# **Neutron Multilayers**

Thierry BIGAULT, Amandine VITTOZ, Guillaume DELPHIN, Pierre COURTOIS

> NEUTRONS FOR SOCIETY\*

Physics of X-Ray and Neutron Multilayer Structures Workshop – 10-11 Nov. 2016

## The Institut Laue Langevin in Grenoble

The world's leading facility in neutron science and technology, operating the most intense neutron source on earth.



In one year:

- ~ 800 experiments
- $\sim$  1500 researchers

#### ~ 40 world-class instruments





## Applications of multilayers in neutron optics

#### From "small" to "big" projects

Polariser (prototype)



Wavelength filter (LADI, protein crystallography)



"mass production": analysers for WASP\* instrument





90 cassettes x 37 mirrors x 2 coated sides  $\rightarrow$  238 m<sup>2</sup> covered with m=3 supermirrors, 541 layers





T. Bigault et al., Journ. Phys. Conf. Series, 528, 012017 (2013). P. Courtois et al., in ILL Annual Report, Grenoble, 2013, p. 82-3.

### From Bragg mirrors to supermirrors





## Applications of "standard" Ni/Ti supermirrors

#### Long guides to collect and transport neutrons to instruments

Neutron sources are poorly directional → large increase of collected solid angle

➔ more neutron flux









m=2 ballistic guide, L=148 m in total

... other applications: monochromators, focusing optics etc





## Magnetic multilayers as neutron spin filters

#### Polarisers / analysers: reflection / transmission mode





Before the sample: "polariser" After the sample: "analyzer"



## Polarising multilayers & supermirrors: principle

Neutron index of refraction for magnetic materials: (with nuclear term **b** and magnetic term **p**):

$$n \approx 1 - \frac{\lambda^2}{2\pi} N(b \pm p)$$
$$N.p = \frac{m \cdot \mu}{2\pi \cdot h} B$$

N: atomic density m: neutron mass µ : neutron magnetic moment





### Example : polariser for PF1B (fundamental physics)

- Aim: measurement of neutron decay with a polarised neutron beam, with an overall precision of 10<sup>-4</sup>
- Requirements:
  - Few events expected → High neutron flux → use the full cold white divergent beam from the guide :
    - 8x8cm<sup>2</sup>
    - Wavelengths ~0.2-2 nm, maximum at 0.5 nm, with divergence ~1° at this wavelength
    - The average beam polarisation has to be of the order of 0.9999,

if possible without strong wavelength dependence... !

- Existing best solution\*:
  - Bender with Co/Ti (m=2.8) supermirrors on glass
  - P = 0.997+/-0.001 ("crossed polariser" geometry)
- But :
  - Co activation
  - ightarrow the polariser becomes a nuclear waste
  - Glass substrate degradation under irradiation
  - $\rightarrow$  intensity loss with time
  - Large size bender
  - → difficult to increase the magnetic field further (gain in P expected)



# New solution

- solid-state bender with Fe/Si supermirrors
  - Co-free  $\rightarrow$  activation is not critical
  - More compact  $\rightarrow$  higher H possible
  - No glass  $\rightarrow$  no irradiation damage expected
- Points to address:
  - 1. Optimize polarisation for one supermirror reflection
  - 2. Improve polarisation at long wavelengths
  - 3. Push the limit above 0.997: fight against depolarisation effects





### 1. Optimize polarisation for one supermirror reflection:

1.4 1.6

1.4 1.6

"N.b" tuning by reactive sputtering





### 1. Optimize polarisation for one supermirror reflection:

#### Polarised neutron reflectivity (SuperADAM relectometer\*)





(\*Measurements & fits: K. Zhernenkov, D. Gorkov, B. P. Toperverg, unpublished)

### 2. Improve polarisation at long wavelengths

#### Effect of substrate in a solid-state device

Measured polarised neutron reflectivity:



## 2. Improve polarisation at long wavelengths



## 3. Push the polarisation limit above 0.997:



FOR SOCIETY

## 3. Push the polarisation limit above 0.997



(\*SuperADAM, A. Devishvili, A. Pethukov).



# Conclusion

Challenges of neutron multilayer fabrication

Non-polarising case

Controlling :

- layer thickness (large range),
- density,
- roughness,
- interface structures,
- stress

### Polarising case

- Same as non-polarising,
- SLD matching for spin down
- Controlling magnetic structure (perpendicular and in-plane, including spin misalignements)



#### Thanks to ...

• Collaborators at ILL:

A. Pethukov, V. Nesvizhevsky, T. Soldner, C. Klauser, D. Jullien, K. Zhernenkov, D. Gorkov, B. P. Toperverg, A. Devishvili, D. Honecker, C. Dewhurst, T. Saerbeck, A. Wildes, P. Falus, P. Fouquet, B. Farago, D. Bazzoli ....

- Collaborators at J-Parc:
- R. Maruyama, K. Soyama, D. Yamazaki
- People who provided neutron measurements during ILL shutdowns :
- T. Krist, F. Ott, J. Stahn
- People who contributed to develop multilayers at the ILL:
- O. Schärpf, I. Anderson, P. Hoghoj, K. Andersen



