Numerical modelling of reflective multilayer-based X-ray optics

Pierre PIAULT ${ }^{1}$, Claudio FERRERO ${ }^{1}$, Sebastien BERUJON ${ }^{1}$, Markus OSTERHOFF³, Alexander RACK ${ }^{1}$, Christian MORAWE ${ }^{1}$, Jean Pierre GUIGAY ${ }^{1}$, Franck DELMOTTE², Eric ZIEGLER ${ }^{1}$

1: European Synchrotron Radiation Facility, Grenoble, France
2: Laboratoire Charles Fabry , Institut d'optique, Palaiseau, France
3. Institute for X-ray Physics, University of Göttingen, Göttingen, Germany

Most of the scientific and technological progress relies on the development of characterisation techniques capable of investigating matter at very high spatial resolution and chemical sensitivity. With the advent of high-brightness coherent X-ray sources, techniques based on X-rays are particularly attractive if one can manufacture flawless optics, i.e. optics capable of either propagating a perfect wavefront from the source to the sample without degradation or correcting the wave front imperfections. Artificially stratified films deposited on a mirror surface are envisaged as promising candidates to this purpose.

TAKAGI-TAUPIN EQUATION FOR MULTILAYERS

Extension of an existing model using Takagi-Taupin equations to model the X -ray propagation in multilayered structures [1].

Two basic assumptions and simplifications of the TakagiTaupin theory :

1. Two-beam diffraction (incoming and outgoing) approximation allowing to build a wave field as a summation of two spherical waves.
2. The layered structure is periodic and its electric susceptibility can be reduced to its first order Fourier series expansion:

Taking into account the above assumptions, the fundamental equation of scalar diffraction theory reads:

From which two coupled first order partial differential equations can be derived
$\psi(\vec{r})=P_{1} e^{i k r_{1}}+P_{2} e^{-i k r_{2}}$
$\nabla^{2} \psi+k^{2}(1+\chi) \psi=0$
$\left(\alpha^{2} \partial_{s}+\beta^{2} \partial_{t}\right) \psi_{0}=i\left(u_{0} \psi_{0}+u_{1} \psi_{1}\right)$

$\chi=\chi_{0}+\sum_{n \neq 0} \chi_{h} e^{i \tilde{h} t} \approx \chi_{0}+\chi_{\overline{1}} e^{-i \tilde{h} t}+\chi_{1} e^{i \tilde{h} t}$ $\left(\alpha^{2} \partial_{s}-\beta^{2} \partial_{t}\right) \psi_{1}=i\left(u_{0} \psi_{1}+u_{1} \psi_{0}\right)$
$\begin{array}{ll}\text { - Incoming wave : } & \psi_{0} \\ \text { Reflected wave : } & \psi_{1}\end{array}$ - Reflected wave : ψ_{1}

- Flat case : $\alpha, \beta=c s t$
$u_{h}=k \chi_{n} / 2$
Susceptibiifty Fourier series coefficients: $\chi_{0}, \chi_{1}, \chi_{\overline{1}}$

The computation shows that multilayer mirrors can be negligible (cf. B1 \& B2)

The current assumption is that "stripes" are mainly produced by interference effects from phase distortion propagation from the mirror to the detector

Perspectives

- Future works will include
- Comparison of simulations with speckle based measurements, least square estimate wavefront retrieval [4].
- New model taking into consideration information obtained from online speckle-based metrology and rocking curve imaging.
We wish to thank Thu Nhi TRAN CALISTE, Samuel DA CUNHA, Amparo VIVO, Marco Di MICHIEL and Jose BARUCHEL
In the Takagi-Taupin formalism, 2D height maps are computed as series of profiles. This allows the artificial reproduction of the experimentally observed stripes .

Figure (C1): local height deviation of the mirror

