Stability issues in Pd/B₄C multilayers

Ch. Morawe¹, R. Supruangnet^{1,2}, J-Ch. Peffen¹ ¹ ESRF, Grenoble (France) ² SLRI, Nakhon Ratchasima (Thailand)

Outline

- Introduction
- ML fabrication
- Experimental techniques
- X-ray studies
- SEM + TEM studies
- Soft X-ray PEEM
- Summary + Outlook

ACKNOWLEDGEMENTS

Support:

- R. Barrett, A. Vivo (X-ray Optics Group, ESRF, France)
- T. Bigault (Neutron Optics Service, ILL)
- I. Snigireva (Micro-imaging Laboratory, ESRF, France)
- H. Nakajima, S. Rattanasuporn, P. Photonkam, N. Jearanaikoon, W. Busayaporn (BL3.2, SLRI, Thailand)

References:

- Thin Solid Films 588 (2015) 1-10
 Ch. Morawe, R. Supruangnet, J-Ch. Peffen
- Applied Surface Science 367 (2016) 347-353
 - R. Supruangnet, Ch. Morawe, J-Ch. Peffen, H. Nakajima, S. Rattanasuporn, P. Photongkam, N. Jearanaikoon

W. Busayaporn

INTRODUCTION

Why Pd/B₄C ? – Initial observations

- Attractive optical properties of Pd at E \leq 24 keV
- Strong materials contrast, sharp interfaces σ = 0.21...0.25 nm

INTRODUCTION

Further observations

- Alteration for d-spacings < 4 nm
- Rapid formation of stains + particles on surface \rightarrow disappear later !
- Significant reflectance loss + peak shift after 1 day in air !
- \rightarrow What happened ? Why ? Possible ways out ?

MULTILAYER FABRICATION

ESRF multilayer deposition facility

- DC sputtering on Si(100) wafers near room temperature
- Horizontal particle flux
- Static or dynamic mode
- D = 67 mm
- p(Ar) = 0.1 Pa
- P(Pd) = 50 W
- P(B₄C) = 500 W
- R(Pd) = 0.4 nm/s
- R(B₄C) = 0.2 nm/s

EXPERIMENTAL TECHNIQUES

X-ray reflectivity

- Cu Kα1 micro-focus source (Incoatec IµS, 30 W)
- Montel ML collimator + Ge(111) monochromator

SEM analysis

ESRF Micro-imaging Laboratory (LEO 1530)

TEM analysis

• Serma Technologies (FEI Tecnai G2 F20)

Photoemission electron microscopy (PEEM)

- BL3.2Ub (SLRI Thailand) at B K-edge
- LEEM III imaging analyzer (ELMITEC)

X-ray reflectivity

- Unprotected Pd/B₄C MLs
- [Pd(1.33nm)/B₄C(1.65nm)]₅₀ ٠
- Stored in air at RT
- Immediate and fast degradation
- Original ML structure disappears •
- New peak at higher angles
- No further evolution after a few days

7

X-ray reflectivity

- ML sample series with cap layer: B₄C(var)/[Pd(1.35nm)/B₄C(1.65nm)]₅₀
- Degradation slowed down (>1y), but not stopped
- ML period reduction from 3.0 nm to 2.3 nm
- Old peak sharp, new peak broad \rightarrow co-existence of laterally separated phases

X-ray reflectivity

- Further cap layer materials: B₄C, Al₂O₃, Si(O_x), Ti(O_x), C
- Variable cap layer thickness (wedge)
- Similar reflectivity patterns and rapid drop after 100 d for B₄C and Al₂O₃
- Slower decay for Si(O_x)
- Moderate reflectance loss for thin (< 4 nm) Ti(O_x) and C cap layers
- No degradation on Pd/B₄C ML in vacuum !

X-ray diffraction

- MLs with surface crystals cause broad peak at B₂O₃(310) position
- No peaks on MLs without crystals
- No B₄C peaks
- Massive oxidation of B₄C ?
- Why do the crystals disappear ?

SEM STUDIES

SEM imaging + EDX

- B₄C(5.1nm) / [Pd(1.31nm)/B₄C(1.34nm)]₁₅₀
- 2 months stored in air
- Defects containing particles (or holes)
- Surrounded by grey halos
- B + C in dark zones
- B depletion and O inclusion in grey areas

SEM STUDIES

SEM imaging + EDX

- B₄C(2.4nm) / [Pd(1.33nm)/B₄C(1.66nm)]₅₀
- 2 months stored in air
- Large insulating surface particles
- Spectra on particle
- B and O signals only
- Evidence for B₂O₃ crystals

TEM STUDIES

B₄C(4.2nm) / [Pd(1.33nm)/B₄C(1.65nm)]₅₀ (6 months stored in air)

TEM STUDIES

TEM EDX

- B₄C(4.2nm) / [Pd(1.33nm)/B₄C(1.65nm)]₅₀
- 6 months stored in air
- Probing local cross section
- B depletion in degraded areas
- Similar spectra compared to SEM data
- Single layers not resolved

TEM STUDIES

TEM EDX

- Non-periodic ML with variable t(B₄C)
- B₄C(0.5nm) / [Pd(4.0nm)/B₄C(6.5-1.0nm)]₁₂
- 3 years stored in air
- Scan across ML depth
- Pd signal \approx deposited quantities
- B signal appears for t(B₄C) > 1.5 nm increases with ML depth down to Si
- C fraction saturates earlier
- O content scales with B signal
- Upper B_4C layers disappeared
- Lower B₄C layers oxidized

PEEM STUDIES

PEEM imaging spectroscopy

- B₄C(2.4nm) / [Pd(1.33nm)/B₄C(1.66nm)]₅₀
- 5 weeks stored in air
- Showing surface crystals
- Chemical shift of B K $\!\alpha$ peaks
- High spatial resolution
- Sensitive to low-Z elements
- B₂O₃ like compounds on crystals
- B / B₄C away from crystals
- Confirms x-ray and EDX data

SUMMARY

Degradation process in Pd/B₄C MLs

- Oxygen enters through defects, drains Boron to form B₂O₃
- B₂O₃ crystallizes at surface, then evaporates or dissolves in air
- Boron depletion and d-spacing reduction in affected areas
- ML order severely disturbed
- Time scale: hours \rightarrow days (unprotected MLs)
- Protection layers: life time \rightarrow years (\rightarrow stable in vacuum)

SUMMARY

Why fast degradation in Pd/B₄C MLs ?

- Thermodynamics of Pd/B₄C and other Metal/B₄C MLs
- Enthalpy of formation $\Delta_f H^0$ (solid-solid reactions) [kJ/mol]
- Free energy of formation $\Delta_f G^0$ (solid-gas reactions) [kJ/mol]

Material	В	С	0
В		-71 (B ₄ C)	-1194 (B ₂ O ₃)
Pd	-26 (Pd ₅ B ₂)		-85 (PdO)
Мо	-121 (Mo ₂ B)	-46 (Mo ₂ C)	-668 (MoO ₃)
W	-31 (WB)	-20 (WC)	-764 (WO ₃)

- B_2O_3 formation favored in Pd/B₄C \rightarrow interface reactions with Pd prohibited
- Competing reactions in Mo/B₄C and W/B₄C \rightarrow protection barrier formation
- · Fast kinetics due to large interface

OUTLOOK

- Ongoing follow-up of long term stability
- Test of further barrier layers
- Stress issue in Pd/B₄C
- Test and review other absorber/B₄C or Pd/spacer systems

Thank you !

