PXRNMS 2016, Enschede, 2016.11.11.

Design, fabrication, and test of extreme ultraviolet microscope with 30-nm spatial resolution

<u>Mitsunori Toyoda,</u>

Lab. of Soft X-ray microscopy, IMRAM, Tohoku University

Collaborators

<u>Tohoku Univ.</u> Tadashi Hatano Mihiro Yanagihara

<u>Univ. of Hyogo (NewSUBARU)</u> Tetsuo Harada Takeo Watanabe Hiroo Kinoshita

1. Motivation

- 2. Interferometry for the two-stage imaging system
- 3. Low-order aberration correction with deformable multilayer mirror
- 4. Summary and future plans

1. Motivation

- 2. Interferometry for the two-stage imaging system
- 3. Low-order aberration correction with deformable multilayer mirror
- 4. Summary and future plans

EUV microscope for lithography mask inspection

Diffraction-limited resolution of 30 nm was successfully demonstrated (world record)

Two-stage imaging system for high magnification

✓ Higher magnification (m=1460)
 ⇒ Resolution of 30nm with EUV-CCD camera
 ✓ Good correction of off-axis aberrations

Practical requirements for optics: Aberrations

Marechal criterion

For diffraction-limited resolution: $\Delta = 0.61 \lambda / NA$

Wave aberration

$$W = W_{design} + W_{figure} + W_{decenter} < \frac{\lambda}{14} = 1 \text{ nm rms.}$$
(@ λ =13.5nm)

⇒Wave front <u>sensing</u> and <u>control</u> with 0.1 nm accuracy

1. Motivation

- 2. Interferometry for the two-stage imaging system
- 3. Low-order aberration correction with deformable multilayer mirror
- 4. Summary and future plans

Experimental Result (1): wave front map

*Effect of tilts and defocus were removed $_{11}$

Experimental Result (2): Zernike polynomials

Repeatability for coefficients (Z3 to Z32) were bellow 0.1 nm.

✓ Capability of measuring wave aberration with sub-nm accuracy was successfully confirmed.

1. Motivation

- 2. Interferometry for the two-stage imaging system
- 3. Low-order aberration correction with deformable multilayer mirror
- 4. Summary and future plans

Mechanical design for deformable mirror

- \checkmark Concave mirror (M1) is glued to three holding arms.
- ✓ Flexure springs absorb thermal expansion.
- ✓ Picomotors (A1-A3) can apply force (max: 20 N) on holding plate (H1) to correct astigmatism. (Stigmator)
- ✓ Three-axis stage with Picomotors (A4-A6) for fine alignment of convex mirror (M2) to correct coma.

Wave aberration resulting from stigmator

✓ Astigmatism was clearly observed in all data.

 \checkmark Control range as stigmator: ± 4 nm rms.

Wavefront control with fine optical alignment

✓A high magnification EUV microscope based on all-reflective objective is proposed.

✓ Point diffraction interferometer enables wave front sensing with sub-nm accuracy

✓ Wavefront control is successfully demonstrated

⇒ EUV objective with diffraction-limited resolution

Future plans

✓At-wavelength observation of mask defects

✓ Lab-scale EUV microscope with a plasma light source