PXNRMS

Twente University November 10-11, 2016

Accurate computation of the X-ray diffraction efficiency of a multilayer coated grating based on a nonconformal deposition model

David Dennetiere, Blandine Capitanio, Muriel Thomasset, François Polack

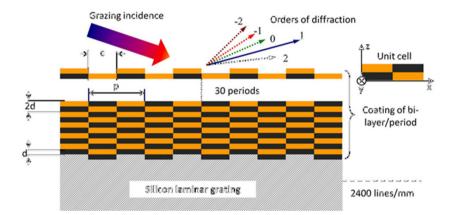
Synchrotron SOLEIL

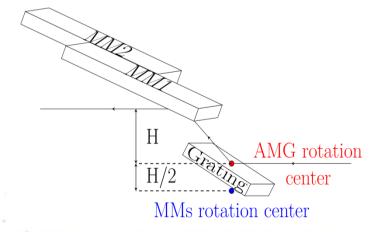
Evgueni Meltchakov, Catherine Burklen, Franck Delmotte Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Sud

Multilayer grating development for SOLEIL beamlines

Energy selection depends on the photon energy range

- Soft X-ray beamlines employ gratings
 Standard grating range typically below 1600 eV (small grazing angle)
- Hard X-ray beamline employ crystals (most often Si 111)
 Range typically over 2000 eV (small *d* spacing and large Bragg angles)
- Multilayer coated grating are one way of bridging the gap
 - DEIMOS: 2400 I/mm, Mo/B4C ML coated; in the grating monochromator range 1000 eV – 2500 eV
 - LUCIA: 3000 l/mm, etched in Mo/B4C ML; in the Crystal monochromator range 900eV – 2500 eV


SIRIUS: 2400 I/mm, Cr/B4C ML coated ; in a dedicated monochromator range 1500 eV – 4500 eV


HERMES: in project similar to Deimos

The alternate multilayer grating structure

- ML of period 2d is deposited on a lamellar grating of depth d
- Creates a checkerboard like pattern – 2D periodic
- Horz \rightarrow dispersion \rightarrow resolving power
- Vert periodicity (~30 periods) *reflectivity ¬ grazing angle ¬*

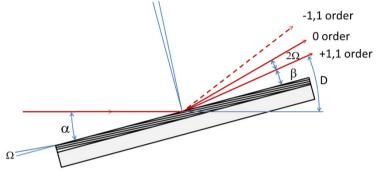
 Dev. angle > critical angle
 ⇒ a ML mirror of similar period needed to compensate the grating deviation

PXNRMS 11/11/2016

STALEIL

Diffraction properties of ML gratings

The grating should be considered as a 2D periodic structure Diffraction properties dictated by


- The two periods
 - In-plane period p

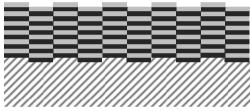
 $cos(\beta) - cos(\alpha) = 2 sin(D/2) sin(\omega) = k \lambda/p$

Out of plane period d

 $sin(\beta) + sin(\alpha) = 2 sin(D/2) cos(\omega) = m \lambda/d$

> Bragg condition (neglecting refraction correction) $tan(\omega) = \frac{k}{m} \frac{d}{p}$; m > 0

 $\omega = (\alpha - \beta)/2$ $D = (\alpha + \beta)$


 ω is the grating rotation angle from 0 order or <u>Bragg angle</u>

> scanning done by keeping ω fixed and adjusting the deviation angle "on blaze" scan

The fabrication & control sequence

- Grating masking and etching
- AFM characterization:
 Etched depth, duty cycle , roughness, uniformity
- Multilayer optimization (CARPEM code) from measured parameters
- Multilayer deposition (LCFIO)
- Multilayer characterization (LCFIO) Cu K_{α} reflectometry \Rightarrow *period, gamma, uniformity*
- At wavelength characterization diffraction properties
- Definition of the matched ML mirror, fabrication and control

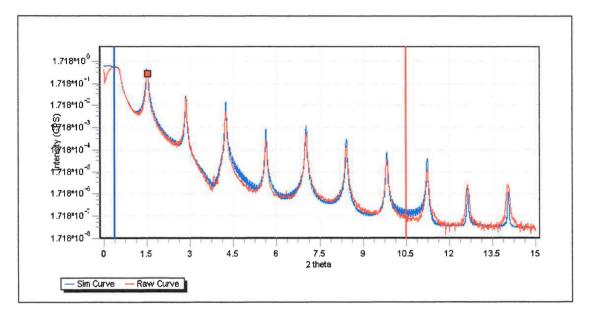
The grating of Sirius beamline

Sirius is a hard X-ray beamline

- 2.2 10 keV with a DCM
 - > 1 4 keV with a dedicated MLgrating monochromator (PGM type)

The realized ML grating

(80 X30 mm², ruled 60x20 mm², 40mm thick)

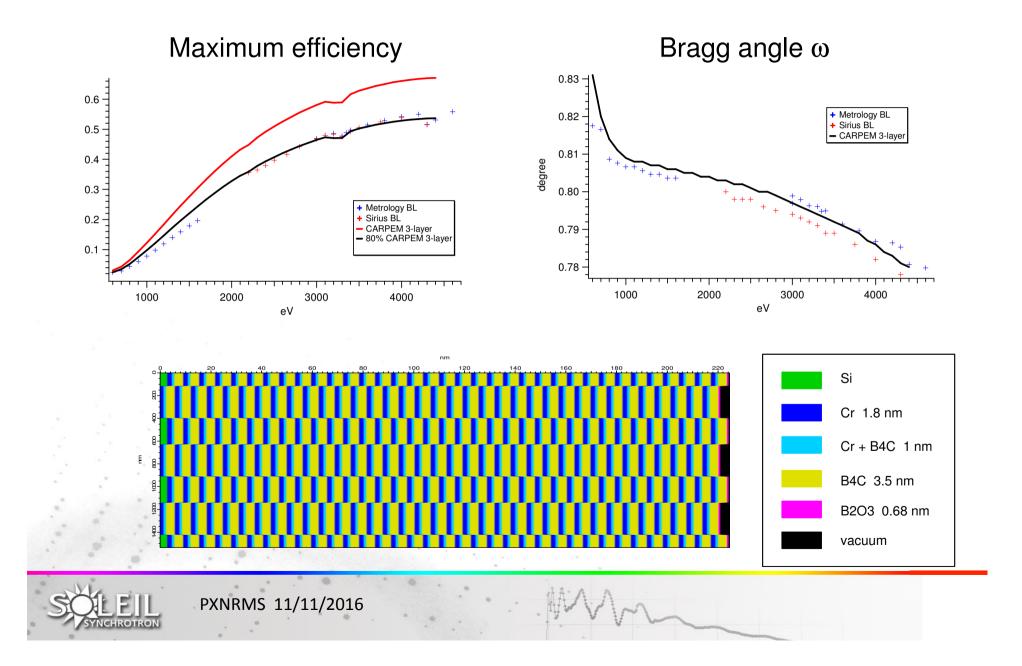

- CrB₄C multilayer coating deposited on a 2400 l mm⁻¹ laminar grating (Horiba Scientific)
- Groove depth 3.3 nm; ML period 6.3 nm; groove/period = 0.49
- ML: 35 periods; period is 6.3 nm, optimized with CARPEM code
 - target thicknesses: Cr 2.4 nm, B4C 3.9 nm

Characterization Measurements

- ML material distribution profile, from Cu K_{α} angular reflectivity
- Diffraction efficiency
 - Precise determination of rocking curves : peak efficiency and Bragg angle
 - at Metrology beamline E < 1.7 keV and E > 3 keV
 - at Sirius beamline E > 2.2 keV

Cu K_a ML reflectivity

Measured at LCFIO with Bruker Discover D8


Fit with LEPTOS software

	Material	Thickness (nm)	Roughness (nm)	Density	Repetition	Period
a S	Si		0.20	2.33		
. E.	Cr	1.95	0.19	7.19		
	$Cr_{11} (B_4C)_2$	0.93	0.20	5.92	35	6.3 nm
	B ₄ C	3.42	0.28	2.0 (80%)		
.4.	B_2O_3	0.68	0.21	2.8	1	

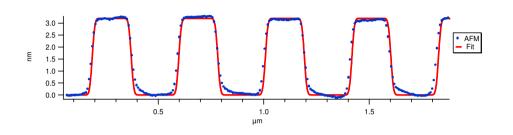
14V

At wavelength measurements vs CARPEM model

Computation model in the CARPEM code

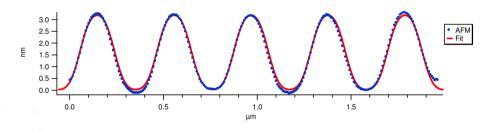
CARPEM implements a Rigorous Coupled Wave Approximation (RCWA) algorithm coupled with a "R matrix" propagation method¹

- The structure is divided in layers alternating 2 materials in the period with adjustable duty cycle and centering
- In the structure the EM field is decomposed in plane wave components
- The components are propagated in z through each layer by Runge-Kutta integration of the Maxwell equations.
- R-K integration is restricted to a slice of limited thickness to avoid large intensity difference in up and down propagating waves. Typically 1 ML period (~6nm)
- The reflectivity matrix of the grating stack is constructed slice by slice, starting the substrate reflectivity from the reflectivity matrix of the underlying stack and the transfer matrix of the added slice


¹ M. Neviere and E. Popov. Light Propagation in Periodic Media : Differential , Theory and Design. Marcel Dekker, 2003

Surface Profile Observation

AFM measured profiles


• Before ML deposition

• Fit parameters

depth : 3.3 nm groove/period : 0.49 (damp parm 0.990)

• After ML deposition

- The grating profile is damped by the ML coating
- Higher frequencies are damped much faster than lower ones

Layer growth model

• Main assumption :

The deposition rate is modulated in ratio of the local curvature

$$\frac{\partial z}{\partial t} = v_0 + c \frac{\partial^2 z}{\partial x^2}$$

z : position of the growing interface, v_0 average deposition rate

- Assuming the substrate profile is given by its Fourier expansion

$$z(x,t) = \sum_{n=-N}^{N} a_n(t) \exp\left[j \frac{2\pi n x}{p}\right]$$

- Then

$$\frac{\partial}{\partial t}z(x,t) = \sum_{n=-N}^{N} \frac{d a_n(t)}{dt} \exp\left[j\frac{2\pi n x}{p}\right] = v_0 - c\frac{4\pi^2}{p^2} \sum_{n=-N}^{N} n^2 a_n(t) \exp\left[j\frac{2\pi n x}{p}\right]$$

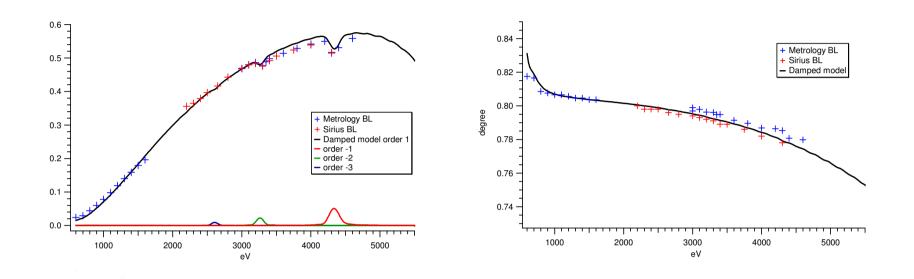
$$a_0(t) = a_0(0) + v_0 t$$
, and if $n \neq 0$ $\frac{da_n}{dt} = -k n^2 a_n \implies a_n = a_n(0) \exp\left[-kt n^2\right]$

 In our model we assume that c (k) does not depend on the deposited material then t can be read as the average deposited thickness and the composition at given (x,z) can be easily computed

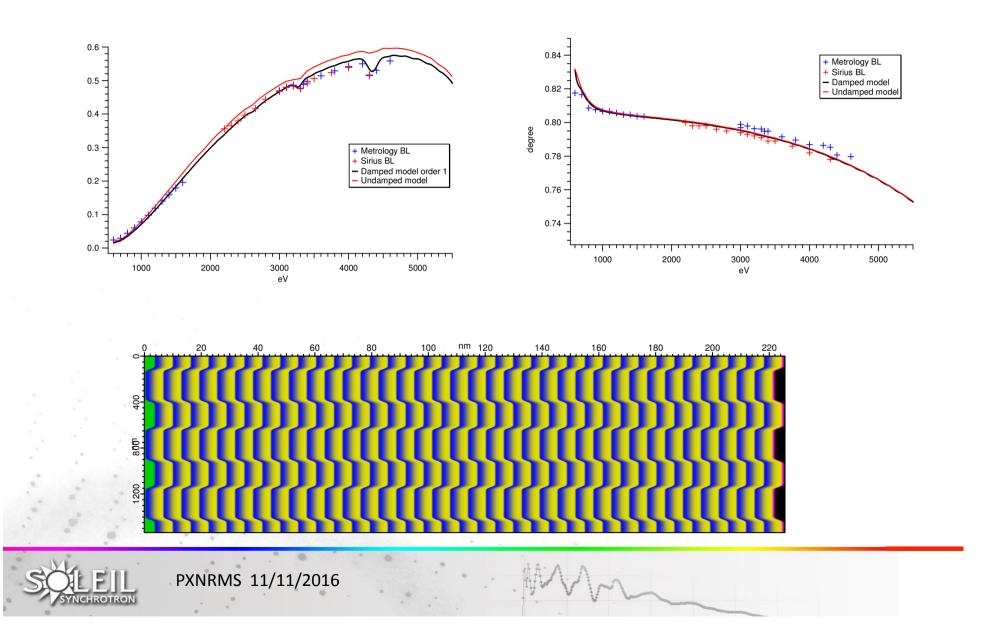
Interface model

- Grating computations use a limited Fourrier expansion of the dielectric function
 - > High frequency material and density fluctuations contributes only by the average of the susceptibility (ε -1)
 - Rough but sharp interface between A and B with gaussian roughness σ_r the composition can be modeled by error function distributions
 - > Inter-diffusion can be modeled by a similar composition profile σ_d then represents the inter-diffusion layer thickness (*erf(0.5*) \approx 0.5)
 - In practice, σ_r and σ_d are combined

Limit of the model


 The low frequencies of the roughness are not accounted for all ML periods are strictly equal -> errors in evaluating high reflection orders

The ML model


Result of the model

- Bragg angle (maximum of the rocking curve) is sensitive to refraction thus average index of refraction
- Efficiency is mostly affected by modulation change with depth note that glitches corresponding to angle coincidence with other orders are well predicted by the model

Undamped model

Conclusions

- A non-conformal model of thin film growth has been used to model the Sirius ML grating
- It fits AFM grating surface measurement before and after ML coating
- It explains the general trend of grating efficiency in order 1
- It explains the glitches due to coincidence with authorized Bragg reflection in different grating orders
- It fits the measured dependence of Bragg angle vs energy
- Keeping sharp lamellar layer profile has an significant impact on efficiency
- Non conformal growth must be taken into account in the design studies

