

X-RAY AT-WAVELENGTH METROLOGY OF MULTI-LAYERED SURFACES

Sebastien Berujon, Pierre Piault, Eric Ziegler

ISDD Office Instrumentation beamline BM05

PXRNMS 2016 10/11/2016

ESRF UPGRADE

Phase I – 180 M€ (2009-2015)

- 19 new endstations and beamlines
- New 8 000m² experimental hall
- Improvement of overall infrastructure and Accelerator systems

Phase II - 150 M€ (2015-2022)

- a new high energy low-emittance source
- a new portfolio of unique instruments
- an innovative scientific instrumentation programme

THE ESRF-EBS LATTICE

X-RAY OPTICS

PART 4 Scientific Instrumentation

		Pages	5
4.	Introduction		į
4.1.	Beam t	ransport and conditioning	\$
	4.1.1.	Objectives and deliverables	\$
	4.1.2.	Development strategy for beam transport systems	1
	4.1.3.	Main areas for development	1
	4.1.4.	X-ray optics development	2
	4.1.5.	X-ray test facilities	ł

X-RAY MULTILAYER OPTICS

HARD X-RAY MULTILAYER OPTICS AT SYNCHROTRONS

Multilayer optics present wide and tunable spectral bandwidths

Imaging applications (radiography, tomography, tomosynthesis...)

- High flux (x100 compared to crystal based monochromators)
- Large grazing incidence angle useful for nanofocusing

At the ESRF: ID16NI, ID21, ID19...

✤ Spectroscopy applications with focused beam (µEXAFS, µXANES, µXAS,...):

- Large spectral bandwidth
- Achromatic systems

At the ESRF: ID24, BM23, ID16NA...

CURRENT CONCERN

X-ray beam imaged after double reflection on multilayer mirror monochromator

Up to 50 % intensity modulation with 17 x 5 μm transverse coherence at monochromator position.

More detailed characterization in:

A. Rack A *et al.* "Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging". J Synchrotron Rad. 2010;17(4):496-510.

Pixel size = $0.75 \,\mu\text{m}$ Distance from monochromator = $15 \,\text{m}$

Such modulation fringes are a huge drawback for:

- Imaging: it does not allow one to take full advantage of the detector dynamic
- Spectrometry applications: interference effects generate artefacts in data analysis

EFFECT OF COHERENCE

Fringe contrast during storage ring refill (16 bunch mode, 90 mA nominal)

Clear difference in the visible spatial frequencies

COHERENT FRACTION

ESRF-EBS: increase of the horizontal coherence by a factor up to 40

Interference fringes will likely be more pronounced, especially in the horizontal direction.

MULTILAYER MIRROR REQUIREMENTS

Multilayer topography

	Spatial Frequency Range	Spatial Wavelength Range	SOMS Specification
HSFR	0.5 μm ⁻¹ - 50 μm ⁻¹ 5×10 ⁻⁴ nm ⁻¹ - 5×10 ⁻² nm ⁻¹	20 nm - 2 µm	≤ 0.4 nm rms
MSFR	10 ⁻³ µm ⁻¹ - 0.5 µm ⁻¹ 10 ⁻⁶ nm ⁻¹ - 5×10 ⁻⁴ nm ⁻¹	2 µm - 1 mm	≤ 0.25 nm rms
Figure	(mirror CA) ⁻¹ - 10 ⁻³ µm ⁻¹	Mirror CA – 1 mm	≤ 0.25 µrad rms and < 2 nm rms

Soufli et al., SPIE 2008

X-ray metrology:

- ✤ Depth:
 - X-ray reflectivity
- Surface and interfaces:
 - X-ray diffuse scattering
 - Wavefront characterization

ASSUMPTIONS

Intensity modulations due to transverse and longitudinal coherence of the synchrotron source: interference process

Transmission of the substrate imperfections printed through the ML stack.

Morawe Ch., Barrett R, Friedrich K, Klünder R, Vivo A. Coherence preservation of synchrotron beams by multilayers. J Phys Conf Ser. 2013;425(5):052027.

Substrate with one side coated and the other not

Total reflection at E = 15 keV

ONLINE METROLOGY APPROACHES

Wavefront propagation based methods:

- Transfer of intensity equation
- Iterative calculation of Fresnel propagation
- Ptychography
- ...

Wavefront modulation based methods:

- Pencil beam method
- Grating based methods (mainly interferometry)
- Hartmann like sensors
- Coded apertures based methods
- Speckle based methods
- ...

WAVEFRONT SENSING USING MODULATION

Recovery of the deflection angle through:

- Centroid method
- Fourier processing
- Normalized cross-correlation

Sensitive to ∇W or $\nabla^2 W$

$$\alpha = -\frac{\lambda}{2\pi} \frac{\partial \varphi}{\partial x} = -\frac{\partial W}{\partial x}$$

What we sense using (near field) deflection based technique

SPECKLE BASED APPROACH

Access to the tangential and sagittal slopes with 2D scans of the membrane

Measuring reflective optics: mapping in 2D

Berujon *et al.* **2014** ESRF BM05 @ 9 keV $p = 61 \text{ m}, q = 59 \text{ mm}, \Theta = 6.31 \text{ mrad}$

ESRF

The European Synchrotron

SPECKLE BASED METROLOGY

plane

Wavefront sensitivity better than 1 pm

> Wang H, Kashyap Y, Sawhney K. Speckle based Xray wavefront sensing with nanoradian angular The European Synchrotron sensitivity. Opt Express. (2015)

250

500

y (μm)

-10

-15

1000

750

MULTILAYER MIRROR ONLINE METROLOGY

M2: [W/B₄C]₂₀ Λ=4nm on flat substrate

Vertical curvature

Height profile and slope error 30 600 **2**0 500 Gradient error (urad) 10 400 0 300 -10 200 -20 100 -<mark>30</mark> L -50 50 -40 -30 -20 -10 10 20 30 0 40

Mirror curvature and modulation fringes

Mirror length (mm)

ESRF

Excellent correlation between the fringes location and the mirror curvature

RESULTS ON ML MIRRORS

Deviation equivalent to the thickness of a hair on the road from here to Amsterdam

The European Synchrotron

ESRF

Nicolas J, García G "Modulation of intensity in defocused beams" (2013)

Far from focus, the modulated intensities can be approximated by:

$$F_{z}(x) = \sum_{i=1}^{N} \frac{F_{i}(u(x))}{\left|2z\left(\frac{1}{R_{z}} + \frac{d\varepsilon}{du}(u(x))\right)\right|}$$

In other words, a smooth background with some modulation proportional to the curvature of the mirror

- It is not so much the slope error that matters. For instance, bigger slope errors can generate less interference fringes than a flatter mirror.
- What really matters is the local curvature. One needs to care about the spectral distribution of the slope errors especially in the mm⁻¹ spatial frequency range

FUTURE

Manufacturing of substrate surfaces with better flatness seems difficult. Little improvements observed in the last 10 years.

- A possible direction could be differential deposition with high frequencies control: use of a narrow mask to compensate for substrate defects
- Control the properties of X-ray propagation in the ML stack by simulation of the X-ray propagation in the multilayer system using adapted Takagi-Taupin equations.

Cf. P. Piault's Poster

Further investigations of the effect of roughness interfaces on the beam coherence properties

FINAL WORDS

- Substrate shape is still problematic and is likely to remain as such since the manufacturing quality has reached a limit.
- A substrate manufacturing process generating less curvature in the mm⁻¹ frequencies range should be favored.
- Finally deposition and material selection strategies must be implemented to suppress the unwanted interference fringes at coherent sources.

ACKNOWLEDGEMENTS

ESRF:

- S. Da Cunha, Ch. Morawe, A. Vivo
- M. Krisch, Cl. Ferrero, B. Lantelme, J. Baruchel, J, Susini, L. Graham, R. Barrett., J-Y Massonnat
- ESRF BM05 past and current colleagues

Diamond Light Source:

- Kawal Sawhney, Hongchang Wang
- Ian Pape, Andy Malandain, Simon Alcock
- Diamond B16 former colleagues

Other institutions: Roberto Cerbino, Luca Peverini, Igor Kozhevnikov, Pierre Chavel, Simon Rutishauser, Christian David,...

