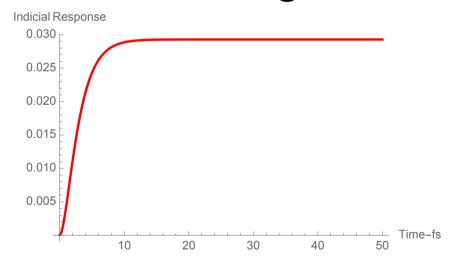
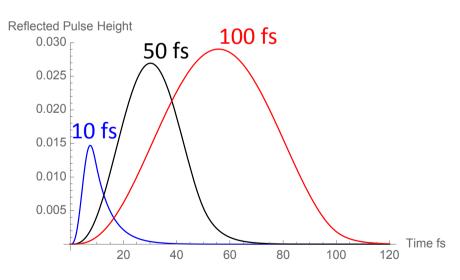


Periodic multilayers and FEL radiation

Philippe Jonnard, Jean-Michel André, Karine Le Guen

Free electron laser (FEL)

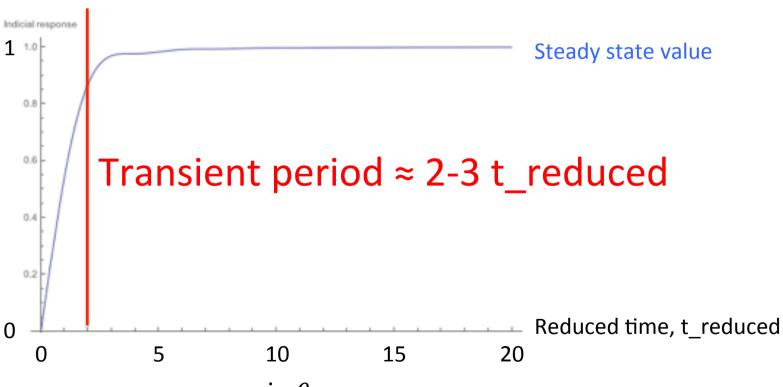

- New facilities around the world (Europe, USA, Japan)
- Very intense $(10^{13} 10^{15})$ photons per pulse)
- Very short pulse (10 100 fs)
- Wide range of wavelengths available (EUV, soft x-ray, hard x-ray)
- Time-dependence of the Bragg diffraction by a multilayer of nanometer period
- Distributed feedback laser (DFB) with a periodic multilayer


Time-dependence

- Propagation of a single ultra-short pulse within a one-dimensional photonic crystal
- Linear behaviour of the medium:
 no non-linear effect coming from the high incoming intensity
- Time-dependent coupled-wave theory
- Calculation in the time domain

Time-dependence

- Ti/Si multilayer: [Ti (35 nm) /Si (35 nm)]x7
- Photon energy: 20 eV
- Pulse: sine-square function, various pulse lengths
- Diffraction angle: 60°

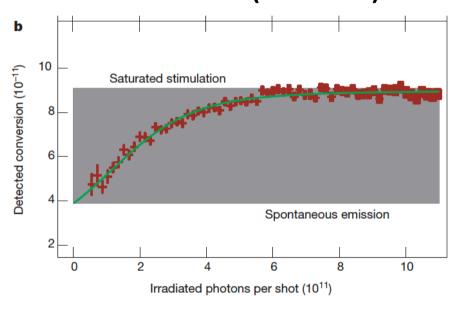


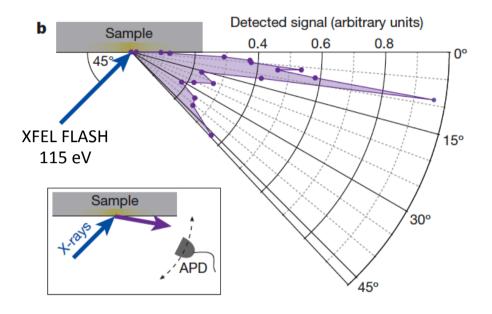
Indicial response

Pulse response

Time-dependence

Universal indicial response: peak reflectance vs reduced time


 $t_reduced = t \frac{\pi \sin \theta c}{\Lambda}$ with Λ the extinction length

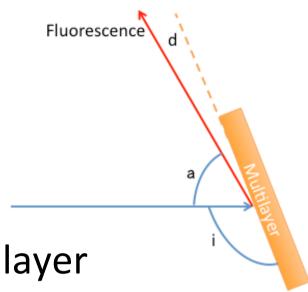

DFB laser Pump: optical, electrical, ... Distributed feed-back Laser Resonant cavity =

- periodic medium: crystal / Fabry-Pérot / Bragg mirror
- active medium necessary for stimulated emission
 No external mirrors, no alignment

DFB laser

X-ray stimulated emission in a solid (silicon)

Si L2,3 (3sd -2p) emission

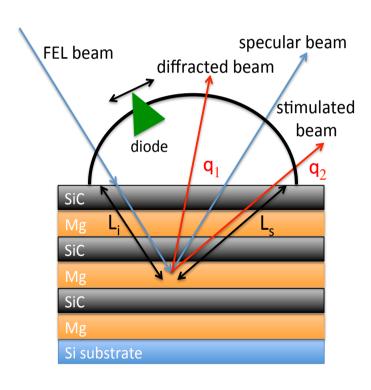

M. Beye et al. Nature 12, 449 (2013)

First observation of the stimulated emission in a solid with pumping by an X-FEL

Threshold: 10¹¹ photons/shot

1.6 10¹⁰ $hn_{in}=808eV$ Mg K α intensity (counts/Amp) 4.0 10 9 10 9 $hn_{fluo}=776eV$ Co La 0.0 Detection angle (°) 3 10¹⁰ $hn_{in} = 1332eV$ $hn_{fluo} = 1254eV$ Mg K α intensity (counts/Amp) 2 10¹⁰ 2 10¹⁰ 1 10¹⁰ Mg Ka Detection angle (°)

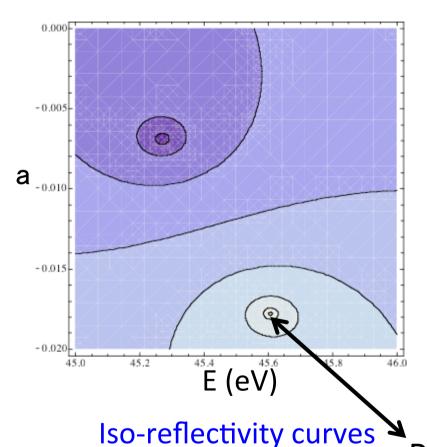
DFB laser


- Mg/Co multilayer
- Spontaneous emission
- Mg Ka and Co La fluorescence

Kossel effect =
Diffraction of
spontaneous emission

P. Jonnard et al., J. Phys. B47, 165601 (2014)

DFB laser


• Stimulated emission Mg $L_{2,3}(3sd-2p)$ @ 49 eV

- FEL pump @ 57 eV
- CavityMg/SiC periodic multilayer
- Detection angle, optimal for q₁
 Stimulated emission @ 21°
 (Beye et al. criterion)

J.-M. André et al., Laser Phys. 24, 085001 (2014)

DFB laser

in the E, a plane

Threshold for gain and lasing energy given by the relectivity poles of R(E, a) curves (Yeh-Yariv criterion)

E:photon energy

a: gain of active medium

Pole: $E_{lasing} = 45.6 \text{ eV}$ $a_{threshold} = 17.8 \cdot 10^{-3} \text{ or } 78600 \text{ cm}^{-1}$

Conclusion

- Time dependence
 - + transient period conditioned by the extinction length
 - + reflectivity could be much lower than in the steady state

DFB

- + stimulated emission in a specific direction
- + no spectral jitter
- + mono-mode