Nonequilibrium electron-phonon dynamics in ruthenium thin films exposed to ultra-short laser pulses.

I.Milov^{1*}, I.Makhotkin¹, S.Semin², C.Lee¹, E.Louis¹, A.Kimel² and F.Bijkerk¹.

¹Industrial Focus Group XUV Optics, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

²Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

*i.milov@utwente.nl

Abstract

The application of high repetition rate Free Electron Laser sources requires the development of robust optical coatings that will survive after being exposed to ultra-short, high peak intensity laser pulses. As a mirror for the case of grazing incidence reflectance, metal thin films are widely used. To study the lifetime of such optical coatings, the interaction of ultra-short laser pulses with metals must be understood. Since the pulse duration is comparable to or shorter than the thermalization time of the system, one needs to consider nonequilibrium electron-phonon dynamics that takes place after the laser pulse heats electrons at the surface.

The two-temperature model, with electron-phonon coupling, was used to calculate surface temperature changes of ruthenium thin films due to ultrafast laser heating. Time-domain thermoreflectance measurements were performed with 300 fs visible pump and probe pulses to monitor the surface reflectivity change.