Grazing incidence EUV surface metrology: **Benchmarking of DPP source table-top scatterometry** versus PTB synchrotron based EUV-Radiometry O. Maryasov^{1,2*}, C. Laubis², L. Juschkin¹, F. Scholze²

Motivation

Optical scatterometry is a powerful technique for surface roughness metrology and profile characterization of nano-structured layered surfaces. Besides being a fast, non-contact and nondestructive method, it provides spectrally resolved data on the roughness power spectral density (PSD). Roughness became a very sensitive parameter to be considered, as the wavelength decreases. Accessing scatterometry measurements with laboratory sources could be an advantage for industrial characterization of sub-nanometer rough surfaces.

Scatterometry at PTB Radiometry beamline (MLS)

The EUV-Radiometry beamline at the Metrology Light Source (MLS) [1] provides a stable and well defined beam for the EUVreflectometer. The scattered light is recorded by scanning the angular range with a diode of 4.5 mm x 4.5 mm size at a sampledetector distance of 550 mm. The effective angular resolution is 0.48° and the corresponding solid angle is 1.67 µsr. The diode signal was measured with a Keithley Model-617 programmable electrometer. The darkcurrent was as low as 0.2E -12 A.

Scatterometry with table-top setup and DPP source

The table-top scatterometer setup [2] is powered by a Fraunhofer-ILT discharge-produced plasma (DPP) source FS-5420 [3]. It creates a pinch with diameter 0.5 mm and lenght 2 mm by exciting Xe gas, pulsing at 1 - 1.5 kHz. Typical pulse duration is around 10 ns and pulse energy 3 - 6 mJ/sr at 13.5 nm 2%BW. After spectral and spatial filtering ca. 10¹⁵ photons are delivered to the sample plane in a 170 µm spot (FWHM) during 10 min of exposure time.

The scattered light in the table-top scatterometer was detected with an Andor DX434-BN camera. It uses 16-bit digitalization and a back-illuminated thinned CCD sensor of e2v CCD47-10 with 1024x1024 square pixels of 13 µm x 13 µm size. The full-well-capacity of each pixel is limited to 90160 e-. Setting A/D Rate to 62 kHz (16 µs readout) increases sensitivity to 1.4 e-/count and expands dynamic range to16-bit.

Test samples

Three samples (S.1 - S.3) in total were under investigation. Samples are Si-wafers coated with different periodic multilayer (ML) structure by magnetron sputtering.

Scheme of EUV-Radiometry beamline at the MLS, PTB

top view

RMS roughness (R_{α}) was measured with AFM at least in 5 different areas of 2 μ m x 2 μ m size and averaged.

Table 1. List of samples used for scattering measurements				
	Sample Nr.	Surface type	Layers	Rq, nm
	01	$ML: B_4C/CeO_2$	40	0.45
	02	$ML: B_4C/CeO_2$	10	0.38
	03	ML: Mo/Si	60	1.34

Scattering patterns: AOI-scan @ SR

2D scattering maps at three different AOI = [80°, 85°, 87.5°] were recorded at λ = 13.51 nm for every sample

Power Spectral Density (PSD) analysis

For every sample surface Angular Resolved Scattering (ARS) was measured at three AOIs: [80 °; 85 °; 87.5 °] and compared at 87.5° with data from the table-top scatterometer.

According to Rayleigh-Rice (RR) surface scatter ARS can be represented in terms of a two-dimensional surface PSD function. By integration PSD over frequency band, σ_{rms} can be derived.

Scattering patterns from four samples at the same AOI compared for the two

Measured PSD for three different sample surfaces compared between two setups: one with synchrotron radiation (SR) and one with DPP source.

Angle dependent polarization reflectance coefficient Q_r was not taken into consideration for PSD derivation. Further evaluation is underway to determine it for different AOI.

*oleksiy.maryasov@rwth-aachen.de

Conclusions

We compared measurements of angular resolved diffuse EUV scatter under grazing incidence using a DPP source based laboratory set-up with measurements using synchrotron radiation at the PTB laboratory at the storage ring MLS.

- The laboratory set-up was dedicated to scatterometry and used a CCD-detector with integration times of up to 10 min. The PTB reference measurements were done with the EUV reflectometer by scanning the photodiode detector across the 2D angular range of the scatter. Both detection schemes were limited towards larger scatter angles by signal-to-noise ratio. - The EUV scattering under grazing incidence is related to the surface topology of the sample because of total external reflection at the surface and corresponding very short penetration depth. Therefore, the results can be directly compared to AFM data.
- We obtain a reasonable agreement, given the slightly different spectral ranges of PSD for the two measurement approaches (i.e. Scatterometry and AFM)
- The agreement between the synchrotron radiation based measurements at PTB and the DPP laboratory setup is within the expected margins, mainly determined by the sample homogeneity because of measuring beam footprint of both instruments was different in size.

References

[1] C. Laubis, et al. "Update on EUV-Radiometry at PTB", Proc. SPIE, 977627 (2016) [2] O. Maryasov et al. "Table-top EUV scatterometer MARYS with high-brightness discharge plasma source", JARA-FIT Annual Report (2015) [3] F. Kuepper, K. Bergmann et al. "Source operation manual", Fraunhofer ILT (2014)

¹RWTH Aachen University, Aachen, Germany ²Physikalisch-Technische Bundesanstalt, Berlin, Germany

