Public

ASML

EUV optics lifetime Radiation damage, contamination, and oxidation

M. van Kampen

ASML Research

10-11-2016

Preamble

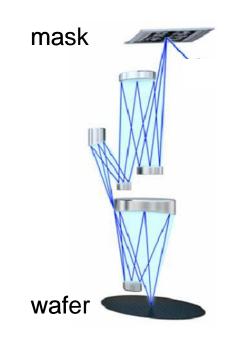
- ASML
 - Public Slide 2 <Date>

- ASML builds lithography scanners
 - High-resolution 'photocopiers'
 - Copies mask pattern into resist layer into a silicon wafer

scanner

patterned wafer

Preamble


ASML

Public Slide 3 <Date>

Smaller features require shorter wavelength radiation lacksquareLaser-produced plasma Hg lamp KrF laser ArF laser 13.5 nm / EUV 365 nm 248 nm 193 nm PXN-**Winscan NXE** 1984 PAS 2000 1989 PAS 5000 5500 Resolution >1µm > 500 nm > 400 to 90 nm > 100 to 38 nm > 32 to 20 nm 100 to 12 nm 250 nm 100 nm 20 to 4 nm 2 nm Overlay:

Preamble

- EUV radiation is strongly absorbed
 - 10 µm air (STP) absorbs ~50%
 - 10 nm carbon absorbs ~5%
 - 1 nm tin absorbs ~10%
- Impact
 - Vacuum
 - Mirrors, no lenses
 - Sensitive to (sub-)nm contaminant layers
 - Lithography tool contains ~10 mirrors
 - 1% loss per mirror: 10% loss in tool productivity
 - 1% loss per mirror: 5 atomic layers C or 0.2 atomic layers Sn

ASML

Public Slide 4 <Date>

Outline EUV optics lifetime

- Radiation damage
- Carbon growth
- Oxidation
- Mitigation

ASML

Public Slide 5 <Date>

Radiation damage

ASML

Public Slide 6 <Date>

- Many compounds can be damaged by (EUV) radiation
 - Polymers
 - Ionic compounds (salts)
 - Glasses
 - Oxides
 - ...
- Impact
 - Optical lithography works (photo-resist)
 - Contamination / oxidation of EUV mirrors
 - Changes in optical and mechanical properties
 - Photo-induced desorption (outgassing, material removal)

Radiation damage Example: LiF (salt)

(Li⁺)

F

Li⁺

H-center

F

Li⁺

(Li⁺⁾

(1)

(Li⁺)

Li⁺

F-center

Farbe-center

color-center

(2)

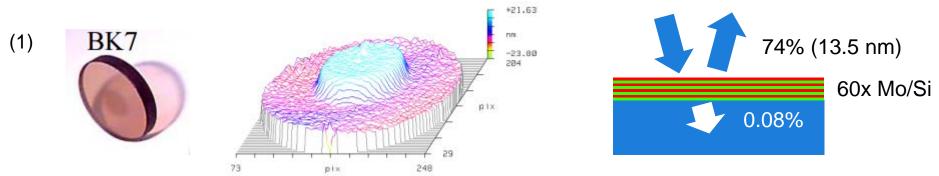
Photo-emission

E{Auger}

After irradiation

¹ Lithium fluoride thin-film detectors for soft X-ray imaging at high spatial resolution, R.M. Montreali *et al.*, Nucl. Instr. and Meth. in Phys. Research Section A **623**, 758–762 ² https://en.wikipedia.org/wiki/Auger effect

Auger emission


ASML

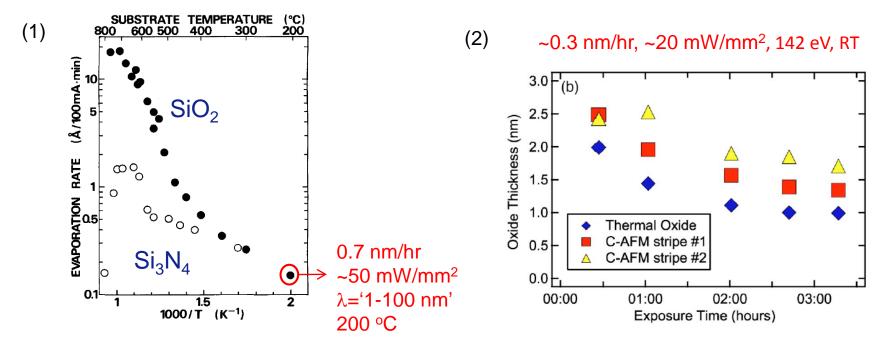
Before irradiation

Public Slide 7 <Date>

Radiation damage Glasses / mirror substrates

- Similar effects occur in glasses / glass-ceramics
 - BK7
 - UltraLowExpansion (ULE) glass
 - Zerodur
- Irradiation also leads to *compaction* or *expansion*
 - Glass mirror substrates should be protected from EUV irradiation
 - Mo/Si stack transparent, especially for out-of-band radiation

typical mirror substrates


¹ D. Doyle, Radiation Hardness of Optical Materials, sci.esa.int/science-e/www/object/doc.cfm?fobjectid=46396

ASML

Public Slide 8 <Date>

Radiation damage Etching

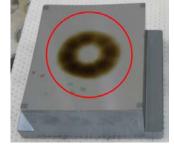
- Radiation can etch materials
 - E.g. SiO₂ observed to etch in EUV

¹ H. Akazawa *et al.*, Photostimulated evaporation of SiO₂ and Si₃N₄ films by synchrotron radiation..., J. Vac. Sci. Technol. A **9**, 2653 (1991) ² S. Heun *et al.*, Behavior of SiO₂ nanostructures under intense extreme ultraviolet illumination, J. Appl. Phys. **97**, 104333 (2005)

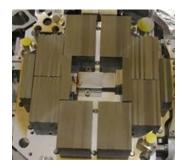
ASML

Public Slide 9 <Date>

Radiation damage Wrap-up


- EUV irradiation can directly damage mirrors
 - Change glass-like substrate properties (e.g. compaction)
 - Etch and/or alter compounds
- EUV irradiation also damages contaminants on a mirror
 - Hydrocarbons: carbon growth
 - Water or oxygen: oxidation by oxygen radicals
 - Next topics

ASML


Public Slide 10 <Date>

Carbon contamination

- 'Vacuum' contains residual (hydrocarbon) contaminants
- Hydrocarbons adsorb on (mirror) surfaces
- EUV photons and secondary electrons cause
 - Transformation of C_xH_y chains to aC:H
 - Reduction of H-content with irradiation dose
 - Radiation-induced outgassing of fragments
- EUV lifetime issue
 - How fast does carbon grow under actual tool conditions?

SEMATECH MET, 2007

ADT mirror, 2007

ASML

Public Slide 11 <Date>

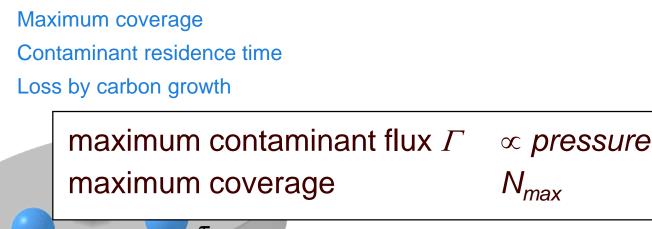
Carbon growth model

• Carbon growth rate dC/dt [m/s] given by¹:

$$\frac{\mathrm{d}C(t)}{\mathrm{d}t} = \sigma \cdot I(t) \cdot N(t) \cdot V_C$$

- σ Cross-section [m²]
- I(t) EUV photon flux $[1/(m^2 \cdot s)]$
- *N(t)* Contaminant surface coverage[1/m²]
- V_c Deposited carbon volume per molecule [m³]
- Carbon growth rate is linear in intensity and contaminant coverage
 - But contaminant coverage is a complex term

¹ J. Hollenshead and L. Klebanoff, Modeling radiation-induced carbon contamination of extreme ultraviolet optics, J. of Vac. Sc. & Tech. B 24, 64 (2006)

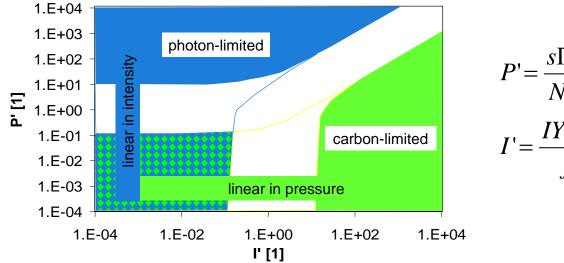

ASML

Public Slide 12 <Date>

Carbon growth model: N(t)

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \left[N_{\max} - N(t)\right] \cdot s\Gamma - \frac{1}{\tau}N(t) - \frac{1}{f}\frac{\mathrm{d}C(t)}{\mathrm{d}t}$$

- Ingredients Langmuir isotherm
 - Γ Contaminant flux to mirror (linear in contaminant partial pressure)
 - N_{max} M
 - $\tau_{residence}$
 - d*C/*d*t*

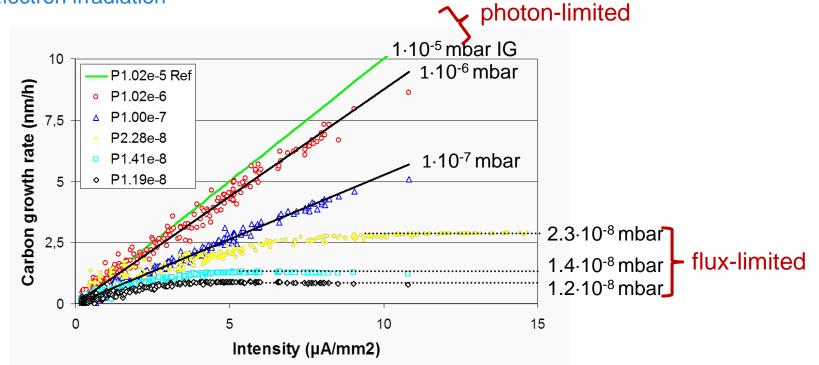

ASML

Slide 13 <Date>

Carbon growth model

- Two limiting regimes can be identified
 - **1. Carbon-limited**: high intensity, low contaminant pressure
 - 2. Photon-limited: low intensity, high contaminant pressure

 ∞ p, independent of I \propto I, independent of p



$$P' = \frac{s\Gamma \cdot \tau}{N_{\text{max}}}$$
$$I' = \frac{IY \cdot \tau}{f}$$

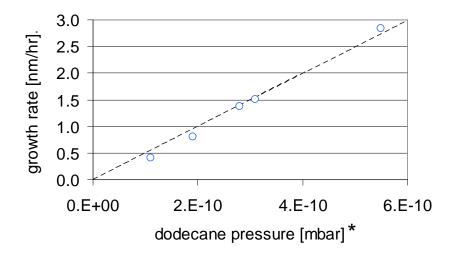
Public Slide 14 <Date>

Carbon growth - experimental

- N-dodecane ($C_{12}H_{26}$) growth rate versus pressure and intensity
 - Electron irradiation

ASML

Public Slide 15 <Date>


Carbon growth - experimental

• Flux-limited carbon growth rate ∞ contaminant pressure

ASML

Public Slide 16 <Date>

- Large fraction (>10%) of incident flux is 'carbonized'
 - Worst-case obviously 100%
- Flux-limit depends on few (known) parameters

Carbon growth - litho tools

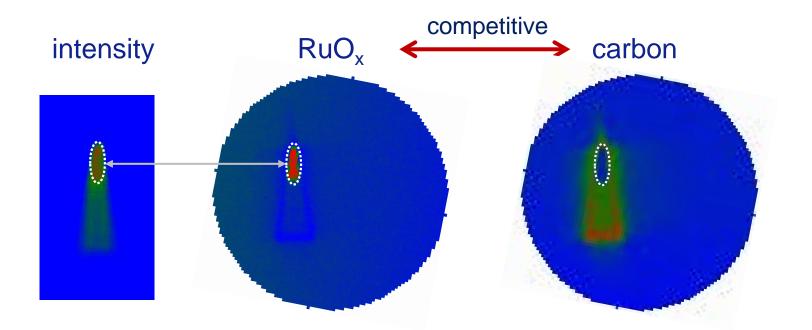
- Specify a maximum C_xH_y partial pressure in the tool
 - To be achieved by e.g.
 - Cleanliness (handling, cleaning, material selection, ...)
 - Pumping
- Maximum C_xH_y pressure yields maximum contamination rate

Public Slide 17 <Date>

- E.g. $p_{max} = 10^{-12}$ mbar gives ~0.01 nm/day ($C_{10}H_{22}$)
- Still some mitigation needed to achieve years of lifetime

Oxidation

ASML

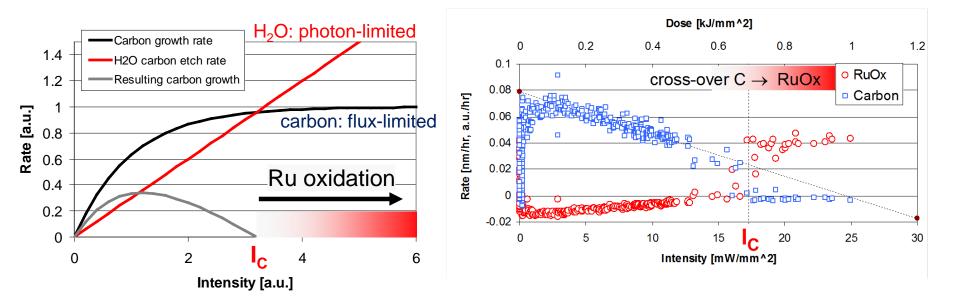

Public Slide 18 <Date>

- 'Vacuum' contains residual H₂O
 - Litho-tool vacuum compartment cannot be baked!
- H₂O adsorbs on (mirror) surfaces
- EUV photons and secondary electrons cause dissociation¹
 - Formation of OH and O
- EUV lifetime issue
 - Reflectivity loss by cap- and 'deep' oxidation of multilayer mirror

¹ F. Liu *et al.*, Extreme UV induced dissociation of amorphous solid water and crystalline water bilayers on Ru(0001), Surface Science **646**, 101 (2016)

Oxidation - experimental Ru-capped MLM

- Synchrotron exposure of a Ru-capped MLM
 - 10⁻⁶ mbar H₂O
 - 30 mW/mm² peak intensity



ASML

Public Slide 19 <Date>

Oxidation – carbon growth competition

- Conceptual model
 - Carbon growth saturates with intensity (flux-limited)
 - Oxidation (Ru and C) linear in intensity (photon-limited)
 - Cross-over at intensity I_c

ASML

Public Slide 20 <Date>

Impact

- Carbon growth can be slowed by reducing p_{CxHy}
 - E.g. $p_{max} = 10^{-12}$ mbar gives ~0.01 nm/day ($C_{10}H_{22}$)
 - Still some mitigation needed to achieve years of lifetime
- But: oxidation occurs above certain EUV intensity

- Either 'bitten' by carbon growth or oxidation -

Slide 21 <Date>

Mitigation options

- Better vacuum
 - $p_{CxHy} \downarrow, p_{H2O} \downarrow, p_{O2} \downarrow$
- Controlled C_xH_y contamination
 - Balancing oxidation & carbon growth
- Carbon growth & (periodic) cleaning
- Oxidizing environment
 - O₂, O₃, O⁺, ...
 - $C + O_2 \rightarrow CO_2$
- Reducing environment

practically infeasible

Public Slide 22 <Date>

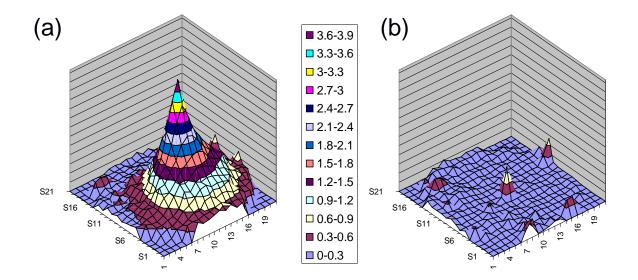
intensity dependence

down time, control

no oxidation-stopping cap?

Reducing environment

- Operate tool with H₂ background gas
- Generation of an EUV-induced plasma
 - $H_2 + v \rightarrow H_2^+ + e^-$ [$H + H^+ + e^- / H^+ + H^+ + 2e^-$]
- Mitigates oxidation by oxide reduction
 - $MO_x + 2x H \rightarrow M + x H_2O$
- Mitigates carbon growth by ion- and radical-induced etching
 - $C + 4H \rightarrow CH_{4 (gas)}$

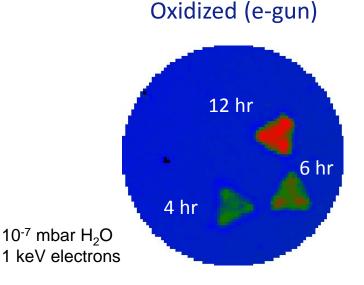


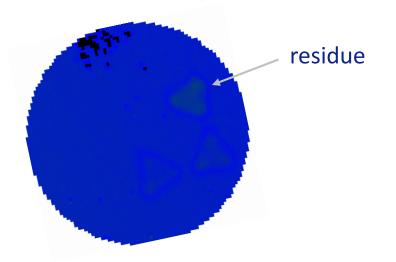
ASML

Public Slide 23 <Date>

Reducing environment Carbon etching / 'plasma cleaning'

(a) ~4 nm thick carbon spot grown by EUV + dodecane
(b) after EUV + H₂ exposure




Public Slide 24 <Date>

Reducing environment Oxide reduction

- Oxidized Ru caps can be completely reduced
 - Some residues after 'deep' oxidation using atomic H
- No EUV-induced oxidation in H₂/H₂O/O₂ environments
 - For sufficiently large H₂ fraction

Cleaned (filament-generated H)

Public Slide 25 <Date>

Conclusions

Public Slide 26 <Date>

- Direct EUV radiation damage is important
 - Substrates, caps, ...
- Carbon growth and oxidation are competitive degradation mechanisms
 - One process will bite you
- Mitigation is possible using e.g. a H₂ ambient

