Kossel X-ray standing-waves within a Cr/B₄C/Sc multilayer excited by protons

K. Le Guen, M. Wu, J.-M. André, V. Ilakovac, P. Jonnard

Laboratoire de Chimie Physique - Matière et Rayonnement, Paris, France

I. Vickridge, D. Schmaus, E. Briand, S. Steydli

Institut des NanoSciences de Paris, Paris, France

C. Burcklen, F. Bridou, E. Meltchakov, S. de Rossi, F. Delmotte

Laboratoire Charles Fabry, Institut d'Optique Graduate School, Palaiseau, France

PHYSICS OF X-RAY AND NEUTRON MULTILAYER STRUCTURES WORKSHOP 2016 PXRNMS 2016 outline

Outline

Introduction: a little of history

Sample: Cr/B₄C/Sc multilayer

Methods: {
 standing-wave technique *vs* Kossel diffraction
 proton-induced X-ray emission (PIXE)

Results and discussion

Conclusions and perspectives

PXRNMS 2016 introduction

A little of history

1912 M. von Laue, W. Friedrich, P. Knipping First x-ray diffraction pattern on an hydrated copper sulfate (P1 triclinic)

Max von Laue (1879-1960)

1914 Nobel prize for physics for his discovery of the x-ray diffraction by crystals

Walther Kossel (1888-1956)

1935
Analysis of the fluorescence:

produced within the crystal
and diffracted by the crystal itself

PXRNMS 2016

sample

Reflectivity curves

M. Prasciolu et al., Appl. Opt. 53 (2014) 2126

PXRNMS 2016 methods

X-ray standing waves *vs* **Kossel diffraction**

In (or close to) **Bragg conditions,** a strong standing wave, having the period of the multilayer, develops inside and outside the multilayer.

	XSW	KOSSEL
Excitation	x-ray photon	proton (2 MeV)
Sample	crystal or multilayer (bilayers)	mutilayer (trilayers)
Angular scan around θ_{Bragg}	glancing angle (i)	glancing exit (d)
To probe	 thin layer on top of the multilayer interfaces within the multilayer 	interfaces within the multilayer
Detection	fluorescence, photoe- or Auger e-	x-ray fluorescence

Kossel diffraction

Depth distribution of the electric field corresponding to the Sc K α radiation generated within the multilayer ($\theta_{Bragg} = 5.086^{\circ}$)

Varying the value of the detection d angle around that of θ_{Bragg} allows probing different emitting depths of the multilayer.

PXRNMS 2016 methods

Proton-induced X-ray emission (PIXE)

Experimental platform SAFIR (Système d'Analyse par Faisceaux d'Ions Rapides) Institut des NanoSciences de Paris, UPMC

Van de Graaf accelerator Beam current = 100 and 150 nA Size of the beam on the sample: ~ 2mm

2 MeV protons

Ionization of the K shell of Sc and Cr atoms uniformly over the full multilayer thickness Nominal energy for stability of the proton beam Optimized Sc K and Cr K ionization cross section

Possible damaging of the sample?

Limited charge dose on the multilayer Monitoring of the backscattered proton spectrum

Scheme of the experimental setup

PXRNMS 2016

methods

Scan of the d angle around the θ_{Bragg} value for the Sc (~5.1°) and Cr (~3.8°) K α emission. Strong requirement for angular resolution.

The (Al + 60 mm Mylar film) filters are inserted to block the scattered protons.

PXRNMS 2016 results and discussion

X-ray emission spectrum of the Cr/B₄C/Sc multilayer

Low proton-induced Bremsstrahlung:

- no fitting nor background substraction
- quantitative analysis: areas under peaks

Goniometer uncertainty: $\Delta d = \pm 0.05^{\circ}$

Total reflection of the radiation emitted within the sample: angular calibration $\pm 0.01^{\circ}$

Shift of 0.15°: different mean optical indices

M.-Y. Wu et al., Nucl. Instrum. Methods Phys. Res. Sect. B 386 (2016) 39

PXRNMS 2016 results and discussion

Kossel curves around the first Bragg peak

Experimental vs simulations

Intensity modulation over a narrow angular range (< 0.5°) Acquisition time: ~ 1 day Low intensity: poor contrast

M.-Y. Wu et al., Nucl. Instrum. Methods Phys. Res. Sect. B 386 (2016) 39

Summary and perspectives

In our team, combination of Kossel detection mode and standing wave with excitation by:

Proof of principle experiment

To our knowledge, it is the first measurement of Kossel curves originating from a multilayer excited using protons.

```
Low contrast in the Kossel curves
```

low intensity no available information on interfaces

Future: improvement of the detection

« color camera »: no more angular scan