Dieuwertje Alblas - MIA
Riccardo Bardin - MACS
Vincent Bosboom - MACS
Nicoló Botteghi - MIA
Xiaoyu Cheng - MACS
Giacomo Cristinelli - MIA
Sven Dummer - MIA
Sagy Ephrati - MMS
Arnout Franken - MMS
Elena Giamatteo - MACS
Leonardo del Grande - MIA
source: http://www.malinc.se/math/trigonometry/geocentrismen.php - Heeringa - MIA
Lucas Jansen Klomp - MIA
Muhammad Hamza Khalid - MACS
Nishant Kumar - MACS
Kaifang Liu - MACS
Xiangyi Meng - MACS
Nida Mir - MIA / MDI-TNW
Hongliang Mu - MAST
Kevin Redosado - 3MS
Julian Suk - MIA
Hannah van Susteren - MIA
Elina Thibeua-Sutre - MIA
Alexander Wierzba - MAST
Jens de Vries - MAST
Fengna Yan - MACS
Weihao Yan - MIA

Modeling and Simulation of aerosols

Numerical methods for porous media flows with non-equilibrium heat transfer

 

Organization:
Funded by: Philip Morris Products S.A.
Postdoc: Milos Stanic
Supervisor: Prof. Bernard Geurts
Collaboration: Philip Morris Products S.A.

Description:
Volume averaged fluid flows through porous media have wide applications in geology, engineering and biology. Accurate simulation of this type of flows is important for development of new products in a range of industries. The complex nature of porous media flows, from a numerical point of view, is primarily characterized by a sudden change of domain properties, namely the jump in porosity of the domain at the fluid-porous interface. This sudden change of domain properties may cause numerical oscillations in the solution of the flow field. The problem becomes more complex if unstructured grids are used for the discretization. In order to properly handle this issue, adequate numerical schemes must be employed. If conjugate, non-equilibrium heat transfer arises in the porous domain, the problem is complicated further. This project deals with the aforementioned issues by developing new numerical methods that treat jumps in permeability physically consistently, avoiding unphysical oscillations. The new simulation software will ultimately deal with a range of complex phenomena, such as the combination of porous flow with conjugate, heat-transfer in which simultaneously aerosol is generated and transported.

The numerical capabilities of the new method will be tested on real physical problems under conditions of high temperature gradients. In the project we will assess the accuracy of the existing mathematical models for porous media flows and extend Darcy-Forchheimer porosity models on the basis of fully resolved simulations. Furthermore, the project aims at incorporating multiphase heat and mass transfer capability and simulate realistic aerosol formation and maturing under various temperature conditions.

The research described in this text is supported by Philip Morris Products S.A. and the author wishes to thank Philip Morris Products S.A. for their financial support.


Publications: