonomous system is linear and
unstable, the state of the hysteron will leave S2 in finite time, when a distortion of
δ > 0 is applied on the system in equilibrium.

About the dynamics of the sets S1 and S3, with a positive (or negative) controller in
general can be said more. Inside these sets the system behaves as a LTI system, as
described in Chapter 1, and we have already assumed that the system has a stabiliz-
able equilibrium. If u does not have to change sign to steer towards its equilibrium,
which is the fact when the system is fixed sign stabilizable, the hysteron will not
switch in behavior. With a critical damped system, this is exactly what happens:
Once the state of the hysteron g reaches S1 or S3, it will stay inside this set, since
no switching sign does occur. Therefore, the controlled system will converge to its
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Figure 3.2: Simulation of an inverted pendulum with slackness in the pivot position. A critical
damped feedback controller is used. Left: the position (blue) and velocity (green) of the pendulum,
as function of the time. Right: The phase plot (red) of the pendulum. The equilibrium (black) is
shown at (0, 0).

equilibrium. Recall that it is assumed that there exist one stabilizable equilibrium.
Together with the existence of set S2, this is exactly the property of an attractor, as
stated in Definition 1.6.

However, a small distortion (δ > 0) of the equilibrium can cause a change of sign
of u, which result in a shift from S1 to S2. Recall that S2 is non-empty, and u(t)
is bounded. Therefore, there is an ε > 0 and a t > 0 such that ‖x(t)‖ ≥ ε, which
violates the necessary conditions to be stable (Definition 1.5(i)). This makes the
equilibrium unstable. Therefore, this equilibrium point of the hysteretic dynamical
system, described in Example 3.5 is an unstable attractor.

Unstability holds for all hysteretic dynamical systems under the following assump-
tions: (1) it has an stabilizable equilibrium when g ∈ {S1, S3}, (2) it has an unstable
equilibrium when g ∈ S2 with S2 bounded and (3) it has an unstable equilibrium of
the hysteron state g.

When the initial system state is far away from its equilibrium, then this system will
work properly, because there is clearly no reason to switch sign. The hysteron will
not play a role in it, or at most a relatively small one in the begin of the controlling.

Clearly, when the critically damped system is in it equilibrium and is only exposed to
perturbations in one direction, such that u does not change sign, the system does also
not bother the hysteresis, because the critical damped controller will never let the
pendulum further oscillate, and cross its equilibrium position, which causes a switch
of sign. However, this is not a realistic scenario, and therefore, other solutions must
be found, in case that the system is to close the equilibrium. To get a measure for
what is close, we first define other types of stability.

3.3 Practical stability

In this section, some comments about stability of the system itself are made. Although
only unstability can be concluded with the regular stability definitions, it must be
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observed in Figure 2.8 that the controlled system remains within certain bounds.
Also in general, this is often the case with hysteretic systems. Therefore, based on
the ideas of Lakshmikantham et al. [12], we define another type of stability: practical
stability.

Definition 3.12 (Practical-Ω-stability). An equilibrium point x = 0 of a system ẋ =
f(x) is called practical-Ω-stable if there is a certain bounded region Ω and a δ > 0
such that

‖x(0)‖ < δ implies x(t) ∈ Ω for all t ≥ 0 (3.45)

The idea behind this definition is that if there is a distortion on the system in its
origin, which is sufficiently small (thus within the range of δ), then the system is
stable ‘enough’ to remain inside a certain region, given by Ω. The essential differ-
ence between this practical definition and the definition about stability of invariant
sets, Definition 1.8, is that there ε could be chosen arbitrary small, while this is not
necessarily the case for Ω. However, stability always implies practical stability.

Theorem 3.13 (Stability implies practical-Ω-stability). A stable equilibrium point x̄ of a
system ẋ = f(x) is always practical-Ω-stable.
Proof: Choose Ω = Bε(x̄). Then because stability, for each ε > 0 holds,

‖x(t)‖ < ε ⇒ x(t) ∈ Bε(x̄) = Ω (3.46)

which fulfils the requirements to be practical-Ω-stable. �

Example 3.6 (Practically stable inverted pendulum): If we look again to our simulation
of Example 3.5, and to the behavior as described in Example 2.4, we can choose Ω =
e(A+BN)t2eAt1x0. We know from values of t1 and t2, given in Example 2.4, that the practical-
Ω-stability requirement holds, since all eigenvalues of (A + BN) are strict negative. This
requirement hold for every initial value x0. If a distortion of δ is added to our system in its
equilibrium position, we can take x0 as the set of {x | ‖x‖∞ < δ}.
In Figure 3.3, the simulation results are drawn, and the idea of the region Ω is sketched. In
all cases where the initial values are inside Bδ(x̄), the system will always remain inside Ω.
Therefore, our critically damped system is practical-Ω-stable.
In the simulation, noise is added on our critically damped system, but only added when the
system is close enough to the equilibrium. The size of the disturbances is chosen as δ = 0.05.
The physical constants, including ϕ remains the same, given in Table 2.9.

In this given example, practical-Ω-stability is a nice feature. In the general, discussing
hysteretic systems, this particular stability could be desirable in applications. For
example, the Ω-region can be given by a manufacturer of machines, who needs some
precision-measure of his devices. This Ω-region requires then a certain controller. In
general, the smaller Ω is, the higher the input of the controller should be.

To assure practical-Ω-stability in general, the system must be investigated, and the
following theorem is used to check whether a system subject to hysteresis is practical-
Ω-stable. Remark that Ω
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Figure 3.3: Simulation of an inverted pendulum with slackness in the pivot position, and noise
added. The same critical damped feedback controller as in Example 3.5 is used. Left: the
position (blue) and velocity (green) of the pendulum, as function of the time. Right: The phase
plot (red) of the pendulum. The equilibrium (black) is shown at (0, 0). The boundaries of its
δ-neighbourhood and the Ω-region are dotted.

Theorem 3.14 (Practical-Ω-stability of LTI-systems subject to hysteresis). Consider the
following LTI-system, subject to hysteresis

ẋ = Ax+BH(u), with H(u) =


αu if g ∈ S1

0 if g ∈ S2

βu if g ∈ S3

(3.47)

where g behaves as a dynamic variable according to

ġ = fi(u) if g ∈ Si for i = 1, 2, 3. (3.48)

This system is practical-Ω-stable if S2 is bounded, and there exist some u, such that
f2(u) 6= 0, and the pair (A,B) is controllable.
Proof: With the fact that S2 is bounded, and there exist some u, such that f2(u) 6= 0,
we can state immediately that there is a possible input u such that the time that the
hysteron is in state S2 is finite.
After this time, the hysteron system is certainly S1,3, a region where the input of the
hysteron directly propagates to the output. The state space equation becomes

ẋ = Ax+Bαu or ẋ = Ax+Bβu. (3.49)

which has controllable dynamics, since (A,B) is a controllable pair. �

The difficulty of the overshoot can be countered by stretching the allowed region for
stability. But to have a useful definition of practical stability, the temptation must be
withstood to choose Ω extremely large. When Ω equals the whole behavior space, this
definition is trivially true for all systems. Although the definition is still valid, the
application has become useless. Therefore, the restriction that Ω must be bounded,
is added.
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3.4 Quasi stability

Although practical-Ω-stability is a nice feature, more things can be said about the
system of the given example. It must be observed that after all disturbances, the
system converges to its equilibrium. Even more: after a finite time, the system comes
arbitrary close to its origin. To catch this kind of behavior, we define an other kind
of stability, given in the following definition, also inspired by Lakshmikantham et al.
[12].

Definition 3.15 (Quasi stability). A system ẋ = f(x) is called quasi stable if for
each ε > 0 there exist a δ > 0 and a time T (δ, ε) ≥ 0 such that

‖x(0)‖ < δ implies ‖x(t)‖ < ε for all t ≥ T. (3.50)

Remark that the time T depends on the initial disturbance δ > 0 and on the given
boundary ε > 0 which the system must cross after this given time.

Example 3.6 (continued): Let us consider the same situation, again with the same critical
damped controller, with the purpose to illustrate the quasi stability of the system. Therefore,
with Example 2.4 in mind, we reason how long it takes to return to a specific ε-neighbourhood.
In the worst case, a distortion of δ will let the pendulum fall into a free fall. We saw already in
the previous simulation that the system reached its maximum at time t1 + t2. Since we know
that the system is fixed sign stabilizable, so it converges monotonically to its equilibrium from
this moment. Furthermore, after time t1, the system is governed by

x(t) = e(A+BN)teAt1x0. (3.51)

Since eAt1x0 is given, and (A + BN) has all eigenvalues in the open left half plane, this
converges to the origin. So for each ε > 0, there is a δ > 0 and a T , such that

‖x(0)‖ < δ implies ‖x(t)‖ < ε for all t ≥ T. (3.52)

It should be taken into account, that this particular T not only depends on δ, but also on the
initial conditions x0. A system where ‖x0‖ = δ/2 will take longer to fall than where ‖x0‖ = δ.
To assure quasi stability, ‖x(T )‖ < ε must hold, but also a fixed sign controller is needed to
assure that ‖x(t)‖ < ε holds for all t ≤ T .
To illustrate this theory, we simulate this example with δ = 1/20 and ε = 1/100, and initial
conditions x0 =

[
δ 0

]
. The first time that the norm is smaller than ε is numerically given

by T ≈ 3.5. Thereafter, this system will never leave this ε-neighbourhood, since it is critically
damped (see Example 3.5). Therefore, this system is quasi stable, with given variables δ, ε, x0
and T .

This strategy can be used in general for systems which are time invariant. However,
after a distortion, it could cost again T seconds to be again in the ε-neighbourhood.
The aim for this stability is useful for systems with not many distortions and/or with
a small T, such that the system is returned fast, close to its origin. If there are a
lot of distortions, and T is large, this definition will become useless. Remark that in
the example all cases above, the controller is chosen, as a fixed sign controller, which
makes the system critically damped. With an underdamped system, where the fixed
sign notion does not hold any more, this notion of quasi stability will not hold any
more.
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In practise, this kind of stability can be used if it may take some time to get a desired,
arbitrary small precision. For example, we could take the fact of parking a car in a
parking lot. This could and may take some time, but when the driver has enough
time to reverse and turn, he can park his car exactly in the right position.
Given the two new definitions of stability, our quest for finding a suitable controller
can be split up in two pieces. With practical stability we search for (1) minimizing
Ω, and with quasi stability (2) minimizing T .

3.5 Local stability

Fixed sign controllers have the nice feature to make system stabilizable, in certain
cases. However, even small distortions on the system can cause switching to other
states, and then suddenly the fixed sign controlling will not have any purpose any
more. Therefore, some robustness is desired.

Theorem 3.16 (Stable hysteretic dynamical system). Suppose an autonomous hys-
teretic dynamical system ẋ = Ax+BH(x), where H(x) = ui when the hysteron state
g ∈ Si. If the system ẋ = Ax + Bui has a (asymptotically) stable equilibrium and
there exist an η > 0 such that the hysteron state g remains in Si for each x(t) where
‖x(t)‖ < η, then ẋ = Ax+H(x) has a locally (asymptotically) stable equilibrium.
Proof: In words, the state will remain in Si when the distortions are not too extreme,
i.e. smaller then η. When the state remains in Si, then no switching occurs, so the
hysteretic dynamical system behaves according to ẋ = Ax + BH(x) = Ax + Bui for
all time t > 0. It was already assumed that this system has a stable equilibrium. �

Inspired by the theorem above, we can modify our example, to show that with a small
modification, a stable system can be obtained. Although we realize that modifying
the model of physical behavior is completely different of designing controllers, it is
done here to illustrate how the theorem can be used.

Example 3.7 (Sticky pendulum): Suppose that the pendulum and the disk are sticked to-
gether, and at at least a torque of α is needed to decouple them. Then the origin will be locally
stable, a small distortion in the system can keep the system inside the given neighbourhood.
This will be elaborated.
The implementation of this stickiness can be done by changing the hysteron. We modify the
hysteron, described in equation (2.20), into

v = H(u) =


u if g = −ϕb
0 if −ϕb < g < ϕb

u if g = ϕb

with ġ =


max(0, u− α) if g = −ϕb
u if −ϕb < g < ϕb

min(0, u+ α) if g = ϕb

(3.53)

In words, this says that the slackness remain unchanged in all cases when −α < u < α. That
means that the pendulum then will be attached to the disk. We observe (again) that the origin
of the dynamical system ẋ = Ax+Bu is (asymptotically) stable if control can be applied. By
definition, for each ε > 0, there is a δ > 0 such that

‖x(0)‖ < δ implies ‖x(t)‖ < ε, for all t ≥ 0. (3.54)
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Figure 3.4: Simulation to illustrate quasi stability. A critical damped feedback controller is used.
Left: the position (blue) and velocity (green) of the pendulum, as function of the time. At time
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Therefore, with regular control of u = −kx, we know that |u(t)| < kε, so when the pendulum

remains inside |x| < α
k , ẋ = 0, the hysteron state remains in {S1, S3}, and therefore the

hysteretic dynamical system converge to its equilibrium. To achieve this, δ < k
a must be

chosen.
To simulate this phenomenon, we take α = 0.02. Further we take the same physical constants,
initial values and controller as Example 2.3. Of course, the initial values are too large, |θ0| > α

k ,
but when the system comes once close enough to the equilibrium (say, at time T ), then it stays
in that neighbourhood for all t ≥ T . The results are given in Figure 3.5.
We observe an underdamped controller. The first overshoot is explained by the fact that the
pendulum goes too far beyond the equilibrium position. This causes the hysteron state switch
to S2, and a free fall occures. After this swing more overshoots occurs since the underdamped
controller. However the overshoot is not large enough to causes the hysteron state to switch
towards S2. Hence, a free fall does not occur any more.

3.6 Target area

In this section we discuss another stabilizing strategy. Inspired by the idea of local
stability, and the properties of practical-Ω-stability, we investigate the behaviour when
the system is brought to a certain region, the neighbourhood of a desired state. As
described earlier, this could be a neighbourhood of an equilibrium, but not necessarily.
Then hopefully there can be some stability conclusions taken, when the controller is
proper chosen.

A property of our pendulum is that its equilibrium lies on the edge of the sets where
the hysteron state g can be in. This is in general exactly the property which makes
an equilibrium unstable, instead of locally stable. Therfore, if we define a neighbour-
hood such that the interior of all sets are represented, then controlling towards this
neighbourhood is easier. A sketch of this idea is given in Figure 3.6. In this section, a
neighbourhood is defined for our example, to show that if this neighbourhood is not
too small, no switching behavior occurs.

Example 3.8: First we define the modes where the system can exist. We define Ψ1,2,3 as

Ψ1 = {[θp, g] | (g ∈ S1) ∩ (θp ≥ 0)} (3.55)

Ψ2 = {[θp, g] | (g ∈ S2) ∪ (θp < 0 ∩ g ∈ S1) ∪ (θp > 0 ∩ g ∈ S3)} (3.56)

Ψ3 = {[θp, g] | (g ∈ S3) ∩ (θp ≤ 0)}. (3.57)

Suppose the pendulum, with the following controller: the input is chosen such that the system
is critically damped towards M . Remark that this controller only affect the pendulum when
the system is in mode Ψ1,3. We choose M = {θp | −c < θp < c}.
Since the controller does not direct the pendulum into the equilibrium point, the gravitational
force will always act on the pendulum. To eliminate this force, the controller gets an additional
term ±mgzlc, where ± depends on the sign of the position of the pendulum. This can be
written as sgn(θp), and together, the controller becomes

u = −kcdist(x(t),M)−mgzl c sgn(θp). (3.58)

47



A Matlab-simulation is done with c = ϕ/4, where all other constants remains similar to the

previous simulations, given in Table 2.9. The results are given in Figure 3.7.

We observe a smooth, critical damped system, converging towards the neighbourhood of the
origin.

This solution for a control scheme is a possibility when precision may be reduced,
but where more stability is assured. Of course the choice of M , especially the size,
is a trade-off between precision and stability. The larger M , the larger the region for
local stability will hold, but the less precise the system is.
In general this strategy can be used when the desired state can be shifted away from
the switch points of the hysteresis operator. Local stability is guaranteed with a
proper controller, where the locality depends on the distance to the switch points of
the hysteresis.
All the above control strategies which are discussed are relative low gain controllers.
This are controllers which are easy to build, and cheap in use. However, if precision
must be assured at all cost, other solutions must be sought. An investigation will be
done in the next section.

3.7 Bang-bang controller

A complete other way of controlling a system subject to hysteresis, is the bang-
bang strategy. The idea behind this bang-bang concept is to oscillate the input with
sufficient high frequency from two outcomes, such that the ‘average’ of these inputs
equals the desired inputs which is not directly reachable, for example due to the
hysteresis. At least, with this kind of controller, we can let the input steer the system
into a close neighbourhood.
In this section, this philosophy is worked out and a small, non-hysteretic example
is given to illustrate this concept. Further, in this section, this idea is applied to
a system subject to hysteresis. Finally, two simulations are done with the known
example of the inverted pendulum with a slackness.

Suppose a dynamical system, which follows the dynamics ẋ = Ax+Bu1 for a period of
ε/2, and then switches to ẋ = Ax+Bu2 for another period of ε/2. After this period,
it switches back to the first described dynamics, and so on. This is called a bang-bang
controlled system, since ε is assumed to be small, while u1 and u2 forms together a
discontinuous input. The system bangs from the first dynamics to the other. However,
on average, the system will behave as it has an input u = (u1 + u2)/2. This will be
stated in the next theorem.

Theorem 3.17 (Bangbang controller). Suppose a simple bang-bang controller

ẋ =

{
Ax+Bu1 for (t mod ε) ∈ [0, ε/2)

Ax+Bu2 for (t mod ε) ∈ [ε/2, ε)
(3.59)
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Ψ1

Ψ2 Ψ3

M x̄

Figure 3.6: Sketch of the idea of a neighbourhood around the equilibrium point, where all modes
are represented. In this illustration, the modes Ψ1,2,3 corresponds to the description given in
Example 3.8.
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Figure 3.7: Simulation of an inverted pendulum with slackness in the pivot position. A critically
damped controller is used, which steers the pendulum towards x = x̄+c. Left: the position (blue)
and velocity (green) of the pendulum, as function of time. Right: The phase plot (red) of the
pendulum. The equilibrium (black) is shown at (0, 0).
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for each period of length ε. When ε goes to zero, the system (3.59) converges to

ẋ = Ax+B
(u1 + u2

2

)
(3.60)

Proof: According to the definition of a derivative, we see that

ẋ(t) = lim
ε→0

x(t+ ε)− x(t)

ε
(3.61)

and by construction

ẋ(t) = lim
ε→0

x(t+ ε)− x(t+ ε/2) + x(t+ ε/2)− x(t)

ε
(3.62)

=
1

2
lim
ε→0

x(t+ ε)− x(t+ ε/2)

ε/2
+

1

2
lim
ε→0

x(t+ ε/2)− x(t)

ε/2
(3.63)

These two terms are again the derivatives of x(t), which is given in the first part
of the interval, [t, t + ε/2), by the first equation of (3.59), and given by the second
equation when it is in the second part of the interval. Therefore we state

ẋ(t) =
1

2

(
Ax+Bu2

)
+

1

2

(
Ax+Bu1

)
= Ax+B

(u1 + u2

2

)
(3.64)

which must be proven. �

In the above theorem, the input is composed by half of the time u1, and the other
half u2. Of course, other input compositions are also possible. The average will be
weighted by a factor which is equal to the partition of time. This is illustrated in the
next, non-hysteretic example, Example 3.9.

Example 3.9 (Controlling temperature, continued):
As illustration, we look to our example of controlling the
temperature of the boiler, Example 2.1. Suppose

Ṫ =


− T

20
+ 0 for (t mod tε) ∈ [0, tε/4)

− T
20

+ 8 for (t mod tε) ∈ [tε/4, tε)

(3.65)

for each period of length tε. Now, we see by Theorem
3.17 that the system will converge to

Ṫ = − T
20

+
(1 · 0 + 3 · 8

4

)
(3.66)

for tε sufficient small, which implies that the temperature
will converge to a neighbourhood of T = 120. The smaller
the tε, the more the system behaves like Equation (3.66).
However, back to the reality of heating a boiler of a steam
engine: it is very unrealistic for a train driver to switch
each split second to the other heating policy.

t

T

0

β

α

50

100

150

Figure 3.8: Temperature of the
boiler, with two different chosen
tε. The large sawtooth corre-
sponds with a larger tε. This im-
plies less switching, and less ac-
curate in compare with the solu-
tion of Equation (3.66).

Remark that the whole hysteresis element of the dynamical system, described in
equation (2.2), is neglected, and only the two possible outcomes yL = 0 and yH = 8
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are used. In this example, no feedback is used to design this controller. The bang-
bang-solution is also applied on the inverted pendulum problem, this is worked out
in Example 3.10.

Example 3.10 (Bang-bang controlled pendulum): Suppose that the pendulum behaves ex-
actly as stated in Example 2.3, but now a controller is applied, based on the bang-bang principle.
As already stated in the theorem, the average must be the regular controller u(t) = −kx(t).
In the first Matlab-simulation, illustrated in Figure 3.9, we choose the controller as u1(t) =
−kx(t) + 1 for each t where (t mod ε) ∈ [0, ε/2) and u2(t) = −kx(t)− 1 where (t mod ε) ∈
[ε/2, ε). Clearly, the ‘average’ requirement is met. The period of the controller is chosen as
ε = 1/10. The simulation results are given in Figure 3.9.
This academic example switches fast from input, such that the hysteron only switches from S1

to S2, the two sets in which the hysteron variable g behaves. However, a bang-bang controller
where the hysteron could be neglected must be much more rigorous. In fact, the disk must be
oscillated very fast, from the situation that the pendulum is coupled at the right side, towards
the situation that it is coupled at the left side (and vice versa). Mathematically speaking, the
hysteron state g must switch from g(0) = −ϕ to g(ε/2) = ϕ and back again to g(ε) = −ϕ.
To achieve this, assuming that the input is constant, the input must be defined as

±2ϕ =

ε/2∫
0

ġ(τ)dτ =

ε/2∫
0

u

b
dτ (3.67)

u = ±2ϕb

ε/2
(3.68)

Clearly, when the oscillations becomes faster, i.e. ε becomes smaller, the input must be higher.
A second Matlab-simulation is done with the following controller

u1(t) = −kx(t) +
2ϕb

ε/2
for each t where (t mod ε) ∈ [0, ε/2) (3.69)

u2(t) = −kx(t)− 2ϕb

ε/2
for each t where (t mod ε) ∈ [ε/2, ε). (3.70)

The results are given in Figure 3.10 where again the switch period is chosen with ε = 1/10.
Further, all physical constants and initial conditions remains the same.
We observe a much rougher behavior of the pendulum in compare to the first bang-bang
controller, since the controller produces a much higher input for the system. However, it is
more robust for distortions. In the previos simulation, there occured an overshoot. This will
not happen with this controller, because it is not possible to stay in S2 for longer than ε time.

Actually, this solution needs some nuance in general. First of all, near to the equi-
librium, the work what must be done is much higher then without such an oscillator.
Furthermore, the ideal bang-bang controller oscillates infinitely fast. This means that
ε goes to zero, but looking to equation (3.68), the input will increase without bounds.
This is clearly not possible with finite input.

An other disadvantage of this controller is the many collisions which take place by
applying this controller. Obviously, this type of controller suffers from severe wearing.
However, the position of the pendulum is quite precise, even when disturbance is
added to the system.

With a bang-bang controller, there must be made a trade off in input and precision.
Lower ε requires higher input, but a shorter time of overshoot of the equilibrium.
Other way round, a higher ε has a lower input. But also the time that the system
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Figure 3.9: Simulation of an inverted pendulum with slackness in the pivot position. The
underdamped controller is based on bang-bang, with ε = 1/10. The results can be compared with
Figure 2.8. Left: the position (blue) and velocity (green) of the pendulum, as function of time.
Right: The phase plot (red) of the pendulum. The equilibrium (black) is shown at (0, 0).
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Figure 3.10: Simulation of the same example, with another bang-bangcontroller, described by
equation (3.69)-(3.70). The time interval remains the same, ε = 1/10. The results can be
compared with Figure 3.9. Left: the position (blue) and velocity (green) of the pendulum, as
function of time. Right: The phase plot (red) of the pendulum. The equilibrium (black) is shown
at (0, 0).
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steers in wrong directions becomes larger, so that precision becomes worse.

3.8 Switched control

In the previous section, we say that a bang-bang controller is a high gain controller.
It has very high and rough input behavior. However, when the system is far away
from its desired state, the bang-bang component of the controller,

±2ϕb

ε/2
, (3.71)

is useless. Evenmore, in that situation it is even better to neglect this part at all.
The relative larger the bang bang part of the controller, the more extreme the system
will behave. For example, comparing Figure 3.9 with 3.10, we see that the second
one has larger oscillations when the system is not close to its equilibrium.

Based on the idea of neglecting the bang-bang part of the controller, we describe in
this section the design of a controller with different types of input, a so called switched
controller. The bang-bang controller is already a special case of a swichted controller,
but this controller depends on time and not the state wherein the system exists. The
controller which directs to the target area is also a sort of switched controller, because
the input switches when the system enters the target area.

Combining these things gives the following idea: Until the system is close enough
to the desired state, regular, stabilizing control is applied to the system. In the
neighbourhood of the desired state, the governing control becomes high gain. In the
next example, this is elaborated with our pendulum. Also a simulation is done.

Example 3.11 (Switched control on inverted pendulum): Suppose we are able to observe
the hysteron state. Then we can make a controller which depend on this state, this is what we
implement in the next Matlab-simulation. Again, feedback control is used.
Remark that u = −kcx makes the system critically damped. We decide to apply the following
underdamped switched controller: when the hysteron state g ∈ S1,3, then u = −1.5kcx. In
the case that g ∈ S2, the controller has a ten times stronger gain: u = −15kcx. This causes
the hysteron to switch back to either S1 or S3, where the low gain control is again applied.
Figure 3.11 shows the result of the simulation.
We observe a good approach to the origin, and see that the pendulum will behave similar to
the original example in Example ?? on page ??. Only the amplitude is much smaller, since the
controller gain is higher than original, which result in a shorter ‘free fall’-modus.

A huge disadvantage of this type of controlling is, that it is nessecary to have informa-
tion about the state of the hysteron. Most often, this is not known, and therefore this
type of controlling is not possible on systems, subject to hysteresis. To circumvent
this problem, one last idea is worked out.

Suppose a regular controller is applied to the hystesis, when the system is far away
from the origin. Far away is defined as the norm of the state x is much larger than
the slackness, or hysteron state: ‖x‖ � ‖g‖. Then the system will approximately
behave as if there is no hysteresis. However, close to the origin, the hysteron will play
a role in the behavior, and therefore, a bang-bang controller is applied in this case.

This situation will be worked out in the well known example of the pendulum.
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Example 3.11 (continued): Again switched controller is designed, which only depends on
the position of the pendulum. When |θp| > c, then the same low gain underdamped controller
is applied as in Example 3.11. Otherwise, a bang-bang controller is applied as in Example 3.10.
This is what we implement in the next Matlab-simulation.
We observe a fast approach to the equilibrium. Close to the equilibrium, the pendulum will
oscillate with a small amplitude. This is the result of the high gain, bang-bang controller,
which is designed, to let the pendulum switch fast between the hysteron states. This type
of controller makes the system robust for disturbances, since this disturbance is absorbed by
the fast oscillations. In compare with the first switched controller, this controller keeps the
pendulum closer to its equilibrium position.
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Figure 3.11: Simulation of an inverted pendulum with slackness in the pivot position. The
controller exists of two parts, both are underdamped controllers. The controller which is applied
when g ∈ S1,3, has a gain of k = 1.5kc. The underdamped controller, for g ∈ S2 has a ten times
higher gain, k = 15kc. The results can be compared with Figure 2.8. Left: the position (blue)
and velocity (green) of the pendulum, as function of time. Right: The phase plot (red) of the
pendulum. The equilibrium (black) is shown at (0, 0).
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Figure 3.12: Simulation of an inverted pendulum with slackness in the pivot position. Again
a switched controller is applied, an underdamped controller and a bang-bang controller. The
controller which is applied far from the origin has a gain of k = 1.5kc. The controller close to the
origin behaves like the bang-bang principle. Left: the position (blue) and velocity (green) of the
pendulum, as function of time. Right: The phase plot (red) of the pendulum. The equilibrium
(black) is shown at (0, 0).
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Chapter 4

Conclusions

In the first part of this chapter the conclusions are discussed. The second part will
contain some recommendations, and suggestions for further research.

Conclusions In this thesis the behavior of systems subject of hysteresis is explored.
It gave insight where the difficulties arise, and shows that such systems are highly
non-linear.

Controllability and stabilizability are investigated. Under assumptions, the con-
trollers with fixed sign can steer a hysteretic system towards its equilibrium, without
bothering the hysteresis. Fixed sign controllability in the discrete case is possible if
and only if the A matrix has no eigenvalues on the positive real axis. In the contin-
uous case fixed sign controllability is possible if and only if A has no eigenvalues on
the whole real axis. Fixed sign stabilizability in the continuous case is guaranteed
when the regular feedback matrix (A+BN) has all eigenvalues on the negative real
axis. However, it need feedback controller in the form of u = max(0, Nx).

Further, some notions of stability are given. Under assumptions, a system subject to
hysteresis is practical-Ω-stable and quasi-stable. These notions can be used in design
of controllers, depending on the requirements of the system: If the system must be
within certain bound for all time, then practical-Ω-stability should be pursued. If the
system must be very accurate, where time plays a secondary role, then quasi-stability
is desirable.

Also other controllers are investigated: a bang-bang controller and a combination
of bang-bang and a low gain: a switched controller. A bang-bang controller assures
accuracy but is a trade off with the costs of high input. All these controllers are illus-
trated with an example. However, some numerical issues arise with a high frequency
bang-bang controller and with a switched controller.

Recommendations First of all, in this thesis it is assumed that the hystertic
element lies between controller and autonomous system. What if this element occurs
in the feedback? Or what if this element appears twice? These questions are not
handled here, but it is recommended to do so in further reseach. A paper with some
illustrative examples about relay hysteretic controllers is written by Mahalanabis and
Bhaumik [14]. However, also other recommendations must be taken into account.
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Stability analysis of non-linear controller often uses Lyapunov second method. Khalil
[9] discussed this for general non-linear systems. Johansson and Rantzer [8] and
Heemels and De Schutter [6] use it to analyse stability of hybrid systems.

In this thesis no study on optimal control is done. However, in the development of
controllers for systems subject to hysteresis, optimality is an aspect which is certainly
interesting. Belbas and Mayergoyz wrote about it in [1], where they consider active
hystersis. Optimal control can be defined as having the least cost (integrated input)
to steer the state to a desired equilibrium. In this field, optimal control can also deal
with the accuracy, the higher accurate, the better the control.

Robust control is also not mentioned in this report. Although the notion of local
stability is made, it is not investigated how such a system can be made robust by
certain controllers. An extensive survay of robustness of this particular kind of sys-
tem is interesting because of the highly nonlinear behavior. This is already partly
investigated by Valadkhan et al. [21].

In line with the recommendations about robustness, it should be mentioned that in
reality, noise is an undesired property which must be taken into account. Only some
system disturbances are mentioned in this thesis. Measurements, controllers and ref-
erences are also prone to errors. Therefore, expanding to more types of disturbances,
and investigate the behavior of this kind of systems is desirable.
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Appendix

A Matlab code

The Matlab-code which is used for the simulations in this master thesis is added as
appendix. Of course, these scripts can be requested at the author.

Listing A.1: The main file ExampleScript.m is given here, which uses one of the three hysteron
models. These three will (of course) give the same results, but uses an other way of modelling.
This is described in the other listings.

1 %% Time axis

2 global dt, dt = 0.001;

3 T = 14;

4 time = 0:dt:T;

5
6 %% Physical constants (according to Table 2.8)

7 m = 0.5; %Mass of pendulum

8 l = 0.8; %Length of pendulum

9 b = 2; %Damping constant

10 Ip = m*l^2; %Inertia of pendulum

11 gz = 9.81; %Gravitational constant

12 phi = (pi/16); %Slackness

13
14 %% Feedback gain for controller

15 Kc = 0.25*b^2/Ip + m*gz*l; %To assure critical damping

16 K = Kc+2; %To assure an underdamped system.

17
18 %% Initial values

19 X = [0.3; -0.2];

20 u = 0; v = 0;

21 g = -phi;

22
23 %% Running for -loop

24 for i = 1: length(time)

25 %Output of the controller , which depend on the position of the pendulum

26 u(i) = controller(X(:,i),K);

27
28 %Delay of the hysteron , as dynamical system.

29 % % According to own equation 2.18

30 % [v(i), g(i+1)] = piecewise(u(i),g(i));

31 % % According the Duhemmodel

32 % [v(i), g(i+1)] = duhem(u(i),g(i));

33 % According the Relaymodel

34 [v(i), g(i+1)] = relay(u,g);

35
36 %Behavior of the pendulem , with a given input.

37 X(:,i+1) = pendulum(X(:,i),v(i));

38 end

39
40 %% Plotting part

41 %Resize of the vectors , for plotting

42 X(:,end) = [];

43 plots(time , X, T)

59



Listing A.2: pendulum.m defines the behavior in the pendulum, as it is described in the examples.
The used constants are also given in Table 2.9. It represents the system block, as sketched in
Figure 2.6.

1 function [Xnew] = pendulum(X, u)

2 % X is de toestand van de pendule.

3 % u is de input van het systeem , gegeven in torque.

4 % Xnew is de nieuwe toestand van het systeem.

5
6 global dt

7 %% Dezelfde fysische constanten als het hoofdbestand: Table 2.8

8 m = 0.5; %Mass of pendulum

9 l = 0.8; %Length of pendulum

10 b = 2; %Damping constant

11 Ip = m*l^2; %Inertia of pendulum

12 gz = 9.81; %Gravitational constant

13
14 %% Model van slechts de losse pendule , waarbij wrijving is meegenomen.

15 Xnew = X + ([0 1; gz/l -b/Ip] * X + [0; 1/Ip]*u)*dt;

16 end

Listing A.3: controller.m is build do model the control block, of the examples, as sketched in
Figure 2.6.

1 function [u] = controller(X, k)

2 % Input X is de toestand van de pendule.

3 % Input k is de feedback -gain van de controller.

4 % u is de output van de controller , gegeven in torque.

5 u = - k * X(1);

6 end

Listing A.4: The function piecewise.m describes both the behavior of the slackness and the
mapping of input to output of the hysteretic element. There are three different cases: left bound,
right bound and the transient state.

1 function [v,gnew] = piecewise(u,g)

2 %v is de output van de hysteron. gnew is de nieuwe toestand , die wordt

3 %geupdate aan het einde. g moet worden meegegeven , om de toestand van het

4 %hysteron weer te geven. (gap) in meters.

5 %u is de input , in torque.

6 %v is de output , in torque.

7
8 global dt

9 b = 2; %Damping constant

10 %De slackness phi is ingebakken in de hysteresis.

11 phi = (pi/16); %Slackness

12
13 if g <= -phi %Left bound

14 g = -phi;

15 v = u;

16 gdot = max([0 u/b]);

17 elseif g >= phi %Right bound

18 g = phi;

19 v = u;

20 gdot = min([0 u/b]);

21 else %phi < g < phi %Transition state

22 v = 0;

23 gdot = u/b;

24 end

25
26 gnew = g + gdot*dt;

27 end

Listing A.5: Similar to piecewise.m, duhem.m describes three different cases. However, the
mapping of input to output is handled separately, and modelled according the Duhem model, as
described in Section 2.3.

1 function [v,gnew] = duhem(u,g)
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2 %v is de output van de hysteron. gnew is de nieuwe toestand , die wordt

3 %geupdate aan het einde. g moet worden meegegeven , om de toestand van het

4 %hysteron weer te geven. (gap) in meters.

5 %u is de input , in torque.

6 %v is de output , in torque.

7
8 global dt

9 b = 2; %Damping constant

10 %De slackness phi is ingebakken in de hysteresis.

11 phi = (pi/16); %Slackness

12
13 %Relay ontwikkeling , los van de mapping van u naar v.

14 if (g <= -phi) %Left bound

15 g = -phi;

16 gdot = max([0 u/b]);

17 elseif (g >= phi) %Right bound

18 g = phi;

19 gdot = min([0 u/b]);

20 else %phi < g < phi %Transition state

21 gdot = u/b;

22 end

23
24 %Duhem model

25 if (u <= 0)

26 v = (1 - sign(g+phi)) * u;

27 elseif (u >= 0)

28 v = (1 + sign(g-phi)) * u;

29 else

30 v = 0;

31 end

32
33 gnew = g + gdot*dt;

34 end

Listing A.6: As third way of modelling the hysteron, relay.m models this according the formal
description of a relay hysteron.

1 function [v,gnew] = relay(U,G)

2 %v is de output van de hysteron. gnew is de nieuwe toestand , die wordt

3 %geupdate aan het einde. G moet worden meegegeven , om de toestand van het

4 %hysteron weer te geven. (gap) in radialen.

5 %G is gehele vector van hysteron toestand.

6 %U is de gehele input , in torque.

7 %v is de output , in torque.

8 g = G(end); %Laatste entry van toestand

9 u = U(end); %Laatste entry van input

10
11 global dt

12 b = 2; %Damping constant

13 %De slackness phi is ingebakken in de hysteresis.

14 phi = (pi/16); %Slackness

15
16 %Relay ontwikkeling , los van de mapping van u naar v.

17 if (g <= -phi) %Left bound

18 g = -phi;

19 gdot = max([0 u/b]);

20 elseif (g >= phi) %Right bound

21 g = phi;

22 gdot = min([0 u/b]);

23 else %phi < g < phi %Transition state

24 gdot = u/b;

25 end

26
27 % In de vergelijking wordt dit tijdstip genoemd als $t_1$.

28 lastup = find(G >= phi , 1, ’last’);

29 lastdown = find(G <= -phi , 1, ’last’);

30 % Een marge om nul heen , vanwege numerieke problemen

31 lastzero = find(abs(U) < 0.001 , 1, ’last’);

32 % Dit zijn overigens de indices die bij de tijdvector horen. Als dit event
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33 % nog niet het geval is geweest , dan wordt er een lege matrix meegegeven.

34
35
36 % Vanaf de laatste entry waar g = phi zat , moeten ALLE entries van de input

37 % groter zijn dan 0, dus I moet bestaan uit 1-en.

38 Iup = (U(lastup:end) >= 0);

39 % Vanaf de laatste entry waar g = -phi zat , moeten ALLE entries van de input

40 % kleiner zijn dan 0, dus I moet bestaan uit 1-en.

41 Idown = (U(lastdown:end) <= 0);

42 % Vanaf dat de laatste input = 0, moeten ALLE waarden van G tussen

43 % -phi en phi zitten , dus I moet bestaan uit 1-en.

44 Izero = (G(lastzero:end)-phi < 0) & (G(lastzero:end)+phi > 0);

45
46 % Als alle entries na de switch groter zijn dan 0, (dus I moet bestaan

47 % uit 1-en.) dan output = input.

48 if (sum(Iup) == length(Iup)) && ~isempty(lastup)

49 v = u;

50 % Analoog , alleen symmetrisch , output = input.

51 elseif (sum(Idown) == length(Idown)) && ~isempty(lastdown)

52 v = u;

53 % Als er een input dicht genoeg bij 0 zit , dan moeten na die input ALLE

54 % entries van de switch tussen -phi < G < phi zitten. Dan output = 0.

55 elseif ((sum(Izero) == length(Izero)) && ~isempty(lastzero ))

56 v = 0;

57 else % Er zijn restgevallen: bijvoorbeeld bij initializatie.

58 v = 0;

59 end

60
61 gnew = g + gdot*dt;

62 end

Listing A.7: The file plots.m is purely to plot the simulation results in the way how it is
represented in the report.

1 function plots(time , X, T)

2 %Plot of the position of the pendulum , in function of time

3 subplot (2,5,1:3)

4 plot(time , X(1 ,:))

5 set(gca ,’XTickLabel ’, [])

6 ylabel(’displacement (m)’)

7 hold on

8 plot ([0 T], [0 0], ’:k’) %Equilibrium

9 legend(’position ’, ’Location ’, ’NorthEast ’)

10 xlim ([0 T])

11 ylim ([ -0.2 0.5])

12
13 %Plot of the velocity of the pendulum , in function of time

14 subplot (2,5,6:8)

15 plot(time , X(2,:), ’color’, [0 0.5 0])

16 xlabel(’time (s)’)

17 ylabel(’speed (m/s)’)

18 hold on

19 plot ([0 T], [0 0], ’:k’) %Equilibrium

20 legend(’velocity ’, ’Location ’, ’SouthEast ’)

21 xlim ([0 T])

22 ylim ([ -0.5 0.3])

23
24 %Phaseplot of the pendulum , position to velocity

25 subplot (1,5,4:5)

26 plot(X(1,:),X(2,:), ’r’)

27 xlim ([ -0.2 0.3])

28 xlabel(’postion (m)’)

29 ylim ([ -0.5 0.3])

30 ylabel(’speed(m/s)’)

31 hold on

32 plot(0,0, ’ko’) %Equilibrium in phaseplot

33 legend(’state ’, ’equilibrium ’, ’Location ’, ’SouthWest ’)

34 end
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