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Preamble

• ASML builds lithography scanners
• High-resolution ‘photocopiers’
• Copies mask pattern into resist layer into a silicon wafer 

        

mask

wafer

scanner patterned wafer
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Preamble

• Smaller features require shorter wavelength radiation

365 nm

Hg lamp

248 nm

KrF laser

193 nm

ArF laser

13.5 nm / EUV

Laser-produced plasma 
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Preamble

• EUV radiation is strongly absorbed
• 10 µm air (STP) absorbs ~50%
• 10 nm carbon absorbs ~5%
• 1 nm tin absorbs ~10%

• Impact
• Vacuum
• Mirrors, no lenses
• Sensitive to (sub-)nm contaminant layers

• Lithography tool contains ~10 mirrors
• 1% loss per mirror: 10% loss in tool productivity
• 1% loss per mirror: 5 atomic layers C or 0.2 atomic layers Sn

wafer

mask

wafer

mask
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Outline

• Radiation damage

• Carbon growth

• Oxidation

• Mitigation

EUV optics lifetime
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Radiation damage

• Many compounds can be damaged by (EUV) radiation
• Polymers
• Ionic compounds (salts)
• Glasses
• Oxides
• …

• Impact
• Optical lithography works (photo-resist)
• Contamination / oxidation of EUV mirrors
• Changes in optical and mechanical properties
• Photo-induced desorption (outgassing, material removal)
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Radiation damage
Example: LiF (salt)

1 Lithium fluoride thin-film detectors for soft X-ray imaging at high spatial resolution, R.M. Montreali et al., Nucl. Instr. and Meth. in Phys. Research Section A 623, 758–762
2 https://en.wikipedia.org/wiki/Auger_effect

(1)

Farbe-center
color-center
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Radiation damage

• Similar effects occur in glasses / glass-ceramics
• BK7
• UltraLowExpansion (ULE) glass
• Zerodur

• Irradiation also leads to compaction or expansion
• Glass mirror substrates should be protected from EUV irradiation
• Mo/Si stack transparent, especially for out-of-band radiation

Glasses / mirror substrates

typical mirror substrates

1 D. Doyle, Radiation Hardness of Optical Materials, sci.esa.int/science-e/www/object/doc.cfm?fobjectid=46396

(1) 74% (13.5 nm)

0.08%
60x Mo/Si
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Radiation damage

• Radiation can etch materials
• E.g. SiO2 observed to etch in EUV

Etching

SiO2

Si3N4

1 H. Akazawa et al., Photostimulated evaporation of SiO2 and Si3N4 films by synchrotron radiation…, J. Vac. Sci. Technol. A 9, 2653 (1991)
2 S. Heun et al., Behavior of SiO2 nanostructures under intense extreme ultraviolet illumination, J. Appl. Phys. 97, 104333 (2005)

0.7 nm/hr
~50 mW/mm2

λ=‘1-100 nm’
200 oC

(1) (2) ~0.3 nm/hr, ~20 mW/mm2, 142 eV, RT
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Radiation damage

• EUV irradiation can directly damage mirrors
• Change glass-like substrate properties (e.g. compaction)
• Etch and/or alter compounds

• EUV irradiation also damages contaminants on a mirror
• Hydrocarbons: carbon growth
• Water or oxygen: oxidation by oxygen radicals
• Next topics

Wrap-up
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Carbon contamination

• ‘Vacuum’ contains residual (hydrocarbon) contaminants

• Hydrocarbons adsorb on (mirror) surfaces

• EUV photons and secondary electrons cause
• Transformation of CxHy chains to aC:H
• Reduction of H-content with irradiation dose
• Radiation-induced outgassing of fragments

• EUV lifetime issue
• How fast does carbon grow under actual tool conditions?

ADT mirror, 2007

SEMATECH MET, 2007
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Carbon growth model

• Carbon growth rate dC/dt [m/s] given by1:

• σ Cross-section [m2]
• I(t) EUV photon flux [1/(m2⋅s)]
• N(t) Contaminant surface coverage[1/m2]
• Vc Deposited carbon volume per molecule [m3]

• Carbon growth rate is linear in intensity and contaminant coverage
• But contaminant coverage is a complex term

1 J. Hollenshead and L. Klebanoff, Modeling radiation-induced carbon contamination of extreme ultraviolet optics, J. of Vac. Sc. & Tech. B 24, 64 (2006)
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Carbon growth model: N(t)

• Ingredients Langmuir isotherm
• Γ Contaminant flux to mirror (linear in contaminant partial pressure) 
• Nmax Maximum coverage
• τresidence Contaminant residence time
• dC/dt Loss by carbon growth

τ

maximum contaminant flux Γ ∝ pressure
maximum coverage Nmax
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Carbon growth model

• Two limiting regimes can be identified
1. Carbon-limited: high intensity, low contaminant pressure ∝ p, independent of I
2. Photon-limited: low intensity, high contaminant pressure ∝ I, independent of p
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Carbon growth - experimental

• N-dodecane (C12H26) growth rate versus pressure and intensity
• Electron irradiation

1⋅10-5 mbar IG
1⋅10-6 mbar

1⋅10-7 mbar

2.3⋅10-8 mbar
1.4⋅10-8 mbar
1.2⋅10-8 mbar

photon-limited

flux-limited
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Carbon growth - experimental

• Flux-limited carbon growth rate ∝ contaminant pressure
• Large fraction (>10%) of incident flux is ‘carbonized’

• Worst-case obviously 100%

• Flux-limit depends on few (known) parameters
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Carbon growth – litho tools

• Specify a maximum CxHy partial pressure in the tool
• To be achieved by e.g.

• Cleanliness (handling, cleaning, material selection, …)
• Pumping

• Maximum CxHy pressure yields maximum contamination rate
• E.g. pmax = 10-12 mbar gives ~0.01 nm/day (C10H22)
• Still some mitigation needed to achieve years of lifetime
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Oxidation

• ‘Vacuum’ contains residual H2O
• Litho-tool vacuum compartment cannot be baked!

• H2O adsorbs on (mirror) surfaces

• EUV photons and secondary electrons cause dissociation1

• Formation of OH and O

• EUV lifetime issue
• Reflectivity loss by cap- and ‘deep’ oxidation of multilayer mirror

1 F. Liu et al., Extreme UV induced dissociation of amorphous solid water and crystalline water bilayers on Ru(0001), Surface Science 646, 101 (2016)
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Oxidation - experimental

• Synchrotron exposure of a Ru-capped MLM
• 10-6 mbar H2O
• 30 mW/mm2 peak intensity

Ru-capped MLM

RuOxintensity
competitive

carbon
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Oxidation – carbon growth competition

• Conceptual model
• Carbon growth saturates with intensity (flux-limited)
• Oxidation (Ru and C) linear in intensity (photon-limited)
• Cross-over at intensity Ic
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Impact

• Carbon growth can be slowed by reducing pCxHy

• E.g. pmax = 10-12 mbar gives ~0.01 nm/day (C10H22)
• Still some mitigation needed to achieve years of lifetime

• But: oxidation occurs above certain EUV intensity

 Either ‘bitten’ by carbon growth or oxidation 
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Mitigation options

• Better vacuum
• pCxHy ↓, pH2O ↓, pO2 ↓

• Controlled CxHy contamination
• Balancing oxidation & carbon growth

• Carbon growth & (periodic) cleaning

• Oxidizing environment
• O2, O3, O+

, …

• C + O2 → CO2

• Reducing environment

practically infeasible

intensity dependence

down time, control

no oxidation-stopping cap?
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Reducing environment

• Operate tool with H2 background gas

• Generation of an EUV-induced plasma
• H2 + ν → H2

+ + e- [ H + H+ + e- / H+ + H+ + 2e- ]

• Mitigates oxidation by oxide reduction
• MOx + 2x H → M + x H2O

• Mitigates carbon growth by ion- and radical-induced etching
• C + 4H → CH4 (gas)
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Reducing environment

(a) ~4 nm thick carbon spot grown by EUV + dodecane
(b) after EUV + H2 exposure

Carbon etching / ‘plasma cleaning’
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Reducing environment

• Oxidized Ru caps can be completely reduced
• Some residues after ‘deep’ oxidation using atomic H

• No EUV-induced oxidation in H2/H2O/O2 environments
• For sufficiently large H2 fraction

Oxide reduction

Oxidized (e-gun) Cleaned (filament-generated H)

residue
12 hr

4 hr

6 hr

10-7 mbar H2O
1 keV electrons
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Conclusions

• Direct EUV radiation damage is important
• Substrates, caps, …

• Carbon growth and oxidation are competitive degradation mechanisms
• One process will bite you

• Mitigation is possible using e.g. a H2 ambient
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