Tungsten growth on silicon dioxide and boron carbide and additional role of spacer in the ultrashort period multilayer X-ray mirrors

Matej Jergel

Institute of Physics, Slovak Academy of Sciences Bratislava, Slovakia

Grazing-incidence small-angle X-ray scattering (GISAXS)

$$\vec{k} = \vec{k}_f - \vec{k}_i \text{ scattering vector}$$

$$k_x = 2\pi / \lambda(\cos\alpha_f \cos 2\theta_f - \cos\alpha_i)$$

$$k_y = 2\pi / \lambda\cos\alpha_f \sin 2\theta_f$$

$$k_z = 2\pi / \lambda(\sin\alpha_f + \sin\alpha_i)$$

Coplanar versus non-coplanar geometry

Co/C mirror for water window (d = 2.3nm, N = 200) cross-sectional TEM reveals granular multilayer

GISAXS – fast probe of interface quality

RF sputtering

Mo/Si mirrors for EUV lithography

Grazing-incidence small-angle X-ray scattering (GISAXS)

$$\begin{aligned} & \operatorname{CuK}_{\alpha} \qquad \alpha_{i} = \alpha_{f} = 0.7^{\circ} \qquad 2\theta_{f} = 1^{\circ} \\ & k_{x} \stackrel{\wedge}{=} -0.006 \ nm^{-1} \rightarrow \Lambda_{x} \stackrel{\wedge}{=} 1011 \ nm \\ & k_{y} \stackrel{\wedge}{=} 0.7 \ nm^{-1} \qquad \rightarrow \Lambda_{y} \stackrel{\wedge}{=} 8.8 \ nm \\ & k_{z} \stackrel{\wedge}{=} 1 \ nm^{-1} \qquad \rightarrow \Lambda_{z} \stackrel{\wedge}{=} 6.3 \ nm \end{aligned}$$

- ✤ nanometer-scale in-plane and in-depth resolutions are easily accessible
- * lateral k_y and vertical k_z components of the scattering vector are independent of each other => simple BA theory is fully sufficient
- ✤ simple experimental arrangement
- intuitive shape of GISAXS pattern => modelling is not always necessary

Grazing-incidence small-angle X-ray scattering (GISAXS)

$$\begin{aligned} & \operatorname{CuK}_{\alpha} \qquad \alpha_{i} = \alpha_{f} = 0.7^{\circ} \qquad 2\theta_{f} = 1^{\circ} \\ & k_{x} \stackrel{\wedge}{=} -0.006 \ nm^{-1} \rightarrow \Lambda_{x} \stackrel{\wedge}{=} 1011 \ nm \\ & k_{y} \stackrel{\wedge}{=} 0.7 \ nm^{-1} \qquad \rightarrow \Lambda_{y} \stackrel{\wedge}{=} 8.8 \ nm \\ & k_{z} \stackrel{\wedge}{=} 1 \ nm^{-1} \qquad \rightarrow \Lambda_{z} \stackrel{\wedge}{=} 6.3 \ nm \end{aligned}$$

- nanometer-scale in-plane and in-depth resolutions are easily accessible
- * lateral k_y and vertical k_z components of the scattering vector are independent of each other => simple BA theory is fully sufficient
- ✤ simple experimental arrangement
- intuitive shape of GISAXS pattern => modelling is not always necessary
- ✤ GISAXS patterns provides FT of 2D autocorrelation function of the probed surface

Dual ion-beam sputtering system

Dual ion-beam sputtering system

Dual ion-beam sputtering system

- * 30 W microfocus X-ray source IµS (Incoatec), Cu K_{α} radiation
- X-ray detector Pilatus 200K (Dectris)
- total X-ray flux 1×10⁸ ph/s

Multilayer mirror growth by in-situ GISAXS

W/B₄C mirror, 1.5 nm period, N=15 (d_W =0.6 nm, d_{B4C} =0.9 nm) α_i = 0.25^o deposition time \approx 54 min.

Self-affine versus mounded surfaces

- $\operatorname{PSD}(k) = \frac{w^2 \xi^2}{4\pi} \exp\left[-\frac{\left(4\pi^2 + k^2 \lambda^2\right) \xi^2}{4\lambda^2}\right] J_0\left(\frac{\pi k \xi^2}{\lambda}\right)$
 - w interface width (surface rms roughness)
 - $\xi~$ lateral correlation length
 - λ mound period (inter-cluster distance)
 - J_0 Bessel function of zero order

Self-affine versus mounded surfaces

2D layer-by-layer growth

3D cluster growth

From self-affine to mounded surface

slope < 0 => 2D growth slope > 0 => 3D growth

From self-affine to mounded surface

ultra-short period multilayer slope < 0

Power spectral density from GISAXS

Lateral cut of GISAXS pattern at the exit angle close to the critical value for total reflection of the substrate is proportional to PSD function of the growing surface.

Power spectral density from GISAXS

Lateral cut of GISAXS pattern at the exit angle close to the critical value for total reflection of the substrate is proportional to PSD function of the growing surface.

Temporal evolution of lateral cuts of GISAXS patterns

Temporal evolution of PSD slope derived from GISAXS

TEM, XRR

W/B₄C multilayer on Si/SiO₂ substrate, d = 1.5 nm, N = 300, Γ = 0.33, $\alpha_{\rm i}$ = 0.25^o

3D growth of tungsten on SiO₂

3D growth of tungsten on SiO₂

Message

- Buildup of interfaces in W/B₄C mirrors is governed by an interplay between W agglomeration on SiO₂ and counteracting 2D layer-by-layer growth favored by B₄C.
- "Healing" effect of B₄C on the interface roughness plays a crucial role in the preparation of ultrashort-period multilayer mirrors without a need for additional interface treatment.
- In-situ GISAXS analysis revealed an additional role of the spacer beyond a merely optical one.
- Potential of laboratory-based in-situ GISAXS for analyses of multilayer growth was demonstrated using the latest-generation microfocus X-ray sources and fast 2D detectors.

Co-workers

Projects

- European Science Foundation, COST MP1307, CA15107
- European Research and Development Agency, ITMS 26220220170
- M-ERA.Net, XOPTICS
- Slovak Research and Development Agency, APVV-14-0745
- Grant Agency VEGA Bratislava, projects 2/0004/15

Thank you for your attention !

